Final Year Projects in Integrated Photonics

Size: px
Start display at page:

Download "Final Year Projects in Integrated Photonics"

Transcription

1 Final Year Projects in Integrated Photonics Integrated Photonics Group Final Year Projects in Integrated Photonics September 25, 2017 Slide 1

2 The Internet not slowing yet Final Year Projects in Integrated Photonics September 25, 2017 Slide 2

3 Optical vs. Copper vs. Wireless > 99% of the internet is over optical fibre 100s of km Copper Wireless Final Year Projects in Integrated Photonics September 25, 2017 Slide 3

4 How is light used? Light is turned on and off, for digital ones and zeros Then, multiple colours can also be used Final Year Projects in Integrated Photonics September 25, 2017 Slide 4

5 Can we just keep adding more wavelengths at higher data rates? Final Year Projects in Integrated Photonics September 25, 2017 Slide 5

6 Increase the number of colours? Available space in optical fibre The channels eventually interfere! Final Year Projects in Integrated Photonics September 25, 2017 Slide 6

7 Increase the data rate? E t 2 E h t Available space in optical fibre The channels eventually interfere! Final Year Projects in Integrated Photonics September 25, 2017 Slide 7

8 Bit Rate Distance Product (Tbit/s.km) The end is near WDM TDM OFDM/CoWDM Coherent Detection Fundamental Limit (for ones and zeros) New technology required 1 Laboratory Results

9 What improvements are possible? Polarisation Use 2 orthogonal polarisations: Increases bandwidth by 2x Done (boring) Final Year Projects in Integrated Photonics September 25, 2017 Slide 9

10 What improvements are possible? Space Light path Use N orthogonal modes of optical fibre: Increases bandwidth by N Very current, very expensive Final Year Projects in Integrated Photonics September 25, 2017 Slide 10

11 What improvements are possible? Amplitude & Phase The Amplitude No Signal The Phase Coláiste na hollscoile Corcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics 11

12 What improvements are possible? Amplitude & Phase 2bits/pulse 4 bits/pulse 5 bits/pulse Already implemented and expensive: But room to invent more cost effective solutions using interesting Physics

13 What improvements are possible? Coherence Available Frequency Separate Superchannels Channels

14 What improvements are possible? Coherence Requires coherent optical comb Available Frequency No current commercial Superchannels solutions: Focus of research group

15 What we want on a single chip Modulator Laser Comb Modulator Modulator

16 Required components Low linewidth laser Optical Demux None suitable commercially for narrowly spaced coherent combs Optical Mux Laser Comb Comb generation Modulator Modulator Modulator Integrated Modulators

17 Design of Integrated Optical Demultiplexers The current design of the integrated optical demultiplexers works by: 1. Passively splits the injected comb using a Multimode Interferometer (MMI) 2. Injection locks a slave laser to each line in the optical comb. Side Mode Suppression Ratio SMSR Passive power splitter Injection locked slave laser SEM image of a 1x4 MMI integrated with slotted Fabry-Pérot slave lasers

18 Power (dbm) Laser injection locking Optical Comb Generated TLS: Tuneable laser source PC: Polarization controller MZM: Mach-Zehnder modulator EDFA: Erbium doped fibre amplifier PIC: Photonic integrated circuit OSA: Optical spectrum analyser Wavelength(nm)

19 Power (dbm) Laser injection locking Wavelength(nm)

20 Power (dbm) Laser injection locking Slave laser s lasing mode Injected Comb SMSR Slave laser s side mode Wavelength(nm)

21 Theoretical model The complex expression d dt E s for the slave laser s filed was split into real and imaginary parts: d dt E s t = 1 2 G N N t N th E s t + d dt φ s t = 1 2 H G N N t N th j E j cos δω j φ s t + E s t sin δω j φ s t The carriers were modelled by: d dt N t = R N t p G τ N N t N th E s t 2 1 E s τ s t 2 p Equations (1), (2) and (3) were solved numerically using a 4th Order Runge-Kutta method. A fast Fourier transform was then used to obtain the spectral information. j E j (1) (2) (3)

22 Types of Projects Simulation: Solving analytical equations Based on existing code Requiring code development Experimental Mix of Experiment and Theory Final Year Projects in Integrated Photonics September 25, 2017 Slide 22

23 Laser Testing Develop LabView based characterisation of diode lasers including: Electrical Optical Gain Possible theoretical simulation and analysis addition available. Final Year Projects in Integrated Photonics September 25, 2017 Slide 23

