(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions

Size: px
Start display at page:

Download "(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions"

Transcription

1 EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 8 Solutions 1. Nishimura 7.1 P)jc%z 5 ivcr3. 1. I Due Wednesday April 10th, 2013 (a Scrhon5 R2iwd b 0 ZOms Xn,s r cx > qs 4-4 8ni6 4 1E IDrAS boms 1 3E ton5 C- () c 0. S 1

2 2. In a spin-echo pulse sequence the 180 pulse refocuses the magnetization produced by the 90 excitation. Since the 180 is never perfect, it will will also excite magnetization. This produces additional signals, as is shown on the left below: s(t) Parasitic FID Spin Echo?? yy Ideal Image These signals, called parasitic FID s, will produce image artifacts that depend on the acquisition method. In each of the examples below, draw (i) where the parasitic FID ends up in k-space, and (ii) the image artifact it produces. Assume that the ideal image is as shown above on the right, and that signal only comes from the excited slice. a) In this case the phase encode and the readout dephaser are before the 180. Gz Gy Gx A/D

3 Solution: The signal from the 90 is properly encoded by the phase encode and readout gradients, and produces an image as usual. The k-space data, and the reconstructed image look like: k y k x The parasitic signal from the 180 does not see the phase encode gradient, or the dephaser. It only sees the readout gradient, and this is the same for every acquisition. The k-space data is then just the positive k x part of the k y = 0 k-space line. The k y = 0 line is the Fourier transform of the projection of the object along the x axis. The fact that we only have the positive spatial frequencies means this projection will be blurred. The k-space data and the image of the parasitic will then look like k y Parasitic k x The total image is the sum of the ideal image and the image from the parasitic, Parasitic 3

4 b) The same pulse sequence as in (1), with the addition that the 180 is inverted every other phase encode step. Gz Gy Gx A/D 90 /-180 Solution: Again, the image of the signal from the 90 will be properly encoded, since a 180 or a -180 will both produce the same spin echo. The difference is in the effect of phase cycling the 180 (alternating the sign). The premise of the problem is that the 180 is not perfect. If the 180 is actually a 179, then alternating the sign of the 180 will alternate the sign of the parasitic signal. The parasitic still only sees the readout gradient, so it is still the Fourier transform of the projection of the object along the x-axis. However, the sign of the k-space data alternates every other line. This modulates the parasitic signal to the edge of the FOV when the image is reconstructed: k y k x Parasitic When combined with the ideal image from the 90 degree excitation, the result is Parasitic The signal for the parasitic can then be suppressed simply by zeroing out one line in the image. This is a very common acquisition scheme in practice. c) The same pulse sequence as in (2), with the phase encode and readout dephaser after the

5 90 /-180 Gz Gy Gx A/D Solution: Again, the image of the signal from the 90 will be properly encoded. In this case the parasitic sees the phase encode gradient, and the dephaser and readout. This means that the parasitic echo is fully encoded, and will produce an image when reconstructed. However, the phase cycling of the 180 will cause this image to be shifted by half of the FOV. The k-space data and the reconstructed image from the parasitic are: k y k x Parasitic When combined with the ideal image from the 90 degree excitation, the result is Parasitic Note that since the parasitic is encoded in y, it can overlap the ideal image. It is much harder to suppress than in (b) above. This is unfortunate, since in general you want to keep the imaging gradients as close together in time as possible, in order to minimize flow and motion artifacts. 5

