+ Cluster analysis. a generalization can be derived for each cluster and hence processing is done batch wise rather than individually

Size: px
Start display at page:

Download "+ Cluster analysis. a generalization can be derived for each cluster and hence processing is done batch wise rather than individually"

Transcription

1 Trasitio 1

2 + Cluster aalysis 2 Provides a quick ad meaigful overview of data Improves efficiecy of data miig by combiig data with similar characteristics so that a geeralizatio ca be derived for each cluster ad hece processig is doe batch wise rather tha idividually Gives a good uderstadig of the uusual similarities that may occur oce the clusterig is complete Provides a really good base for earest eighbourig ordiatio of deeper relatios

3 3 Parallel K-meas: practical experiece Geoveva Vargas-Solar Frech Coucil of Scietific Research, LIG & LAFMIA Labs Javier Espiosa Barceloa Supercomputig Cetre & LAFMIA Lab Motevideo, 22 d November 4 th December, INFORMATIQUE

4 + K-meas 4 P = (x1(p), x2(p), x3(p)...) ad Q = (x1(q), x2(q), x3(q)...). Compute the distace d(p,q) Compute cluster cetroid: the poit whose coordiates correspods to the mea of the coordiates of all the poits i the cluster The data set will have certai items that may ot be related to ay cluster ad that caot be classified uder them, Such poits are referred to as outliers Ofte correspod to the extremes of the data set depedig o whether their values or extremely high or low Objective: obtai a miimal squared differece betwee the cetroid of the cluster ad the item i the dataset

5 + K-meas 5 Objective: obtai a miimal squared differece betwee the cetroid of the cluster ad the item i the dataset Where x i is the value of the item ad c j is the value of the cetroid of the cluster

6 + K-meas steps 6 The required umber of cluster must be chose: K Choose distat ad distict cetroids for each of the chose set of K clusters Cosider each elemet of the give set ad compare its distace to all the cetroids of the K clusters. Based o the calculated distace the elemet is added to the cluster whose cetroid is earest to the elemet The cluster cetroids are re-calculated after each assigmet or a set of assigmets Iterative method ad cotiuously updated

7 7 Map reduced K-meas Prajesh P Achalia, AjaK Koudiya, Sriath N K, MapReduce Desig of K-Meas Clusterig Algorithm, IEEE, 2013

8 + Desig steps 8 Defie ad hadle the iput ad output of the implemetatio. The iput is give as a <key, value> pair key is the cluster cetre value a vector i the data set

9 + Geeral priciple 9

10 Implemetatio 1 10

11 + Pre-requisite 11 Two files: F1: houses the clusters with their cetroids F2: houses the vectors to be clustered The iitial set of cetres is stored i the iput directory of HDFS they form the key field i the <key,value>

12 + Map & Reduce routies 12 Mapper: Computes the distace betwee the give data set ad cluster cetre fed as a <key,value> Keeps track of the cluster to which the give vector is closest Assig the vector to the earest cluster, oce the computatio of distaces is complete Reducer: Recalculates the cetroid Restructures the cluster to prevet creatios of clusters with extreme sizes i.e. cluster havig too less data vectors or a cluster havig too may data vectors Re-writes the ew set of vectors ad clusters to the disk Ready for the ext iteratio

13 13

14 14

15 15 Implemetatio 2

16 Implemetatio 3: Spark platform 16

17 Spark Fast, Iteractive, Laguage-Itegrated Cluster Computig Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Akur Dave, Justi Ma, Murphy McCauley, Michael Frakli, Scott Sheker, Io Stoica UC BERKELEY

18 + Project Goals 18 Exted the MapReduce model to better support two commo classes of aalytics apps: Iterative algorithms (machie learig, graphs) Iteractive data miig Ehace programmability: Itegrate ito Scala programmig laguage Allow iteractive use from Scala iterpreter

