What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape

Size: px
Start display at page:

Download "What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape"

Transcription

1 Geometry Processing

2 What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape

3 What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Examples: subdivision and decimation

4 What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Examples: subdivision and decimation parameterization

5 What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Examples: subdivision and decimation parameterization remeshing

6 What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Examples: subdivision and decimation parameterization remeshing smoothing/fairing

7 What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Examples: subdivision and decimation parameterization remeshing smoothing/fairing Today: a quick taste of surface geometry

8 Simple Geometry: Plane Curves

9 Simple Geometry: Plane Curves

10 Simple Geometry: Plane Curves

11 Curvature What is it? Some formula:

12 Curvature What is it really?

13 Curvature What is it really? small + zeroish small + large - how quickly the normals turn

14 Curvature What is it really? how quickly the normals turn

15 Curvature What is it really?

16 Total Integrated Curvature

17 Total Integrated Curvature

18 Total Integrated Curvature Theorem (Whitney-Graustein): for a closed smooth curve,

19 Inflation Theorem Offset closed curve along normal direction

20 Inflation Theorem Offset closed curve along normal direction

21 Inflation Theorem Offset closed curve along normal direction

22 Inflation Theorem Offset closed curve along normal direction

23 Surfaces in Space

24 Surfaces in Space What is curvature now?

25 Idea #1: Normal Curvature

26 Mean Curvature Average normal curvature at point

27 Idea #2: Look at Normals Again

28 Idea #2: Look at Normals Again Gaussian curvature

29 Mean and Gaussian Curvatue

30 Theorema Egregrium Theorem (Gauss, deep): Gaussian curvature is an isometry invariant all have

31 Informativeness of Curvature Theorem (easy): every curve can be reconstructed (up to rigid motions) from its curvature Theorem (deep): every surface can be reconstructed (up to rigid motions) from its mean and Gaussian curvature

32 3D Analogues Theorem [Gauss-Bonnet]: Theorem [Steiner]:

33 Discrete Curve

34 Discrete Curve

35 How do we Discretize Geometry? Option 1: is not the real curve. It approximates some smooth limit curve.

36 How do we Discretize Geometry? Option 1: is not the real curve. It approximates some smooth limit curve. What is the refinement rule?

37 Internet proof that

38 How do we discretize geometry? Option 2: is the real curve! Construct geometry axiomatically Get the right answer at every level of refinement

39 How do we discretize curvature?

40 How do we discretize curvature?

41 How do we discretize curvature?

42 Discrete Surface

43 Discrete Inflation Theorem

44 Discrete Inflation Theorem

45 Discrete Gauss-Bonnet

46 Chladni Plates Ernst Chladni

47 Isolines of Square Plate

48 Chladni Plates Properties of plate energy: - Stretching negligible - Uniform, local & isotropic - Zero for flat plate - Same in both directions Sophie Germain

49 Chladni Plates Properties of plate energy: - Stretching negligible - Uniform, local & isotropic - Zero for flat plate - Same in both directions Low-order approximation: Sophie Germain

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Geometry Processing What is Geometry Processing? Understanding the math of 3D shape What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

WWW links for Mathematics 138A notes

WWW links for Mathematics 138A notes WWW links for Mathematics 138A notes General statements about the use of Internet resources appear in the document listed below. We shall give separate lists of links for each of the relevant files in

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Geometry. 4.1 Translations

Geometry. 4.1 Translations Geometry 4.1 Translations 4.1 Warm Up Translate point P. State the coordinates of P'. 1. P(-4, 4); 2 units down, 2 units right 2. P(-3, -2); 3 units right, 3 units up 3. P(2,2); 2 units down, 2 units right

More information

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST Freeform Architecture and Discrete Differential Geometry Helmut Pottmann, KAUST Freeform Architecture Motivation: Large scale architectural projects, involving complex freeform geometry Realization challenging

More information

Invariant Measures. The Smooth Approach

Invariant Measures. The Smooth Approach Invariant Measures Mathieu Desbrun & Peter Schröder 1 The Smooth Approach On this show lots of derivatives tedious expressions in coordinates For what? only to discover that there are invariant measures

More information

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are Math 348 Fall 2017 Lectures 20: The Gauss-Bonnet Theorem II Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams.