6 3. MRI Artifacts and Debugging In this question you will be given several pairs of images. The images may exhibit artifacts which will be indicated by arrows/circles. Answer the questions as best as you can. First describe the artifact and then provide as much information as possible on the source/s of the artifact and why it appears this way. There might be several possible right answers. A final answer without explanation will not be credited. a) Example: What is the source of the artifact in the left image and what is the difference in the acquisition/processing of the two? Solution: The artifact in the image appears as the back of the brain aliasing over and wrapping to the front. This is typical when the prescribed FOV in the phase encode is smaller than the FOV of the object. In that case the sampling density does not meet the Nyquist rate. The phase encode is obviously Anterior-Posterior. The image on the right does not exhibit aliasing. One way to avoid aliasing is to increase the number of phase encodes while keeping the resolution the same. The other way is to swap the readout and phase-encode directions. It seems that the latter approach of swapping the readout direction was used since the back of the skull as well as the nose are cropped. Choosing a larger FOV in the phase encode would have shown the entire nose and skull. Source of Artifact: aliasing in the phase-encode direction (A/P) Difference: readout and phase encode directions swapped 6

7 b) What is the source of the artifact in the left image and what is the difference in the acquisition/processing of the two? Solutions: Something has gone wrong in the geometry of the left guy s head! It has been compressed in space with respect to the rest of the FOV. This is a sagital scan with a very large FOV. For such large of a FOV, the gradients non-linearity start to show up. The gradients will be much weaker at the top and bottom and will result in a geometric distortion. This is fixed in postprocessing by applying interpolation to correct for the distortion in the right image. Source of artifact: Gradient non-linearity Difference:The right image was grad-warped and interpolated to correct for the non-linearities. c) What is the source of the artifact in the right image and what is the difference in the acquisition/processing of the two? Source of artifact: The fat in the right image is shifted right with respect to water. This is a result of a low-bandwidth/pixel readout. The readout direction is RL Difference: The readout bandwidth in the left image is higher (shorter readout) and the fat does not have time to accrue much phase and appears to not shift by much. (There s still a slight shift though! d) What is the source of the artifact in the two images and what is the difference in the acquisition/processing of the two? 7

8 Solutions: There s appear to be ghosting artifacts that seem to be originating from the eyes. This is an artifact of eye motion during a scan. Motion during an acquisition will create inconsistent data in the slow-direction (the phase encode). Therefore the phase encode direction in the left image is A/P and R/L in the right image. Source of artifact: Eye motion during the scan Difference:Readout-phase encode directions are swapped. e) What is the source of the artifact in the left image and what is the difference in the acquisition/processing of the two? (Ignore the contrast difference between the two) Solutions: The right image exhibits loss of signal next to air-tissue interfaces near the sinuses and the ear canal. This is a result of T2 decay typical for a gradient echo sequence. The right image does not exhibits the loss of signal. This can be due to much shorter echo time, but there s significant T2 weighting in the image that makes this infeasible. The other explanation is a Spin-echo sequence! Source of artifact: Loss of signal due to T2 intravoxel dephasing in a gradient echo sequence Difference:The right image does not exhibits loss of signal and is most likely a spin-echo sequence 8

9 4. Contrast Preparation: Consider the following sequence of two θ degrees tip-angle pulses separated by T seconds. Θ T Θ a) Given that the equilibrium magnetization is M 0 ẑ, derive an expression for the M z component of the magnetization immediately following the second as a function of T 2, T, and θ. You can neglect T 1 recovery (since T 1 T ) and off-resonance. Solutions: For easy notation we will define E 2 = e T T 2, C θ = cos(θ) and S θ = sin(θ) [ Cθ S θ ] [ E2 0 ] [ Cθ S θ ] [ 0 ] M(T ) = S θ C θ [ Cθ S θ 0 0 ] [ E2 S θ M 0 S θ ] C θ M 0 = S θ C θ C θ M 0 So, the M z (T ) component is, M z (T ) = (C 2 θ E 2 S 2 θ )M 0 M z = ( ) cos 2 (θ) e T T 2 sin 2 (θ) M 0 b) Given T = T 0, find the flip angle θ for which the M z component is zero for spins with a desired T 2 transverse relaxation value. Solutions: 0 = C 2 θ E 2 S 2 θ Cθ 2 Sθ 2 = E 2 tan(θ) = E 1/2 2 θ = atan(e 1/2 2 ) ( ) θ = atan e T 2T 2 9