19 + Motivatio 19 Most curret cluster programmig models are based o acyclic data flow from stable storage to stable storage Map Reduce Iput Map Output Map Reduce

20 + Motivatio 20 Most curret cluster programmig models are based o acyclic data flow from stable storage to stable storage Map Reduce Beefits of data flow: rutime ca decide where Iput to ru Map tasks ad ca automatically Output recover from failures Map Reduce

21 + Motivatio 21 Acyclic data flow is iefficiet for applicatios that repeatedly reuse a workig set of data: Iterative algorithms (machie learig, graphs) Iteractive data miig tools (R, Excel, Pytho) With curret frameworks, apps reload data from stable storage o each query

22 + Solutio: Resiliet Distributed Datasets (RDDs) 22 Allow apps to keep workig sets i memory for efficiet reuse Retai the attractive properties of MapReduce Fault tolerace, data locality, scalability Support a wide rage of applicatios

23 + Spark Operatios 23 Trasformatios (defie a ew RDD) map filter sample groupbykey reducebykey sortbykey flatmap uio joi cogroup cross mapvalues Actios (retur a result to driver program) collect reduce cout save lookupkey

24 + Outlie 24 Spark programmig model Implemetatio User applicatios

25 + Programmig Model 25 Resiliet distributed datasets (RDDs) Immutable, partitioed collectios of objects Created through parallel trasformatios (map, filter, groupby, joi, ) o data i stable storage Ca be cached for efficiet reuse Actios o RDDs Cout, reduce, collect, save,

26 + Example: Log Miig 26 Load error messages from a log ito memory, the iteractively search for various patters lies = spark.textfile( hdfs://... ) errors = lies.filter(_.startswith( ERROR )) messages = errors.map(_.split( \t )(2)) cachedmsgs = messages.cache() cachedmsgs.filter(_.cotais( foo )).cout cachedmsgs.filter(_.cotais( bar )).cout... Result: full-text scaled search to 1 TB of data Wikipedia i 5-7 sec i <1 sec (vs (vs sec for for o-disk data) Base RDD Trasformed RDD results Work er Driver Actio Block 3 Cache 3 tasks Work er Block 1 Work er Block 2 Cache 1 Cache 2

27 + RDD Fault Tolerace 27 RDDs maitai lieage iformatio that ca be used to recostruct lost partitios Ex: messages = textfile(...).filter(_.startswith( ERROR )).map(_.split( \t )(2)) HDFS File Filtered RDD filter (fuc = _.cotais(...)) map (fuc = _.split(...)) Mapped RDD

28 + Example: Logistic Regressio 28 Goal: fid best lie separatig two sets of poits radom iitial lie target

29 + Example: Logistic Regressio 29 val data = spark.textfile(...).map(readpoit).cache() var w = Vector.radom(D) for (i <- 1 to ITERATIONS) { val gradiet = data.map(p => (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x ).reduce(_ + _) w -= gradiet } pritl("fial w: " + w)

30 + Logistic Regressio Performace 30 Ruig Time (s) Number of Iteratios 127 s / iteratio Hadoop Spark first iteratio 174 s further iteratios 6 s This is for a 29 GB dataset o 20 EC2 m1.xlarge machies (4 cores each)

31 Spark Scheduler 31 Dryad-like DAGs A: B: Pipelies fuctios withi a stage Stage 1 groupby G: Cache-aware work reuse & locality C: D: map E: F: joi Partitioig-aware to avoid shuffles Stage 2 uio Stage 3 = cached data partitio

32 + Coclusio 32 Spark provides a simple, efficiet, ad powerful programmig model for a wide rage of apps Dowload our ope source release: matei@berkeley.edu

33 Related Work 33 DryadLINQ, FlumeJava Similar distributed collectio API, but caot reuse datasets efficietly across queries Relatioal databases Lieage/proveace, logical loggig, materialized views GraphLab, Piccolo, BigTable, RAMCloud Fie-graied writes similar to distributed shared memory Iterative MapReduce (e.g. Twister, HaLoop) Implicit data sharig for a fixed computatio patter Cachig systems (e.g. Nectar) Store data i files, o explicit cotrol over what is cached