24 A ring laser CW Ring CCW CW Ring CCW Final Year Projects in Integrated Photonics September 25, 2017 Slide 24

25 Laser linewidth ΔEΔt ħ 2 ΔνΔt 1 4π How long does an electromagnetic wave retain mathematical perfection? Δt c E = E 0 ei kx ωt : Coherence time Δl c = cδt c : Coherence length Δν c : Linewidth Final Year Projects in Integrated Photonics September 25, 2017 Slide 25

26 Power Level / dbm Laser Linewidth Characterisation Student will learn to characterize noise of and measure laser linewidth: Using loss-compensated recirculating delayed self-heterodyne interferometer (LC-RDSHI) Sources of Noise in Electrical Test Equipment Optical Test Equipment E E E Frequency / Hz Final Year Projects in Integrated Photonics September 25, 2017 Slide 26

27 Starting Mode in Waveguide Final Year Projects in Integrated Photonics September 26, 2016 Slide 27

28 Starting Mode enters larger region Final Year Projects in Integrated Photonics September 26, 2016 Slide 28

29 Light Propagates through device Final Year Projects in Integrated Photonics September 26, 2016 Slide 29

30 Starting Mode exits in two pieces Final Year Projects in Integrated Photonics September 26, 2016 Slide 30

31 Top View Final Year Projects in Integrated Photonics September 26, 2016 Slide 31

32 Laser-laser interactions Project #4 Optical Simulations VOA=Variable Optical Attenuator (more than one topic possible)

33 PICdraw Custom Design tool Final Year Projects in Integrated Photonics September 25, 2017 Slide 33

34 Mathematical based design Custom software used to design the complex devices Final Year Projects in Integrated Photonics September 25, 2017 Slide 34

35 Simulation and fabrication of complex photonic devices Project #5 Software for Photonic Device Design Final Year Projects in Integrated Photonics September 25, 2017 Slide 35

36 Get your hands dirty? Project #6 Making Stuff (come and talk to me ) Final Year Projects in Integrated Photonics September 25, 2017 Slide 36

37 e.g. Czerny-Turner spectrometer Final Year Projects in Integrated Photonics September 25, 2017 Slide 37

38 6 possible project areas: Experiment Theory Programming 1 Laser Measurements Yes possible LabView 2 Laser Theory No Yes likely 3 Laser Linewidth Yes Yes LabView 4 Simulations No Yes likely 5 Optical design tools No Yes C++ 6 Making things Yes?? Please contact me if you have any questions about any of the project options. Final Year Projects in Integrated Photonics September 25, 2017 Slide 38

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering Question Bank Subject Code : EC459 Subject Name : Optical Networks Class : IV Year B.Tech (ECE)

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING M.E., - COMMUNICATION SYSTEMS FIRST YEAR / FIRST SEMESTER - BATCH: 2014-2016 CU7103 OPTICAL NETWORKS 1 SYLLABUS CU7103 OPTICAL NETWORKS L T P C 3

More information

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation HOLOEYE Photonics Products and services in the field of diffractive micro-optics Spatial Light Modulator (SLM) for the industrial research R&D in the field of diffractive optics Micro-display technologies

More information

Simulation of Simultaneous All Optical Clock Extraction and Demultiplexing for OTDM Packet Signal Using a SMZ Switch

Simulation of Simultaneous All Optical Clock Extraction and Demultiplexing for OTDM Packet Signal Using a SMZ Switch Simulation of Simultaneous All Optical Clock Extraction and Demultiplexing for OTDM Packet Signal Using a SMZ Switch R. Ngah, and Z. Ghassemlooy, Northumbria University, United Kingdom Abstract In this

More information

ITT Technical Institute. ET3430 Fiber Optic Communications Onsite Course SYLLABUS

ITT Technical Institute. ET3430 Fiber Optic Communications Onsite Course SYLLABUS ITT Technical Institute ET3430 Fiber Optic Communications Onsite Course SYLLABUS Credit hours: 4.5 Contact/Instructional hours: 45 (45 Theory Hours) Prerequisite(s) and/or Corequisite(s): Prerequisites:

More information

Spectral testing in lab and manufacturing environments

Spectral testing in lab and manufacturing environments Spectral testing in lab and manufacturing environments Table of contents 1. Introduction...3 1.1. Distributed feedback (DFB) lasers and Fabry-Perot (FP) lasers...3 2.2. Transmitter optical subassemblies

More information

PERFORMANCE ANALYSIS AND APPLICATIONS OF PASSIVE OPTICAL NETWORKS

PERFORMANCE ANALYSIS AND APPLICATIONS OF PASSIVE OPTICAL NETWORKS Özge GÜRE and N. Özlem ÜNVERDİ / IU-JEEE Vol. 14(2), (2014), 1843-1848 PERFORMANCE ANALYSIS AND APPLICATIONS OF PASSIVE OPTICAL NETWORKS Özge GÜRE 1, N. Özlem ÜNVERDİ 2 1,2 Yildiz Technical University,