10 MR Angiography is an important tool in assessing vascular diseases in patients. Often, T 1 shortening Gadolinium contrast agents are used in combination with short TR sequences to increase the blood-muscle contrast. However, using Gadolinium based contrast agents can result in a life threatening syndrome, called NSF, in patients that have renal disease. Consider the contrast preparation imaging paradigm below. For each preparation sequence a single phase encode is collected. Also, assume T R T 1. Gz Gy Gx Prep Sequence Imaging Sequence 90 Prep Sequence 90 TR The T 1 /T 2 of blood are 1000/220ms and the T 1 /T 2 of muscle are 870/50ms. We would like to design a non-contrast enhanced preparation pulse that will ideally have good blood signal and no muscle signal at all. In addition, we would like the preparation pulse to not be much longer than 50ms. c) Based on your previous derivations, design a preparation sequence that nulls the muscle signal while producing signal from blood. Draw the sequence pointing out the relevant parameters. (Extra points will be given for those coming with solutions that are insensitive to off-resonance). What is the blood M z magnetization after the prep-pulse? Solutions: The previous questions have taught us that we can null the signal of a particular T 2 specie. In this part we need to design a preparation sequence that will null the muscle signal while still producing blood signal. Unfortunately, we can not use inversion recovery based on the T 1 since that would take much longer than than 50ms. Using an excitation recovery would probably not leave much blood signal. Therefore we are going to use the T 2 prep-pulse from before. For this preparation sequence we need to choose the flip angle θ and T such that the muscle signal is nulled and in addition the blood signal is as high as possible. T is a free parameter, but it can not be longer than 50ms. Calculating the θ for T = 10ms, 25ms, 35ms, 50ms we get, θ = 47.86, 52.09, 54.83, with corresponding M z = 0.075M 0, 0.18M 0, 0.24M 0, 0.31M 0. So, T = 50ms gives the highest blood signal with θ = Of course this pulse is VERY sensitive to B 0 inhomogeneity because spins would be precessing during the waiting time and the second pulse will have different effect on different resonances. This can be mitigated by applying a spin-echo 180 pulse such that all the spins will refocus exactly at the time the second pulse is applied. However, if we use a single refocusing, we need to change the sign of the second so it will have the same effect. Alternatively we can use two refocusing pulses. Each 180 refocusing pulses should have crushers gradients on both sides to prevent a parasitic FID. A very important part of the question is to realize that at the end of this preparation sequence there remains is a significant transverse magnetization. To remove it, we need to apply a large gradient crusher after the second. Here is an acceptable solution: 10

11 Θx Prep Sequence T Θx Imaging Sequence 90 Gz Gy Gx Here are two acceptable B 0 insensitive solutions: Gz Gy Gx Prep Sequence Θx 180y -Θx T/2 T/2 Imaging Sequence 90 Gz Gy Gx Prep Sequence 180y T/4 T/2 T/4 Θx 180y Θx Imaging Sequence 90 Blood M zprep = 0.31M 0 11

12 5. Consider the EPI and spiral trajectories in fig in Nishimura. a) Assume T ms readout gradients and that the gradients start 1ms from the peak of the excitation. What is the echo-time for EPI and what is the echo time for the spiral trajectory? Solution: The echo time is the time that the trajectory crosses DC, or the center of k-space. This is the time in which the majority of the contrast of the image is being determined as most of the energy of images lies in the origin of k-space. EPI is a symmetric trajectory and the crossing of the center of k-space is in the middle of the readout. Therefor the echo time for EPI is 1 T/2ms. On the other hand, the spiral trajectory always starts at the origin, therefore the echo time is 1ms. b) What is the k-space weighting due to T2 decay in EPI and spiral for a gradient echo sequence. (Assume decay happens only in the slow direction.) Solution: Both readouts start 1ms after the middle of the and are T ms long. Let t = 0 the start of the readout. The T2 weighting as a function of time is: W (t) = e 1t T 2 Assuming the decay happens only in the slow direction k y (ignoring readout k x ) then, k y (t) = k max t T/2 T/2 and So, t = k yt 2k max T/2. ( W (k y ) = exp 1 t ) T2 ( = exp 1 T2 ) exp ( T 2T 2 ( )) ky 1 k max The decay during the spiral sequence can be approximated as a radial decay with, k r = k max t/t and So, t = T k r k max. ( W (k r ) = exp 1 ) ( T2 exp T k r T 2 k max ). 12