34 34 Let s dive o Spark for executig ad aalyzig K-Meas

35 35

Fast, Interactive, Language-Integrated Cluster Computing

Fast, Interactive, Language-Integrated Cluster Computing Spark Fast, Interactive, Language-Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica www.spark-project.org

More information

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications Spark In- Memory Cluster Computing for Iterative and Interactive Applications Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,

More information

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications Spark In- Memory Cluster Computing for Iterative and Interactive Applications Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,

More information

Resilient Distributed Datasets

Resilient Distributed Datasets Resilient Distributed Datasets A Fault- Tolerant Abstraction for In- Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,

More information

Spark. Cluster Computing with Working Sets. Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica.

Spark. Cluster Computing with Working Sets. Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica. Spark Cluster Computing with Working Sets Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica UC Berkeley Background MapReduce and Dryad raised level of abstraction in cluster

More information

Spark: A Brief History. https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

Spark: A Brief History. https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf Spark: A Brief History https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf A Brief History: 2004 MapReduce paper 2010 Spark paper 2002 2004 2006 2008 2010 2012 2014 2002 MapReduce @ Google

More information

CS Spark. Slides from Matei Zaharia and Databricks

CS Spark. Slides from Matei Zaharia and Databricks CS 5450 Spark Slides from Matei Zaharia and Databricks Goals uextend the MapReduce model to better support two common classes of analytics apps Iterative algorithms (machine learning, graphs) Interactive

More information

a Spark in the cloud iterative and interactive cluster computing

a Spark in the cloud iterative and interactive cluster computing a Spark in the cloud iterative and interactive cluster computing Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica UC Berkeley Background MapReduce and Dryad raised level of

More information

Programming Systems for Big Data

Programming Systems for Big Data Programming Systems for Big Data CS315B Lecture 17 Including material from Kunle Olukotun Prof. Aiken CS 315B Lecture 17 1 Big Data We ve focused on parallel programming for computational science There

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

Analytics in Spark. Yanlei Diao Tim Hunter. Slides Courtesy of Ion Stoica, Matei Zaharia and Brooke Wenig

Analytics in Spark. Yanlei Diao Tim Hunter. Slides Courtesy of Ion Stoica, Matei Zaharia and Brooke Wenig Analytics in Spark Yanlei Diao Tim Hunter Slides Courtesy of Ion Stoica, Matei Zaharia and Brooke Wenig Outline 1. A brief history of Big Data and Spark 2. Technical summary of Spark 3. Unified analytics

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model Today s content Resilient Distributed Datasets(RDDs) ------ Spark and its data model Resilient Distributed Datasets: A Fault- Tolerant Abstraction for In-Memory Cluster Computing -- Spark By Matei Zaharia,

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

More information

Spark & Spark SQL. High- Speed In- Memory Analytics over Hadoop and Hive Data. Instructor: Duen Horng (Polo) Chau

Spark & Spark SQL. High- Speed In- Memory Analytics over Hadoop and Hive Data. Instructor: Duen Horng (Polo) Chau CSE 6242 / CX 4242 Data and Visual Analytics Georgia Tech Spark & Spark SQL High- Speed In- Memory Analytics over Hadoop and Hive Data Instructor: Duen Horng (Polo) Chau Slides adopted from Matei Zaharia

More information

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University

CSCI 5090/7090- Machine Learning. Spring Mehdi Allahyari Georgia Southern University CSCI 5090/7090- Machie Learig Sprig 018 Mehdi Allahyari Georgia Souther Uiversity Clusterig (slides borrowed from Tom Mitchell, Maria Floria Balca, Ali Borji, Ke Che) 1 Clusterig, Iformal Goals Goal: Automatically