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

PIC design across platforms. Ronald Broeke Bright Photonics

PIC design across platforms. Ronald Broeke Bright Photonics PIC design across platforms Ronald Broeke Bright Photonics OUTLINE Introduction PIC applications & designs MPW Materials & platforms Design modules PICs in Phoxtrot Design House for Photonics ICs Custom

More information

RSoft Product Applications

RSoft Product Applications RSoft Product Applications Complete design solutions for photonic components, circuits and systems synopsys.com/optical-solutions/rsoft RSoft Photonic Design Software Applications Synopsys RSoft products

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Transfer Matrix Simulation of External Cavity Laser based on Vernier Effect. Moto Kinoshita

Transfer Matrix Simulation of External Cavity Laser based on Vernier Effect. Moto Kinoshita Transfer Matrix Simulation of xternal Cavity Laser based on Vernier ffect Moto Kinoshita Apr. 24 Introduction In optical transmission networks, Wavelength Division Multiplexing (WDM) which let us have

More information

WORK IN PROGRESS A Multiplexed Many-Point PDV (MPDV) Techniques and Technologies

WORK IN PROGRESS A Multiplexed Many-Point PDV (MPDV) Techniques and Technologies DOE/NV/25946--1071 WORK IN ROGRESS A Multiplexed Many-oint DV (MDV) Techniques and Technologies Edward Daykin* Abel Diaz, Cenobio Gallegos, Carlos erez, Araceli Rutkowski (* Daykinep@NV.DOE.GOV) resented

More information

Optical Networks: A Practical Perspective

Optical Networks: A Practical Perspective Optical Networks: A Practical Perspective Rajiv Ramaswami Tellabs, Inc. Kumar N. Sivarajan Indian Institute of Science 14 Morgan Kaufmann Publishers, Inc. San Francisco, California Contents Foreword vii

More information

Optical Networks. A Practical Perspective. Rajiv Ramaswami Kumar N. Sivarajan MORGAN KAUFMANN PUBLISHERS

Optical Networks. A Practical Perspective. Rajiv Ramaswami Kumar N. Sivarajan MORGAN KAUFMANN PUBLISHERS Optical Networks A Practical Perspective Second Edition Rajiv Ramaswami Kumar N. Sivarajan к MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ACADEMIC PRESS A Division of Harcourt, Inc. SAN FRANCISCO SAN DIEGO

More information

Single Photon Interference

Single Photon Interference December 19, 2006 D. Lancia P. McCarthy Classical Interference Intensity Distribution Overview Quantum Mechanical Interference Probability Distribution Which Path? The Effects of Making a Measurement Wave-Particle

More information

A Metro-Access Integrated Network with All-Optical Virtual Private Network Function Using DPSK/ASK Modulation Format

A Metro-Access Integrated Network with All-Optical Virtual Private Network Function Using DPSK/ASK Modulation Format A Metro-Access Integrated Network with All-Optical Virtual Private Network Function Using DPSK/ASK Modulation Format Yue Tian* a, Lufeng Leng b, Yikai Su a a State Key Lab of Advanced Optical Communication

More information

Introduction To Optical Networks Optical Networks: A Practical Perspective

Introduction To Optical Networks Optical Networks: A Practical Perspective Introduction To Optical Networks Optical Networks: A Practical Perspective Galen Sasaki Galen Sasaki University of Hawaii 1 Galen Sasaki University of Hawaii 2 Galen Sasaki University of Hawaii 3 Telecommunications

More information

Developing flexible WDM networks using wavelength tuneable components

Developing flexible WDM networks using wavelength tuneable components Developing flexible WDM networks using wavelength tuneable components A. Dantcha 1, L.P. Barry 1, J. Murphy 1, T. Mullane 2 and D. McDonald 2 (1) Research Institute for Network and Communications Engineering,

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #2 is assigned, due Feb. 11 Mid-term exam

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #2 is assigned, due Feb. 12 Travel to NSF

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Performance Evaluation of Qos for Multicast Streams in Optical Passive Networks

Performance Evaluation of Qos for Multicast Streams in Optical Passive Networks Performance Evaluation of Qos for Multicast Streams in Optical Passive Networks 1 Deepak Malik, 2 Ankur Singhal 1,2 Dept. of ECE, MMEC, Mullana, India Abstract The intensification of traffic in the access

More information

Course Outcome of M.E (ECE)