13 The k-space weighting is shown below: c) How would your answer change if the sequence is a spin-echo. What s the problem for spiral spin-echo imaging? Solution: In a spin-echo, T2 is refocused. Therefore, we can define t = 0 as the spin-echo time. For EPI, we get symmetric weighting in k y, ( W (k y ) = exp T 2T2 ( )) ky k max For spiral, we still have to start at the spin echo so we get rid of some of the constant T2 decay from the mid pulse to the start of the spiral, but the k-space weighting is the same as the gradient echo where the edges of k-space will be heavily T2 weighted, much more then the EPI! ( W (k r ) = exp T k ) r T2 k. max 6. Matlab Simulation: 2DFT Spin-Echo Sequence. In this exercise we are going to modify the sequence you designed in HW 5 Q6c to a spin-echo sequence. For that, we need to insert a 180 refocusing pulse. We are going to insert the refocusing pulse between the phase encodes (and the readout prewinder) and the readout. 13

14 a) Modify the GRE sequence to be a spin echo sequence. Add an appropriate hard refocusing pulse and modify the gradient timings such that the echo-time is TE=6ms. In your design assume maximum B1 max = 0.16G. Plot the pulse sequence diagram. b) Simulate the pulse sequence using the data from HW5. In the simulation make the refocusing pulse 170 to simulate B1 imperfection. In addition, to simulate off-resonance add a constant gradient field of 0.01G to Gy. (simply calculate the appropriate phase encode waveform and add 0.01 to it.) The constant gradient should be on through the entire pulse sequence! Reconstruct and plot magnitude and phase images. Can you see the effects of the parasitic FID from the refocusing pulse? do you see any phase due to off-resonance? c) Modify the sequence to overcome the artifact from the parasitic FID by chopping the refocusing pulse (±170 ). Reconstruct magnitude and phase images. Comment on the artifact and also on the phase of fat and water. 14

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

EE225E/BIOE265 Spring 2011 Principles of MRI. Assignment 5. Solutions

EE225E/BIOE265 Spring 2011 Principles of MRI. Assignment 5. Solutions EE225E/BIOE265 Spring 211 Principles of MRI Miki Lustig Handout Assignment 5 Solutions 1. Matlab Exercise: 2DFT Pulse sequence design. In this assignment we will write functions to design a 2DFT pulse

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis Clinical Importance Rapid cardiovascular flow quantitation using sliceselective Fourier velocity encoding with spiral readouts Valve disease affects 10% of patients with heart disease in the U.S. Most

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street MRI is located in the sub basement of CC wing. From Queen or Victoria, follow the baby blue arrows and ride the CC south

More information

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution.

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution. MRES 7005 - Fast Imaging Techniques Module 5: Dynamic Imaging and Phase Sharing (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review Improving Temporal Resolution True-FISP (I) True-FISP (II) Keyhole

More information

Partial k-space Reconstruction

Partial k-space Reconstruction Chapter 2 Partial k-space Reconstruction 2.1 Motivation for Partial k- Space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position, and hence

More information

Partial k-space Recconstruction

Partial k-space Recconstruction Partial k-space Recconstruction John Pauly September 29, 2005 1 Motivation for Partial k-space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position,

More information

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005 Field Maps John Pauly October 5, 25 The acquisition and reconstruction of frequency, or field, maps is important for both the acquisition of MRI data, and for its reconstruction. Many of the imaging methods