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents

Lectures 19: The Gauss-Bonnet Theorem I. Table of contents Math 348 Fall 07 Lectures 9: The Gauss-Bonnet Theorem I Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams. In

More information

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision

Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Computational QC Geometry: A tool for Medical Morphometry, Computer Graphics & Vision Part II of the sequel of 2 talks. Computation C/QC geometry was presented by Tony F. Chan Ronald Lok Ming Lui Department

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

Iain Claridge. Surface Curvature

Iain Claridge. Surface Curvature Iain Claridge Surface Curvature Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Curves and surfaces in 3D For our purposes: A curve is a map α : ℝ ℝ3 a b I (or from some subset I of ℝ) α(a) α(b)

More information

Edge Detection. Announcements. Edge detection. Origin of Edges. Mailing list: you should have received messages

Edge Detection. Announcements. Edge detection. Origin of Edges. Mailing list: you should have received messages Announcements Mailing list: csep576@cs.washington.edu you should have received messages Project 1 out today (due in two weeks) Carpools Edge Detection From Sandlot Science Today s reading Forsyth, chapters

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018 (1/27) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/ niall/ma284/ 7 and 9 November, 2018 1 Planar graphs and Euler s formula 2 Non-planar graphs K 5 K

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Yaron Lipman Thomas Funkhouser. RifR Raif Rustamov. Princeton University. Drew University

Yaron Lipman Thomas Funkhouser. RifR Raif Rustamov. Princeton University. Drew University Barycentric Coordinates on Surfaces Yaron Lipman Thomas Funkhouser RifR Raif Rustamov Princeton University Drew University Motivation Barycentric coordinates good for: interpolation shading deformation

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Geometric and Solid Modeling. Problems

Geometric and Solid Modeling. Problems Geometric and Solid Modeling Problems Define a Solid Define Representation Schemes Devise Data Structures Construct Solids Page 1 Mathematical Models Points Curves Surfaces Solids A shape is a set of Points

More information

Best Practices: Volume Meshing Kynan Maley

Best Practices: Volume Meshing Kynan Maley Best Practices: Volume Meshing Kynan Maley Volume Meshing Volume meshing is the basic tool that allows the creation of the space discretization needed to solve most of the CAE equations for: CFD Stress

More information

CURRICULUM CATALOG. GSE Geometry ( ) GA

CURRICULUM CATALOG. GSE Geometry ( ) GA 2018-19 CURRICULUM CATALOG Table of Contents COURSE OVERVIEW... 1 UNIT 1: TRANSFORMATIONS IN THE COORDINATE PLANE... 2 UNIT 2: SIMILARITY, CONGRUENCE, AND PROOFS PART 1... 2 UNIT 3: SIMILARITY, CONGRUENCE,

More information

Computing Curvature CS468 Lecture 8 Notes

Computing Curvature CS468 Lecture 8 Notes Computing Curvature CS468 Lecture 8 Notes Scribe: Andy Nguyen April 4, 013 1 Motivation In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

Geometry of Flat Surfaces

Geometry of Flat Surfaces Geometry of Flat Surfaces Marcelo iana IMPA - Rio de Janeiro Xi an Jiaotong University 2005 Geometry of Flat Surfaces p.1/43 Some (non-flat) surfaces Sphere (g = 0) Torus (g = 1) Bitorus (g = 2) Geometry

More information

Wednesday, November 7, 2018

Wednesday, November 7, 2018 Wednesday, November 7, 2018 Warm-up Use the grid from yesterday s warm-up space to plot the pre-image ABCD and the points that are transformed by the rule (x, y) (2x, 2y) 5 2 2 5 2 4 0 0 Talk about quiz