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 22 Database Recovery Techiques Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Recovery algorithms Recovery cocepts Write-ahead

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON

A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON A SOFTWARE MODEL FOR THE MULTILAYER PERCEPTRON Roberto Lopez ad Eugeio Oñate Iteratioal Ceter for Numerical Methods i Egieerig (CIMNE) Edificio C1, Gra Capitá s/, 08034 Barceloa, Spai ABSTRACT I this work

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Analysis of Algorithms

Analysis of Algorithms Presetatio for use with the textbook, Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Aalysis of Algorithms Iput 2015 Goodrich ad Tamassia Algorithm Aalysis of Algorithms

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Minimum Spanning Trees

Minimum Spanning Trees Miimum Spaig Trees Miimum Spaig Trees Spaig subgraph Subgraph of a graph G cotaiig all the vertices of G Spaig tree Spaig subgraph that is itself a (free) tree Miimum spaig tree (MST) Spaig tree of a weighted

More information

CSE 444: Database Internals. Lecture 23 Spark

CSE 444: Database Internals. Lecture 23 Spark CSE 444: Database Internals Lecture 23 Spark References Spark is an open source system from Berkeley Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei

More information

Chapter 4 Threads. Operating Systems: Internals and Design Principles. Ninth Edition By William Stallings

Chapter 4 Threads. Operating Systems: Internals and Design Principles. Ninth Edition By William Stallings Operatig Systems: Iterals ad Desig Priciples Chapter 4 Threads Nith Editio By William Stalligs Processes ad Threads Resource Owership Process icludes a virtual address space to hold the process image The

More information

Outline. Research Definition. Motivation. Foundation of Reverse Engineering. Dynamic Analysis and Design Pattern Detection in Java Programs

Outline. Research Definition. Motivation. Foundation of Reverse Engineering. Dynamic Analysis and Design Pattern Detection in Java Programs Dyamic Aalysis ad Desig Patter Detectio i Java Programs Outlie Lei Hu Kamra Sartipi {hul4, sartipi}@mcmasterca Departmet of Computig ad Software McMaster Uiversity Caada Motivatio Research Problem Defiitio

More information

Big Data Infrastructures & Technologies

Big Data Infrastructures & Technologies Big Data Infrastructures & Technologies Spark and MLLIB OVERVIEW OF SPARK What is Spark? Fast and expressive cluster computing system interoperable with Apache Hadoop Improves efficiency through: In-memory

More information

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method

A New Morphological 3D Shape Decomposition: Grayscale Interframe Interpolation Method A ew Morphological 3D Shape Decompositio: Grayscale Iterframe Iterpolatio Method D.. Vizireau Politehica Uiversity Bucharest, Romaia ae@comm.pub.ro R. M. Udrea Politehica Uiversity Bucharest, Romaia mihea@comm.pub.ro

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 18 Strategies for Query Processig Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio DBMS techiques to process a query Scaer idetifies

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

Fault Tolerant Distributed Main Memory Systems

Fault Tolerant Distributed Main Memory Systems Fault Tolerant Distributed Main Memory Systems CompSci 590.04 Instructor: Ashwin Machanavajjhala Lecture 16 : 590.04 Fall 15 1 Recap: Map Reduce! map!!,!! list!!!!reduce!!, list(!! )!! Map Phase (per record

More information

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory

Cluster Analysis. Andrew Kusiak Intelligent Systems Laboratory Cluster Aalysis Adrew Kusiak Itelliget Systems Laboratory 2139 Seamas Ceter The Uiversity of Iowa Iowa City, Iowa 52242-1527 adrew-kusiak@uiowa.edu http://www.icae.uiowa.edu/~akusiak Two geeric modes of

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 26 Ehaced Data Models: Itroductio to Active, Temporal, Spatial, Multimedia, ad Deductive Databases Copyright 2016 Ramez Elmasri ad Shamkat B.