More information

Exam 8N080 - Introduction MRI

Exam 8N080 - Introduction MRI Exam 8N080 - Introduction MRI Friday January 23 rd 2015, 13.30-16.30h For this exam you may use an ordinary calculator (not a graphical one). In total there are 6 assignments and a total of 65 points can

More information

Compressed Sensing for Rapid MR Imaging

Compressed Sensing for Rapid MR Imaging Compressed Sensing for Rapid Imaging Michael Lustig1, Juan Santos1, David Donoho2 and John Pauly1 1 Electrical Engineering Department, Stanford University 2 Statistics Department, Stanford University rapid

More information

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI Figure 1. In the brain, the gray matter has substantially more blood vessels and capillaries than white matter. The magnified image on the right displays the rich vasculature in gray matter forming porous,

More information

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health MRI image formation Indiana University School of Medicine and Indiana University Health Disclosure No conflict of interest for this presentation 2 Outlines Data acquisition Spatial (Slice/Slab) selection

More information

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004 Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 24 1 Alec Chi-Wah Wong Department of Electrical Engineering University of Southern California 374 McClintock

More information

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison MRI Imaging Options Frank R. Korosec, Ph.D. Departments of Radiolog and Medical Phsics Universit of Wisconsin Madison f.korosec@hosp.wisc.edu As MR imaging becomes more developed, more imaging options

More information

The SIMRI project A versatile and interactive MRI simulator *

The SIMRI project A versatile and interactive MRI simulator * COST B21 Meeting, Lodz, 6-9 Oct. 2005 The SIMRI project A versatile and interactive MRI simulator * H. Benoit-Cattin 1, G. Collewet 2, B. Belaroussi 1, H. Saint-Jalmes 3, C. Odet 1 1 CREATIS, UMR CNRS

More information

Advanced Imaging Trajectories

Advanced Imaging Trajectories Advanced Imaging Trajectories Cartesian EPI Spiral Radial Projection 1 Radial and Projection Imaging Sample spokes Radial out : from k=0 to kmax Projection: from -kmax to kmax Trajectory design considerations

More information

K-Space Trajectories and Spiral Scan

K-Space Trajectories and Spiral Scan K-Space and Spiral Scan Presented by: Novena Rangwala nrangw2@uic.edu 1 Outline K-space Gridding Reconstruction Features of Spiral Sampling Pulse Sequences Mathematical Basis of Spiral Scanning Variations

More information

Imaging Notes, Part IV

Imaging Notes, Part IV BME 483 MRI Notes 34 page 1 Imaging Notes, Part IV Slice Selective Excitation The most common approach for dealing with the 3 rd (z) dimension is to use slice selective excitation. This is done by applying

More information

k y 2k y,max k x 2k x,max

k y 2k y,max k x 2k x,max EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 5 Solutions Due March 6th 2012 1. Finish reading Nishimura Ch. 5. 2. For the 16 turn spiral trajectory, plotted below, what is the a)

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

MR Advance Techniques. Vascular Imaging. Class III

MR Advance Techniques. Vascular Imaging. Class III MR Advance Techniques Vascular Imaging Class III 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

surface Image reconstruction: 2D Fourier Transform

surface Image reconstruction: 2D Fourier Transform 2/1/217 Chapter 2-3 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Magnetic Resonance Angiography

Magnetic Resonance Angiography Magnetic Resonance Angiography Course: Advance MRI (BIOE 594) Instructors: Dr Xiaohong Joe Zhou Dr. Shadi Othman By, Nayan Pasad Phase Contrast Angiography By Moran 1982, Bryan et. Al. 1984 and Moran et.