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Mesh Generation Algorithms Part 2 Fathi El-Yafi Project and Software Development Manager Engineering Simulation 21-25 April 2008 1 Overview Adaptive Meshing: Remeshing Decimation Optimization

More information

Emil Saucan EE Department, Technion

Emil Saucan EE Department, Technion Curvature Estimation over Smooth Polygonal Meshes Using The Half Tube Formula Emil Saucan EE Department, Technion Joint work with Gershon Elber and Ronen Lev. Mathematics of Surfaces XII Sheffield September

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

1 Transforming Geometric Objects

1 Transforming Geometric Objects 1 Transforming Geometric Objects RIGID MOTION TRANSFORMA- TIONS Rigid Motions Transformations 1 Translating Plane Figures Reflecting Plane Figures Rotating Plane Figures Students will select translations

More information

SMOOTH POLYHEDRAL SURFACES

SMOOTH POLYHEDRAL SURFACES SMOOTH POLYHEDRAL SURFACES Felix Günther Université de Genève and Technische Universität Berlin Geometry Workshop in Obergurgl 2017 PRELUDE Złote Tarasy shopping mall in Warsaw PRELUDE Złote Tarasy shopping

More information

Laplacian Operator and Smoothing

Laplacian Operator and Smoothing Laplacian Operator and Smoothing Xifeng Gao Acknowledgements for the slides: Olga Sorkine-Hornung, Mario Botsch, and Daniele Panozzo Applications in Geometry Processing Smoothing Parameterization Remeshing

More information

Geometry. 4.4 Congruence and Transformations

Geometry. 4.4 Congruence and Transformations Geometry 4.4 Congruence and Transformations 4.4 Warm Up Day 1 Plot and connect the points in a coordinate plane to make a polygon. Name the polygon. 1. A( 3, 2), B( 2, 1), C(3, 3) 2. E(1, 2), F(3, 1),

More information

Geometry. 4.4 Congruence and Transformations

Geometry. 4.4 Congruence and Transformations Geometry 4.4 Congruence and Transformations 4.4 Warm Up Day 1 Plot and connect the points in a coordinate plane to make a polygon. Name the polygon. 1. A(-3, 2), B(-2, 1), C(3, 3) 2. E(1, 2), F(3, 1),

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Construction and smoothing of triangular Coons patches with geodesic boundary curves

Construction and smoothing of triangular Coons patches with geodesic boundary curves Construction and smoothing of triangular Coons patches with geodesic boundary curves R. T. Farouki, (b) N. Szafran, (a) L. Biard (a) (a) Laboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble,

More information

Edge Detection (with a sidelight introduction to linear, associative operators). Images

Edge Detection (with a sidelight introduction to linear, associative operators). Images Images (we will, eventually, come back to imaging geometry. But, now that we know how images come from the world, we will examine operations on images). Edge Detection (with a sidelight introduction to

More information

1 Transforming Geometric Objects

1 Transforming Geometric Objects 1 Transforming Geometric Objects Topic 1: Rigid Motion Transformations Rigid Motion Transformations Topic 2: Similarity Translating Plane Figures Reflecting Plane Figures Rotating Plane Figures Students

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Unwarping paper: A differential geometric approach

Unwarping paper: A differential geometric approach Unwarping paper: A differential geometric approach Nail Gumerov, Ali Zandifar, Ramani Duraiswami and Larry S. Davis March 28, 2003 Outline Motivation Statement of the Problem Previous Works Definition

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Other Linear Filters CS 211A

Other Linear Filters CS 211A Other Linear Filters CS 211A Slides from Cornelia Fermüller and Marc Pollefeys Edge detection Convert a 2D image into a set of curves Extracts salient features of the scene More compact than pixels Origin