Course Outcome of M.E (ECE) Course Outcome of M.E (ECE) PEC108/109: EMBEDDED SYSTEMS DESIGN 1. Recognize the Embedded system and its programming, Embedded Systems on a Chip (SoC) and the use of VLSI designed circuits. 2. Identify

More information

Chapter 7. Widely Tunable Monolithic Laser Diodes

Chapter 7. Widely Tunable Monolithic Laser Diodes Chapter 7 Widely Tunable Monolithic Laser Diodes We have seen in Chapters 4 and 5 that the continuous tuning range λ is limited by λ/λ n/n g, where n is the index change and n g the group index of the

More information

OC - Optical Components

OC - Optical Components 99 OC - Optical Components 1 OC-0005 Biconcave lens f=-5 mm, C25 mount A biconcave lens with a diameter of 5 mm and a focal length of -5 mm is mounted into a C25 mount with a free opening of 4 mm. 2 OC-0010

More information

Study of 1x4 Optical Power Splitters with Optical Network

Study of 1x4 Optical Power Splitters with Optical Network Study of 1x4 Optical Power Splitters with Optical Network Miss. Gayatri Y. Gurav 1, Prof. Maruti B. Limkar 2, Prof. Sanjay M. Hundiwale 3 1, 3 Dept. of Electronics and Telecommunication, ARMIET College

More information

40Gbit/s Coherent Optical Receiver Using a Costas Loop

40Gbit/s Coherent Optical Receiver Using a Costas Loop 1 40Gbit/s Coherent Optical Receiver Using a Costas Loop H. Park, M. Lu, E. Bloch, T. Reed, Z. Griffith, L. Johansson, L. Coldren, and M. Rodwell University of California at Santa Barbara 2 Introductions

More information

Photonic Communications Engineering

Photonic Communications Engineering Photonic Communications Engineering Instructor Alan Kost Email - akost@arizona.edu Office OSC 529 Office Hours Walk In or by Appointment 1 Photonic Communications Class Syllabus Engineering Class is divided

More information

WDM-PON Architecture Implement Using AWG with Multicasting Efficiency

WDM-PON Architecture Implement Using AWG with Multicasting Efficiency WDMPON Architecture Implement Using AWG with Multicasting Efficiency Nerkar Narendra N, Kadu Mahesh B Electronics and Telecommunication Department, AVCOE Sangamner, India. ABSTRACT: We present the experimental

More information

Optical node with time-space-and-wavelength. domain contention resolution, deflection and dropping. dropping capability

Optical node with time-space-and-wavelength. domain contention resolution, deflection and dropping. dropping capability Optical node with time-space-and-wavelength domain contention resolution, deflection and dropping capability J.J. Vegas Olmos 1, N. Chi 2, G. Zervas 3, D. Simeonidou 3, S. Yu 2, I. Tafur Monroy 1, and

More information

UBCx Phot1x: Silicon Photonics Design, Fabrication and Data Analysis

UBCx Phot1x: Silicon Photonics Design, Fabrication and Data Analysis UBCx Phot1x: Silicon Photonics Design, Fabrication and Data Analysis Course Syllabus Table of Contents Course Syllabus 1 Course Overview 1 Course Learning Objective 1 Course Philosophy 1 Course Details

More information

DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS

DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS Chandra Sekhar Roychoudhuri and Tariq Manzur Photonics Research Center & Electrical & Systems

More information

Ultrafast photonic packet switching with optical control

Ultrafast photonic packet switching with optical control Ultrafast photonic packet switching with optical control Ivan Glesk, Koo I. Kang, and Paul R. Prucnal Department of Electrical Engineering, Princeton University, Princeton, NJ 8544 glesk@ee.princeton.edu

More information

Lab 2 Report. Carlin Gettliffe

Lab 2 Report. Carlin Gettliffe Lab 2 Report Carlin Gettliffe Abstract: In this lab we investigated the wave-particle duality of light. We verified light s wave properties by conducting both a double slit experiment and constructing

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

TRANSMISSION PERFORMANCE EVALUATION OF OPTICAL ADD DROP MULTIPLEXERS (OADMs) in OPTICAL TELECOMMUNICATION RING NETWORKS

TRANSMISSION PERFORMANCE EVALUATION OF OPTICAL ADD DROP MULTIPLEXERS (OADMs) in OPTICAL TELECOMMUNICATION RING NETWORKS TRANSMISSION PERFORMANCE EVALUATION OF OPTICAL ADD DROP MULTIPLEXERS (OADMs) in OPTICAL TELECOMMUNICATION RING NETWORKS Ahmed N. Z. Rashed Electronics and Electrical Communication Engineering Department