More information

arxiv: v2 [cs.ds] 24 Mar 2018

arxiv: v2 [cs.ds] 24 Mar 2018 Similar Elemets ad Metric Labelig o Complete Graphs arxiv:1803.08037v [cs.ds] 4 Mar 018 Pedro F. Felzeszwalb Brow Uiversity Providece, RI, USA pff@brow.edu March 8, 018 We cosider a problem that ivolves

More information

HADOOP: A NEW APPROACH FOR DOCUMENT CLUSTERING

HADOOP: A NEW APPROACH FOR DOCUMENT CLUSTERING Y.K. Patil* Iteratioal Joural of Advaced Research i ISSN: 2278-6244 IT ad Egieerig Impact Factor: 4.54 HADOOP: A NEW APPROACH FOR DOCUMENT CLUSTERING Prof. V.S. Nadedkar** Abstract: Documet clusterig is

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016 CS 111: Program Desig I Lecture 15: Objects, Padas, Modules Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 13, 2016 OBJECTS AND DOT NOTATION Objects (Implicit i Chapter 2, Variables,

More information

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software Structurig Redudacy for Fault Tolerace CSE 598D: Fault Tolerat Software What do we wat to achieve? Versios Damage Assessmet Versio 1 Error Detectio Iputs Versio 2 Voter Outputs State Restoratio Cotiued

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Shark Hive on Spark Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Agenda Intro to Spark Apache Hive Shark Shark s Improvements over Hive Demo Alpha

More information

n Explore virtualization concepts n Become familiar with cloud concepts

n Explore virtualization concepts n Become familiar with cloud concepts Chapter Objectives Explore virtualizatio cocepts Become familiar with cloud cocepts Chapter #15: Architecture ad Desig 2 Hypervisor Virtualizatio ad cloud services are becomig commo eterprise tools to

More information

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article Available olie www.jocpr.com Joural of Chemical ad Pharmaceutical Research, 2013, 5(12):745-749 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 K-meas algorithm i the optimal iitial cetroids based

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Chase Wu New Jersey Institute of Technology

Chase Wu New Jersey Institute of Technology CS 644: Introduction to Big Data Chapter 5. Big Data Computing and Processing Chase Wu New Jersey Institute of Technology Some of the slides were provided through the courtesy of Dr. Ching-Yung Lin at

More information

MapReduce and Hadoop. Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata. November 10, 2014

MapReduce and Hadoop. Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata. November 10, 2014 MapReduce ad Hadoop Debapriyo Majumdar Data Miig Fall 2014 Idia Statistical Istitute Kolkata November 10, 2014 Let s keep the itro short Moder data miig: process immese amout of data quickly Exploit parallelism

More information

CS435 Introduction to Big Data FALL 2018 Colorado State University. 10/22/2018 Week 10-A Sangmi Lee Pallickara. FAQs.

CS435 Introduction to Big Data FALL 2018 Colorado State University. 10/22/2018 Week 10-A Sangmi Lee Pallickara. FAQs. 10/22/2018 - FALL 2018 W10.A.0.0 10/22/2018 - FALL 2018 W10.A.1 FAQs Term project: Proposal 5:00PM October 23, 2018 PART 1. LARGE SCALE DATA ANALYTICS IN-MEMORY CLUSTER COMPUTING Computer Science, Colorado

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information

ANN WHICH COVERS MLP AND RBF

ANN WHICH COVERS MLP AND RBF ANN WHICH COVERS MLP AND RBF Josef Boští, Jaromír Kual Faculty of Nuclear Scieces ad Physical Egieerig, CTU i Prague Departmet of Software Egieerig Abstract Two basic types of artificial eural etwors Multi

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 19 Query Optimizatio Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Query optimizatio Coducted by a query optimizer i a DBMS Goal:

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

Chapter 4 The Datapath

Chapter 4 The Datapath The Ageda Chapter 4 The Datapath Based o slides McGraw-Hill Additioal material 24/25/26 Lewis/Marti Additioal material 28 Roth Additioal material 2 Taylor Additioal material 2 Farmer Tae the elemets that