More information

ADAPTIVE FINITE ELEMENT

ADAPTIVE FINITE ELEMENT Finite Element Methods In Linear Structural Mechanics Univ. Prof. Dr. Techn. G. MESCHKE SHORT PRESENTATION IN ADAPTIVE FINITE ELEMENT Abdullah ALSAHLY By Shorash MIRO Computational Engineering Ruhr Universität

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents GEOMETRY COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 2 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #12: Curves and Surfaces Prof. James O Brien University of California, Berkeley V2007-F-12-1.0 Today General curve and surface representations Splines and other polynomial

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

More information

Shape Modeling with Point-Sampled Geometry

Shape Modeling with Point-Sampled Geometry Shape Modeling with Point-Sampled Geometry Mark Pauly Richard Keiser Leif Kobbelt Markus Gross ETH Zürich ETH Zürich RWTH Aachen ETH Zürich Motivation Surface representations Explicit surfaces (B-reps)

More information

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook)

Geometry: Unit 1: Transformations. Chapter 14 (In Textbook) Geometry: Unit 1: Transformations Chapter 14 (In Textbook) Transformations Objective: Students will be able to do the following, regarding geometric transformations. Write Transformations Symbolically

More information

Teaching diary. Francis Bonahon University of Southern California

Teaching diary. Francis Bonahon University of Southern California Teaching diary In the Fall 2010, I used the book Low-dimensional geometry: from euclidean surfaces to hyperbolic knots as the textbook in the class Math 434, Geometry and Transformations, at USC. Most

More information

Discrete differential geometry: Surfaces made from Circles

Discrete differential geometry: Surfaces made from Circles Discrete differential geometry: Alexander Bobenko (TU Berlin) with help of Tim Hoffmann, Boris Springborn, Ulrich Pinkall, Ulrike Scheerer, Daniel Matthes, Yuri Suris, Kevin Bauer Papers A.I. Bobenko,

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

GEOMETRY OF SURFACES. b3 course Nigel Hitchin

GEOMETRY OF SURFACES. b3 course Nigel Hitchin GEOMETRY OF SURFACES b3 course 2004 Nigel Hitchin hitchin@maths.ox.ac.uk 1 1 Introduction This is a course on surfaces. Your mental image of a surface should be something like this: or this However we

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog. Geometry Glynlyon, Inc. This image cannot currently be displayed. Course Catalog Geometry 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS...

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 10: DISCRETE CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B

More information

Geometry and Gravitation

Geometry and Gravitation Chapter 15 Geometry and Gravitation 15.1 Introduction to Geometry Geometry is one of the oldest branches of mathematics, competing with number theory for historical primacy. Like all good science, its

More information

Planar quad meshes from relative principal curvature lines

Planar quad meshes from relative principal curvature lines Planar quad meshes from relative principal curvature lines Alexander Schiftner Institute of Discrete Mathematics and Geometry Vienna University of Technology 15.09.2007 Alexander Schiftner (TU Vienna)

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 http://www.alvinomassage.com/images/knot.jpg Justin Solomon MIT, Spring 2017 Some materials from Stanford CS 468, spring 2013 (Butscher & Solomon) What is a curve? A function? Not a curve Jams on accelerator

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

Grafica 3D per i beni culturali: MeshLab features. Lezione 7: 22 Marzo 2013

Grafica 3D per i beni culturali: MeshLab features. Lezione 7: 22 Marzo 2013 Grafica 3D per i beni culturali: MeshLab features Lezione 7: 22 Marzo 2013 0 Cleaning Cleaning Cleaning a mesh is an operation which is often necessary before, during and after the processing of a mesh

More information

Advances in Metric-neutral Visualization

Advances in Metric-neutral Visualization Advances in Metric-neutral Visualization Charles Gunn Institut für Mathematik Geometry and Visualization Group Technisches Universität Berlin GraVisMa 2010, Brno, October 7, 2010 Overview The talk will