More information

Optical WDM-PON Access System with Shared Light Source

Optical WDM-PON Access System with Shared Light Source Progress In Electromagnetics Research Symposium Proceedings 497 Optical WDM-PON Access System with Shared Light Source Sandis Spolitis, Lilita Gegere, Anita Alsevska, Ilja Trifonovs, Jurgis Porins, and

More information

FUTURE TRENDS IN OPTICAL FIBRE COMMUNICATION

FUTURE TRENDS IN OPTICAL FIBRE COMMUNICATION International Journal of Research in Engineering, Technology and Science, Volume VII, Special Issu`e, Feb 2017 www.ijrets.com, editor@ijrets.com, ISSN 2454-1915 FUTURE TRENDS IN OPTICAL FIBRE COMMUNICATION

More information

CHAPTER TWO LITERATURE REVIEW

CHAPTER TWO LITERATURE REVIEW CHAPTER TWO LITERATURE REVIEW 2.1 Introduction. This chapter provides in detail about the multiple access technologies and the OCDMA system. It starts with a discussion on various existing multiple-access

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT Optical Metrology and NDT ME-593L, C 2018 Introduction: Wave Optics January 2018 Wave optics: coherence Temporal coherence Review interference

More information

Singlemode vs Multimode Optical Fibre

Singlemode vs Multimode Optical Fibre Singlemode vs Multimode Optical Fibre White paper White Paper Singlemode vs Multimode Optical Fibre v1.0 EN 1 Introduction Fibre optics, or optical fibre, refers to the medium and the technology associated

More information

DWDM Topologies CHAPTER. This chapter explains Cisco ONS dense wavelength division multiplexing (DWDM) topologies.

DWDM Topologies CHAPTER. This chapter explains Cisco ONS dense wavelength division multiplexing (DWDM) topologies. CHAPTER 12 This chapter explains Cisco ONS 15454 dense wavelength division multiplexing (DWDM) topologies. Note The terms "Unidirectional Path Switched Ring" and "UPSR" may appear in Cisco literature.

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Fabrication of MEMS Conventional

More information

Simple Optical Network Architectures

Simple Optical Network Architectures Simple Optical Network Architectures Point to Point Link The simplest optical communication system is that linking two points. The length of such links may be a small as 100 m for say, a computer data

More information

Simulation of an all Optical Time Division Multiplexing Router Employing Symmetric Mach-Zehnder (SMZ)

Simulation of an all Optical Time Division Multiplexing Router Employing Symmetric Mach-Zehnder (SMZ) Simulation of an all Optical Time Division Multiplexing Router Employing Symmetric Mach-Zehnder (SMZ) Razali Ngah, Zabih Ghassemlooy, and Graham Swift Optical Communications Research Group, School of Engineering,

More information

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Coherence Coherence appear in two ways Spatial Coherence Waves

More information

Low power applications

Low power applications MSc in Photonics & Europhotonics Laser Systems and Applications 2017/2018 Low power applications Prof. Cristina Masoller Universitat Politècnica de Catalunya cristina.masoller@upc.edu www.fisica.edu.uy/~cris

More information

100 Gbit/s Computer Optical Interconnect

100 Gbit/s Computer Optical Interconnect 100 Gbit/s Computer Optical Interconnect Ivan Glesk, Robert J. Runser, Kung-Li Deng, and Paul R. Prucnal Department of Electrical Engineering, Princeton University, Princeton, NJ08544 glesk@ee.princeton.edu

More information

Performance Analysis of Unidirectional and Bidirectional Broadband Passive Optical Networks

Performance Analysis of Unidirectional and Bidirectional Broadband Passive Optical Networks Performance Analysis of Unidirectional and Bidirectional Broadband Passive Optical Networks Rini T. Jacob PG Scholar, Opto Electronics and Communication Systems, Dept. of Electronics and Communication

More information

Horizon 2020 EU Japan coordinated R&D project on Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI)

Horizon 2020 EU Japan coordinated R&D project on Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI) Horizon 2020 & MIC funded SAFARI Project Scalable and Flexible optical Architecture for Reconfigurable Infrastructure Horizon 2020 EU Japan coordinated R&D project on Scalable And Flexible optical Architecture

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

Single Photon Interference

Single Photon Interference University of Rochester OPT253 Lab 2 Report Single Photon Interference Author: Nicholas Cothard Peter Heuer Professor: Dr. Svetlana Lukishova September 25th 2013 1 Abstract Wave-particle duality can be

More information

Optical Component Test Agilent Multi-Wavelength Meters

Optical Component Test Agilent Multi-Wavelength Meters Optical Component Test Agilent Multi-Wavelength Meters High-performance wavelength measurements for characterizing next generation optical networks Optical Component Test The Agilent Family of Multi-Wavelength

More information

PHOTONIC ATM FRONT-END PROCESSOR

PHOTONIC ATM FRONT-END PROCESSOR PHOTONIC ATM FRONT-END PROCESSOR OBJECTIVES: To build a photonic ATM front-end processor including the functions of virtual channel identifier (VCI) over-write and cell synchronization for future photonic

More information

Optical networking: is the Internet of the future already here?