More information

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition TOPICS 2/5/2006 8:17 PM 2D Acquisition 3D Acquisition 2D Acquisition Involves two main steps : Slice Selection Slice selection is accomplished by spatially saturating (single or multi slice imaging) or

More information

Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories

Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories by Antonis Matakos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Spatially selective RF excitation using k-space analysis

Spatially selective RF excitation using k-space analysis Spatially selective RF excitation using k-space analysis Dimitrios Pantazis a, a Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564 Abstract This project

More information

2D spatially selective excitation pulse design and the artifact evaluation

2D spatially selective excitation pulse design and the artifact evaluation EE 591 Project 2D spatially selective excitation pulse design and the artifact evaluation 12/08/2004 Zungho Zun Two-dimensional spatially selective excitation is used to excite a volume such as pencil

More information

Midterm Review

Midterm Review Midterm Review - 2017 EE369B Concepts Noise Simulations with Bloch Matrices, EPG Gradient Echo Imaging 1 About the Midterm Monday Oct 30, 2017. CCSR 4107 Up to end of C2 1. Write your name legibly on this

More information

XI Signal-to-Noise (SNR)

XI Signal-to-Noise (SNR) XI Signal-to-Noise (SNR) Lecture notes by Assaf Tal n(t) t. Noise. Characterizing Noise Noise is a random signal that gets added to all of our measurements. In D it looks like this: while in D

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

Fast methods for magnetic resonance angiography (MRA)

Fast methods for magnetic resonance angiography (MRA) Fast methods for magnetic resonance angiography (MRA) Bahareh Vafadar Department of Electrical and Computer Engineering A thesis presented for the degree of Doctor of Philosophy University of Canterbury,

More information

Applications Guide for Interleaved

Applications Guide for Interleaved Applications Guide for Interleaved rephase/dephase MRAV Authors: Yongquan Ye, Ph.D. Dongmei Wu, MS. Tested MAGNETOM Systems : 7TZ, TRIO a Tim System, Verio MR B15A (N4_VB15A_LATEST_20070519) MR B17A (N4_VB17A_LATEST_20090307_P8)

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Multichannel Technology & Parallel Imaging Nathan Yanasak, Ph.D. Jerry Allison Ph.D. Tom Lavin, B.S. Department of Radiology Medical College of Georgia References: 1) The Physics of

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Slice interleaving Sequential, Odd/even, bit-reversed Arbitrary Other considerations:

More information

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2 Fast Imaging Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs Class Business Tuesday (3/7) from 6-9pm 6:00-7:30pm Groups Avanto Sara Said, Yara Azar, April Pan Skyra Timothy Marcum, Diana Lopez,

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

Scan Acceleration with Rapid Gradient-Echo

Scan Acceleration with Rapid Gradient-Echo Scan Acceleration with Rapid Gradient-Echo Hsiao-Wen Chung ( 鍾孝文 ), Ph.D., Professor Dept. Electrical Engineering, National Taiwan Univ. Dept. Radiology, Tri-Service General Hospital 1 of 214 The Need

More information

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD MRI When to use What sequences Govind Chavhan, MD Assistant Professor and Staff Radiologist The Hospital For Sick Children, Toronto Planning Acquisition Post processing Interpretation Patient history and

More information

Compressed Sensing And Joint Acquisition Techniques In Mri

Compressed Sensing And Joint Acquisition Techniques In Mri Wayne State University Wayne State University Theses 1-1-2013 Compressed Sensing And Joint Acquisition Techniques In Mri Rouhollah Hamtaei Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

More information

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

SIEMENS MAGNETOM TrioTim syngo MR B17

SIEMENS MAGNETOM TrioTim syngo MR B17 \\USER\KNARRGROUP\MultiBand\LavretskyMultiBand\trufi localizer 3-plane TA: 5.1 s PAT: Voxel size: 1.2 1.2 5. Rel. SNR: 1.00 SIEMENS: trufi Load to stamp Slice group 1 Slices 1 Dist. factor 20 % Phase enc.

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For?