More information

Variational Shape Approximation

Variational Shape Approximation Movie, anyone? Variational Shape Approximation Scanned vs. Concise Geometry Abundant repositories of surface meshes with subtle details exquisitely sampled but so as all the less interesting parts From

More information

Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation

Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation Bryan Poling University of Minnesota Joint work with Gilad Lerman University of Minnesota The Problem of Subspace

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents GEOMETRY COURSE OVERVIEW...1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

Digital Geometry Processing. Computer Graphics CMU /15-662

Digital Geometry Processing. Computer Graphics CMU /15-662 Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans, not fins

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Modern Differential Geometry ofcurves and Surfaces

Modern Differential Geometry ofcurves and Surfaces K ALFRED GRAY University of Maryland Modern Differential Geometry ofcurves and Surfaces /, CRC PRESS Boca Raton Ann Arbor London Tokyo CONTENTS 1. Curves in the Plane 1 1.1 Euclidean Spaces 2 1.2 Curves

More information

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n.

Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel. 1. Axioms for a finite AFFINE plane of order n. Math 532, 736I: Modern Geometry Test 1, Spring 2013 ( Solutions): Provided by Jeff Collins and Anil Patel Part 1: 1. Axioms for a finite AFFINE plane of order n. AA1: There exist at least 4 points, no

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

LOCAL STRESS ANALYSIS OF STIFFENED SHELLS USING MSC/NASTRAN S SHELL AND BEAM p-elements

LOCAL STRESS ANALYSIS OF STIFFENED SHELLS USING MSC/NASTRAN S SHELL AND BEAM p-elements LOCAL STRESS ANALYSIS OF STIFFENED SHELLS USING MSC/NASTRAN S SHELL AND BEAM p-elements Sanjay Patel, Claus Hoff, Mark Gwillim The MacNeal-Schwendler Corporation Abstract In large finite element models

More information

Subdivision in Willmore Flow Problems

Subdivision in Willmore Flow Problems Subdivision in Willmore Flow Problems Jingmin Chen 1 Sara Grundel 2 Rob Kusner 3 Thomas Yu 1 Andrew Zigerelli 1 1 Drexel University, Philadelphia 2 New York University and Max Planck Institute Magdeburg

More information

CURRICULUM CATALOG. Geometry ( ) TX

CURRICULUM CATALOG. Geometry ( ) TX 2018-19 CURRICULUM CATALOG Table of Contents GEOMETRY (03100700) TX COURSE OVERVIEW... 1 UNIT 1: INTRODUCTION... 1 UNIT 2: LOGIC... 1 UNIT 3: ANGLES AND PARALLELS... 2 UNIT 4: CONGRUENT TRIANGLES AND QUADRILATERALS...

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics Università della Svizzera italiana, Lugano My life in a nutshell 2009??? Associate Professor @ University of Lugano 1 Generalized

More information

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection

Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection Multimedia Computing: Algorithms, Systems, and Applications: Edge Detection By Dr. Yu Cao Department of Computer Science The University of Massachusetts Lowell Lowell, MA 01854, USA Part of the slides

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Introduction to the Mathematical Concepts of CATIA V5

Introduction to the Mathematical Concepts of CATIA V5 CATIA V5 Training Foils Introduction to the Mathematical Concepts of CATIA V5 Version 5 Release 19 January 2009 EDU_CAT_EN_MTH_FI_V5R19 1 About this course Objectives of the course Upon completion of this

More information

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017

Week 9: Planar and non-planar graphs. 1st and 3rd of November, 2017 (1/26) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/~niall/ma284/ 1st and 3rd of November, 2017 1 Recall... planar graphs and Euler s formula 2 Non-planar

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

Trimmed Surfaces Maya 2013

Trimmed Surfaces Maya 2013 2000-2013 Michael O'Rourke Trimmed Surfaces Maya 2013 Concepts Trimming works only on patches (in Maya, this means NURBS patches) Does not work with polygonal models A trim can look similar to a Boolean

More information