Optical networking: is the Internet of the future already here? Optical networking: is the Internet of the future already here? Emilie CAMISARD Renater Optical technologies engineer - Advanced IP Services e-mail: camisard@renater.fr 23/11/04 ATHENS - Optical networking

More information

Open access to photonic integration technologies

Open access to photonic integration technologies Open access to photonic integration technologies Academic and Industrial examples of photonic integrated circuits Katarzyna Ławniczuk k.lawniczuk@tue.nl What is photonic integration technology? multiple

More information

Wide Area Networks :

Wide Area Networks : Wide Area Networks : Backbone Infrastructure Ian Pratt University of Cambridge Computer Laboratory Outline Demands for backbone bandwidth Fibre technology DWDM Long-haul link design Backbone network technology

More information

CSIS Frequency Division Multiplexing. Basic Types of Multiplexing. Frequency Division Multiplexing. Frequency Division Multiplexing.

CSIS Frequency Division Multiplexing. Basic Types of Multiplexing. Frequency Division Multiplexing. Frequency Division Multiplexing. Multiplexing: combining information streams from multiple sources for transmission over a shared medium Demultiplexing: separating a combination back into individual information streams CSIS 4222 Ch 11:

More information

Hybrid On-chip Data Networks. Gilbert Hendry Keren Bergman. Lightwave Research Lab. Columbia University

Hybrid On-chip Data Networks. Gilbert Hendry Keren Bergman. Lightwave Research Lab. Columbia University Hybrid On-chip Data Networks Gilbert Hendry Keren Bergman Lightwave Research Lab Columbia University Chip-Scale Interconnection Networks Chip multi-processors create need for high performance interconnects

More information

Lab 2 Report. Carlin Gettliffe

Lab 2 Report. Carlin Gettliffe Lab 2 Report Carlin Gettliffe Abstract: In this lab we investigated the wave-particle duality of light. We verified light s wave properties by conducting both a double slit experiment and constructing

More information

Wave Particle Duality with Single Photon Interference

Wave Particle Duality with Single Photon Interference Wave Particle Duality with Single Photon Interference Gerardo I. Viza 1, 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 In the experiments of the Mach-Zehnder Interferometer

More information

Simulation of an all Optical Time Division Multiplexing Router Employing TOADs.

Simulation of an all Optical Time Division Multiplexing Router Employing TOADs. Simulation of an all Optical Time Division Multiplexing Router Employing TOADs. Razali Ngah a, Zabih Ghassemlooy a, Graham Swift a, Tahir Ahmad b and Peter Ball c a Optical Communications Research Group,

More information

Academic Course Description. CO2111 Optical Network and Photonic Switching Second Semester, (Even semester)

Academic Course Description. CO2111 Optical Network and Photonic Switching Second Semester, (Even semester) Academic Course Description SRM University Faculty of Engineering and Technology Department of Electronics and Communication Engineering CO2111 Optical Network and Photonic Switching Second Semester, 2014-15

More information

Signal post processing in frequency domain OCT and OCM using a filter bank approach

Signal post processing in frequency domain OCT and OCM using a filter bank approach Signal post processing in frequency domain OCT and OCM using a filter bank approach Bernd Hofer 1,2, Boris Považay 1, Boris Hermann 1, Angelika Unterhuber 1, Gerald Matz 2, Franz Hlawatsch 2, Wolfgang

More information

Enhancing PON capabilities using the wavelength domain

Enhancing PON capabilities using the wavelength domain Enhancing PON capabilities using the wavelength domain Joint ITU/IEEE workshop on Next Generation Access, Geneva 2008 Thomas Pfeiffer, Alcatel-Lucent Bell Labs June 20, 2008 Introduction Optical fiber

More information

4D Technology Corporation

4D Technology Corporation 4D Technology Corporation Dynamic Laser Interferometry for Company Profile Disk Shape Characterization DiskCon Asia-Pacific 2006 Chip Ragan chip.ragan@4dtechnology.com www.4dtechnology.com Interferometry

More information

7.3 Refractive Index Profiling of Fibers and Fusion Splices

7.3 Refractive Index Profiling of Fibers and Fusion Splices 7.3 Refractive Index Profiling of Fibers and Fusion Splices 199 necessary for measuring the reflectance of optical fiber fusion splices. Fig. 7.10 schematically depicts an OFDR containing a Michelson interferometer