More information

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup Note:

Abstract. Chapter 4 Computation. Overview 8/13/18. Bjarne Stroustrup   Note: Chapter 4 Computatio Bjare Stroustrup www.stroustrup.com/programmig Abstract Today, I ll preset the basics of computatio. I particular, we ll discuss expressios, how to iterate over a series of values

More information

2/4/2019 Week 3- A Sangmi Lee Pallickara

2/4/2019 Week 3- A Sangmi Lee Pallickara Week 3-A-0 2/4/2019 Colorado State University, Spring 2019 Week 3-A-1 CS535 BIG DATA FAQs PART A. BIG DATA TECHNOLOGY 3. DISTRIBUTED COMPUTING MODELS FOR SCALABLE BATCH COMPUTING SECTION 1: MAPREDUCE PA1

More information

Keywords Software Architecture, Object-oriented metrics, Reliability, Reusability, Coupling evaluator, Cohesion, efficiency

Keywords Software Architecture, Object-oriented metrics, Reliability, Reusability, Coupling evaluator, Cohesion, efficiency Volume 3, Issue 9, September 2013 ISSN: 2277 128X Iteratioal Joural of Advaced Research i Computer Sciece ad Software Egieerig Research Paper Available olie at: www.ijarcsse.com Couplig Evaluator to Ehace

More information

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis Outlie ad Readig Aalysis of Algorithms Iput Algorithm Output Ruig time ( 3.) Pseudo-code ( 3.2) Coutig primitive operatios ( 3.3-3.) Asymptotic otatio ( 3.6) Asymptotic aalysis ( 3.7) Case study Aalysis

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

An Improved Shuffled Frog-Leaping Algorithm for Knapsack Problem

An Improved Shuffled Frog-Leaping Algorithm for Knapsack Problem A Improved Shuffled Frog-Leapig Algorithm for Kapsack Problem Zhoufag Li, Ya Zhou, ad Peg Cheg School of Iformatio Sciece ad Egieerig Hea Uiversity of Techology ZhegZhou, Chia lzhf1978@126.com Abstract.

More information

SPIRAL DSP Transform Compiler:

SPIRAL DSP Transform Compiler: SPIRAL DSP Trasform Compiler: Applicatio Specific Hardware Sythesis Peter A. Milder (peter.milder@stoybroo.edu) Fraz Frachetti, James C. Hoe, ad Marus Pueschel Departmet of ECE Caregie Mello Uiversity

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

Minimum Spanning Trees

Minimum Spanning Trees Presetatio for use with the textbook, lgorithm esig ad pplicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 0 Miimum Spaig Trees 0 Goodrich ad Tamassia Miimum Spaig Trees pplicatio: oectig a Network Suppose

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

CS 111 Green: Program Design I Lecture 27: Speed (cont.); parting thoughts

CS 111 Green: Program Design I Lecture 27: Speed (cont.); parting thoughts CS 111 Gree: Program Desig I Lecture 27: Speed (cot.); partig thoughts By Nascarkig - Ow work, CC BY-SA 4.0, https://commos.wikimedia.org/w/idex.php?curid=38671041 Robert H. Sloa (CS) & Rachel Poretsky

More information

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018 CS 111: Program Desig I Lecture 15: Modules, Padas agai Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago March 8, 2018 PYTHON STANDARD LIBRARY & BEYOND: MODULES Extedig Pytho Every moder

More information

Multiprocessors. HPC Prof. Robert van Engelen

Multiprocessors. HPC Prof. Robert van Engelen Multiprocessors Prof. Robert va Egele Overview The PMS model Shared memory multiprocessors Basic shared memory systems SMP, Multicore, ad COMA Distributed memory multicomputers MPP systems Network topologies

More information

Minimum Spanning Trees. Application: Connecting a Network

Minimum Spanning Trees. Application: Connecting a Network Miimum Spaig Tree // : Presetatio for use with the textbook, lgorithm esig ad pplicatios, by M. T. oodrich ad R. Tamassia, Wiley, Miimum Spaig Trees oodrich ad Tamassia Miimum Spaig Trees pplicatio: oectig

More information

Bayesian approach to reliability modelling for a probability of failure on demand parameter

Bayesian approach to reliability modelling for a probability of failure on demand parameter Bayesia approach to reliability modellig for a probability of failure o demad parameter BÖRCSÖK J., SCHAEFER S. Departmet of Computer Architecture ad System Programmig Uiversity Kassel, Wilhelmshöher Allee

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Cocurrecy Threads ad Cocurrecy i Java: Part 1 What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Threads ad Cocurrecy i Java: Part 1 1 Cocurrecy What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Deep Learning Comes of Age. Presenter: 齐琦 海南大学

Deep Learning Comes of Age. Presenter: 齐琦 海南大学 Deep Learning Comes of Age Presenter: 齐琦 海南大学 原文引用 Anthes, G. (2013). "Deep learning comes of age." Commun. ACM 56(6): 13-15. AI/Machine learning s new technology deep learning --- multilayer artificial

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

DATA STRUCTURES. amortized analysis binomial heaps Fibonacci heaps union-find. Data structures. Appetizer. Appetizer

DATA STRUCTURES. amortized analysis binomial heaps Fibonacci heaps union-find. Data structures. Appetizer. Appetizer Data structures DATA STRUCTURES Static problems. Give a iput, produce a output. Ex. Sortig, FFT, edit distace, shortest paths, MST, max-flow,... amortized aalysis biomial heaps Fiboacci heaps uio-fid Dyamic

More information

Data-intensive computing systems

Data-intensive computing systems Data-intensive computing systems University of Verona Computer Science Department Damiano Carra Acknowledgements q Credits Part of the course material is based on slides provided by the following authors

More information

COMP Parallel Computing. PRAM (1): The PRAM model and complexity measures

COMP Parallel Computing. PRAM (1): The PRAM model and complexity measures COMP 633 - Parallel Computig Lecture 2 August 24, 2017 : The PRAM model ad complexity measures 1 First class summary This course is about parallel computig to achieve high-er performace o idividual problems

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015.

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015. Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Hash Tables xkcd. http://xkcd.com/221/. Radom Number. Used with permissio uder Creative

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

A Parallel DFA Minimization Algorithm

A Parallel DFA Minimization Algorithm A Parallel DFA Miimizatio Algorithm Ambuj Tewari, Utkarsh Srivastava, ad P. Gupta Departmet of Computer Sciece & Egieerig Idia Istitute of Techology Kapur Kapur 208 016,INDIA pg@iitk.ac.i Abstract. I this

More information

FREQUENCY ESTIMATION OF INTERNET PACKET STREAMS WITH LIMITED SPACE: UPPER AND LOWER BOUNDS

FREQUENCY ESTIMATION OF INTERNET PACKET STREAMS WITH LIMITED SPACE: UPPER AND LOWER BOUNDS FREQUENCY ESTIMATION OF INTERNET PACKET STREAMS WITH LIMITED SPACE: UPPER AND LOWER BOUNDS Prosejit Bose Evagelos Kraakis Pat Mori Yihui Tag School of Computer Sciece, Carleto Uiversity {jit,kraakis,mori,y

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Discretized Streams. An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters

Discretized Streams. An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters Discretized Streams An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, Ion Stoica UC BERKELEY Motivation Many important

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

Shark: Hive on Spark

Shark: Hive on Spark Optional Reading (additional material) Shark: Hive on Spark Prajakta Kalmegh Duke University 1 What is Shark? Port of Apache Hive to run on Spark Compatible with existing Hive data, metastores, and queries

More information