More information

Optical fibers. Biossensores, Mestrado Integrado em Engª. Electrónica e Telecomunicações)

Optical fibers. Biossensores, Mestrado Integrado em Engª. Electrónica e Telecomunicações) Optical fibers Outline Fundamental Components and Concepts. Intensity Based and Fabry-Perot Interferometric Sensors. Applications of the Fiber Optic Sagnac Interferometer. The Mach-Zehnder and Michelson

More information

OFT - Optical Fiber Telecommunications

OFT - Optical Fiber Telecommunications Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 230 - ETSETB - Barcelona School of Telecommunications Engineering 739 - TSC - Department of Signal Theory and Communications

More information

Physical Layer Part 3

Physical Layer Part 3 Physical Layer Part 3 Transmission Media Networks: Transmission Media 1 Transmission Media Transmission medium:: the physical path between transmitter and receiver. Repeaters or amplifiers may be used

More information

A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays

A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays A New Model for Optical Crosstalk in SinglePhoton Avalanche Diodes Arrays I. Rech, A. Ingargiola, R. Spinelli, S. Marangoni, I. Labanca, M. Ghioni, S. Cova Dipartimento di Elettronica ed Informazione Politecnico

More information

Experimental Methods I

Experimental Methods I Experimental Methods I Computing: Data types and binary representation M.P. Vaughan Learning objectives Understanding data types for digital computers binary representation of different data types: Integers

More information

Large scale optical circuit switches for future data center applications

Large scale optical circuit switches for future data center applications Large scale optical circuit switches for future data center applications ONDM2017 workshop Yojiro Moriand Ken-ichi Sato Outline 1. Introduction -Optical circuit switch for datacenter- 2. Sub-switch configuration

More information

Analyses on the Effects of Crosstalk in a Dense Wavelength Division Multiplexing (DWDM) System Considering a WDM Based Optical Cross Connect (OXC)

Analyses on the Effects of Crosstalk in a Dense Wavelength Division Multiplexing (DWDM) System Considering a WDM Based Optical Cross Connect (OXC) International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-013 1 ISSN 9-5518 Analyses on the Effects of Crosstalk in a Dense Wavelength Division Multiplexing (DWDM) System Considering

More information

Integrated Micro and Nano Photonic Systems for Peta scale Networking

Integrated Micro and Nano Photonic Systems for Peta scale Networking Integrated Micro and Nano Photonic Systems for Peta scale Networking Prof. S. J. Ben Yoo, UC Davis Campus CITRIS Director yoo@ece.ucdavis.edu http://sierra.ece.ucdavis.edu http://citris.ucdavis.edu Tokyo,

More information

Polarization of Light

Polarization of Light Polarization of Light Introduction Light, viewed classically, is a transverse electromagnetic wave. Namely, the underlying oscillation (in this case oscillating electric and magnetic fields) is along directions

More information

THE code-division multiple-access (CDMA) technology,

THE code-division multiple-access (CDMA) technology, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 6, JUNE 2000 819 Fiber-Optic Code Division Add Drop Multiplexers Jingshown Wu, Senior Member, IEEE, and Che-Li Lin Abstract In this paper, we propose a new

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Ultrafast Time-Domain Technology and Its Application in All-Optical Signal Processing

Ultrafast Time-Domain Technology and Its Application in All-Optical Signal Processing JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 9, SEPTEMBER 2003 1857 Ultrafast Time-Domain Technology and Its Application in All-Optical Signal Processing Kyriakos Vlachos, Member, IEEE, Nikos Pleros,

More information

Project Plan of Simultaneous Co-Test of high performance DAC ADC Pairs

Project Plan of Simultaneous Co-Test of high performance DAC ADC Pairs Project Plan of Simultaneous Co-Test of high performance DAC ADC Pairs Iowa State University Senior Design Project 2012-2013 May13-28 Adviser Dr. Degang Chen Members Luke Goetzke Tao Chen Ben Magstadt

More information

ECEG105/ECEU646 Optics for Engineers Course Notes Part 5: Polarization

ECEG105/ECEU646 Optics for Engineers Course Notes Part 5: Polarization ECEG105/ECEU646 Optics for Engineers Course Notes Part 5: Polarization Prof. Charles A. DiMarzio Northeastern University Fall 2008 Sept 2008 11270-05-1 Wave Nature of Light Failure of Raytracing Zero-λ

More information

Physical Layer Part 3

Physical Layer Part 3 Physical Layer Part 3 Transmission Media Computer Networks: Transmission Media 1 Transmission Media Transmission medium:: the physical path between transmitter and receiver. Repeaters or amplifiers may

More information

Telecommunications Engineering Course Descriptions

Telecommunications Engineering Course Descriptions Telecommunications Engineering Course Descriptions Electrical Engineering Courses EE 5305 Radio Frequency Engineering (3 semester hours) Introduction to generation, transmission, and radiation of electromagnetic

More information

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok Lambda Networks DWDM Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok vara@kmitnb.ac.th Treads in Communication Information: High Speed, Anywhere,

More information

Compact visible laser modules. QD laser, Inc.

Compact visible laser modules. QD laser, Inc. Compact visible laser modules and NIR DFBs with high speed modulation October, 2012 QD laser, Inc. DC0301-02 Contents About QD Laser, Inc. NIR DFB laser Introduction of semiconductor DFB laser Applications

More information

Properties of Light I

Properties of Light I Properties of Light I Light definition Light Spectrum Wavelength in nm (1nm = 10-7 cm) Visible/White Light Cosmic Gamma X-Rays Ultra Violet Infra Red Micro Waves Radio Waves 1 Theory of Light Two complimentary

More information

Program Title: Telecommunication Engineering Technology Postsecondary Number: (AS) (AAS

Program Title: Telecommunication Engineering Technology Postsecondary Number: (AS) (AAS July 2006 Florida Department of Education Program Title: Telecommunication Engineering Technology CIP Number 1615030302 (AS) 0615030302 (AAS) Length AS/AAS Degree 64 Credits After successfully completing

More information

Interference of Light

Interference of Light Lecture 22 Chapter 22 Physics II Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Wave Motion Interference Models of Light (Water waves are Easy

More information

Introduction to Integrated Photonic Devices

Introduction to Integrated Photonic Devices Introduction to Integrated Photonic Devices Class: Integrated Photonic Devices Time: Wed. 1:10pm ~ 3:00pm. Fri. 10:10am ~ 11:00am Classroom: 資電 106 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Block Diagram of

More information

LAN Systems. Bus topology LANs

LAN Systems. Bus topology LANs Bus topology LANs LAN Systems Design problems: not only MAC algorithm, not only collision domain management, but at the Physical level the signal balancing problem (signal adjustment): Signal must be strong

More information

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-03: Properties of Light https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Refractive index Department of Telecommunication, MUET UET Jamshoro

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods

Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods 2 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 1, JANUARY 2003 Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods H. J. S. Dorren, M. T. Hill, Associate Member, IEEE,

More information

from ocean to cloud KEY FEATURES OF THE UNDERSEA PLANT FOR HIGH CAPACITY AND FLEXIBILITY

from ocean to cloud KEY FEATURES OF THE UNDERSEA PLANT FOR HIGH CAPACITY AND FLEXIBILITY KEY FEATURES OF THE UNDERSEA PLANT FOR HIGH CAPACITY AND FLEXIBILITY Stuart Abbott, Dmitriy Kovsh, George Harvey (TE SubCom) E-mail: sabbott@subcom.com TE Submarine Communications, LLC, 50 Industrial Way

More information

Performance Analysis of 2. 5 Gbps downlink GPON

Performance Analysis of 2. 5 Gbps downlink GPON International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 1 (2014), pp. 43-51 International Research Publication House http://www.irphouse.com Performance Analysis of 2. 5 Gbps downlink

More information

IITD OPTICAL STACK : LAYERED ARCHITECTURE FOR PHOTONIC INTERCONNECTS

IITD OPTICAL STACK : LAYERED ARCHITECTURE FOR PHOTONIC INTERCONNECTS SRISHTI PHOTONICS RESEARCH GROUP INDIAN INSTITUTE OF TECHNOLOGY, DELHI 1 IITD OPTICAL STACK : LAYERED ARCHITECTURE FOR PHOTONIC INTERCONNECTS Authors: Janib ul Bashir and Smruti R. Sarangi Indian Institute

More information

Optical Add Drop Multiplexer (OADM) Based on Dense Wavelength Division Multiplexing Technology in Next Generation Optical Networks

Optical Add Drop Multiplexer (OADM) Based on Dense Wavelength Division Multiplexing Technology in Next Generation Optical Networks Electrical and Electronic Engineering. 2011; 1(1): 24-32 DOI: 10.5923/j.eee.20110101.05 Optical Add Drop Multiplexer (OADM) Based on Dense Wavelength Division Multiplexing Technology in Next Generation

More information

Beykent University Network Courses

Beykent University Network Courses /8/24 Beykent University Network Courses Module 3 : Optical Networks and Systems Part kaanavsarasan.weebly.com November 24 November 24 Course Outline Introduction to Optics Components of Optical Networks

More information