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Nathan Yanasak, Ph.D. Chair, AAPM TG118 Department of Radiology Georgia Regents University Overview Phased-array coils

More information

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences PengHu@mednet.ucla.edu 310-267-6838 MRI... MRI has low

More information

Page 1 of 9. Protocol: adult_other_adni3basichumanprotocol25x_ _ _1. 3 Plane Localizer. 3 Plane Localizer PATIENT POSITION

Page 1 of 9. Protocol: adult_other_adni3basichumanprotocol25x_ _ _1. 3 Plane Localizer. 3 Plane Localizer PATIENT POSITION 3 Localizer FOV 26.0 Slice Thickness 5.0 Slice Spacing 0.0 Freq 256 Phase 128 3-PLANE 3 Localizer Unswap Phase Correction Gradient Echo Imaging Options Seq, Fast Recon All Images 3 Localizer Pause / SCIC

More information

SIEMENS MAGNETOM Verio syngo MR B17

SIEMENS MAGNETOM Verio syngo MR B17 \\USER\Dr. Behrmann\routine\Ilan\ep2d_bold_PMU_resting TA: 8:06 PAT: Voxel size: 3.03.03.0 mm Rel. SNR: 1.00 USER: ep2d_bold_pmu Properties Special sat. Prio Recon System Before measurement Body After

More information

A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI

A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI Denis Chaimow 1 and Amir Shmuel 1,2 1 Centre for Magnetic Resonance Research

More information

Orthopedic MRI Protocols. Philips Panorama HFO

Orthopedic MRI Protocols. Philips Panorama HFO Orthopedic MRI Protocols Philips Panorama HFO 1 2 Prepared in collaboration with Dr. John F. Feller, Medical Director of Desert Medical Imaging, Palm Springs, CA. Desert Medical Imaging will provide the

More information

Gradient-Echo. Spin-Echo. Echo planar. Assessment of Regional Function Assessment of Global. Parallel Imaging. Function. Steady State Imaging

Gradient-Echo. Spin-Echo. Echo planar. Assessment of Regional Function Assessment of Global. Parallel Imaging. Function. Steady State Imaging Gradient-Echo Spin-Echo James W. Goldfarb Ph.D. Department of Research and Education St. Francis Hospital Program in Biomedical Engineering SUNY Stony Brook Echo planar Assessment of Regional Function

More information

Use of MRI in Radiotherapy: Technical Consideration

Use of MRI in Radiotherapy: Technical Consideration Use of MRI in Radiotherapy: Technical Consideration Yanle Hu, PhD Department of Radiation Oncology, Mayo Clinic Arizona 04/07/2018 2015 MFMER slide-1 Conflict of Interest: None 2015 MFMER slide-2 Objectives

More information

Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging

Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging by Amanda K. Funai A dissertation submitted in partial fulfillment of the requirements

More information

Parallel Imaging. Marcin.

Parallel Imaging. Marcin. Parallel Imaging Marcin m.jankiewicz@gmail.com Parallel Imaging initial thoughts Over the last 15 years, great progress in the development of pmri methods has taken place, thereby producing a multitude

More information

Dynamic Contrast enhanced MRA

Dynamic Contrast enhanced MRA Dynamic Contrast enhanced MRA Speaker: Yung-Chieh Chang Date : 106.07.22 Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan 1 Outline Basic and advanced principles of Diffusion

More information

Outline: Contrast-enhanced MRA

Outline: Contrast-enhanced MRA Outline: Contrast-enhanced MRA Background Technique Clinical Indications Future Directions Disclosures: GE Health Care: Research support Consultant: Bracco, Bayer The Basics During rapid IV infusion, Gadolinium

More information

Assignment 2. Due Feb 3, 2012

Assignment 2. Due Feb 3, 2012 EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 2 Due Feb 3, 2012 1. Read Nishimura Ch. 3 2. Non-Uniform Sampling. A student has an assignment to monitor the level of Hetch-Hetchi reservoir

More information

Computational Medical Imaging Analysis

Computational Medical Imaging Analysis Computational Medical Imaging Analysis Chapter 2: Image Acquisition Systems Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky

More information

University of Cape Town

University of Cape Town Development of a 3D radial MR Imaging sequence to be used for (self) navigation during the scanning of the fetal brain in utero by Leah Morgan Thesis presented for the degree of Master of Science June

More information

Functional MRI. Jerry Allison, Ph. D. Medical College of Georgia

Functional MRI. Jerry Allison, Ph. D. Medical College of Georgia Functional MRI Jerry Allison, Ph. D. Medical College of Georgia BOLD Imaging Technique Blood Oxygen Level Dependent contrast can be used to map brain function Right Hand Motor Task Outline fmri BOLD Contrast

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Timing: cine, gating, triggering Slice interleaving Sequential, Odd/even, bit-reversed

More information

Following on from the two previous chapters, which considered the model of the

Following on from the two previous chapters, which considered the model of the Chapter 5 Simulator validation Following on from the two previous chapters, which considered the model of the simulation process and how this model was implemented in software, this chapter is concerned

More information

Sources of Distortion in Functional MRI Data

Sources of Distortion in Functional MRI Data Human Brain Mapping 8:80 85(1999) Sources of Distortion in Functional MRI Data Peter Jezzard* and Stuart Clare FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK Abstract:

More information

k y 2k y,max k x 2k x,max

k y 2k y,max k x 2k x,max EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 5 Due Feb 26, 2012 1. Finish reading Nishimura Ch. 5. 2. For the 16 turn spiral trajectory, plotted below, what is the a) Spatial resolution,

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Computational Aspects of MRI

Computational Aspects of MRI David Atkinson Philip Batchelor David Larkman Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues.

More information

Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction

Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction Nan-kuei Chen 1,5 and Alice M. Wyrwicz 4 * Magnetic Resonance in Medicine 51:147 153 (004) Odd even echo inconsistencies result

More information

Motion Artifacts and Suppression in MRI At a Glance

Motion Artifacts and Suppression in MRI At a Glance Motion Artifacts and Suppression in MRI At a Glance Xiaodong Zhong, PhD MR R&D Collaborations Siemens Healthcare MRI Motion Artifacts and Suppression At a Glance Outline Background Physics Common Motion

More information

Magnetic Resonance Elastography (MRE) of Liver Disease

Magnetic Resonance Elastography (MRE) of Liver Disease Magnetic Resonance Elastography (MRE) of Liver Disease Authored by: Jennifer Dolan Fox, PhD VirtualScopics Inc. jennifer_fox@virtualscopics.com 1-585-249-6231 1. Overview of MRE Imaging MRE is a magnetic

More information

Open file format for MR sequences

Open file format for MR sequences Open file format for MR sequences Version 1.1 Kelvin Layton Maxim Zaitsev University Medical Centre Freiburg kelvin.layton@uniklinik-freiburg.de maxim.zaitsev@uniklinik-freiburg.de This file specification

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals.

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals. GE Healthcare CLINICAL GALLERY Discovery * MR750w 3.0T This brochure is intended for European healthcare professionals. NEURO PROPELLER delivers high resolution, motion insensitive imaging in all planes.

More information

ADNI, ADNI_QH, SURVEY. Geometry. connection

ADNI, ADNI_QH, SURVEY. Geometry. connection ADNI, ADNI_QH, SURVEY Geometry Coil selection = Head connection = d Multi coil Homogeneity correction ne FOV (mm) = 250.00 RFOV (%) = 100.00 Foldover suppression Matrix scan = 256 reconstruction = 256

More information

3D3C & 2D3D Velocity Measurements Using Magnetic Resonance Velocimetry

3D3C & 2D3D Velocity Measurements Using Magnetic Resonance Velocimetry 3D3C & 2D3D Velocity Measurements Using Magnetic Resonance Velocimetry Sven Grundmann Center of Smart Interfaces Technische Universität Darmstadt Flughafenstrasse 19 64347 Griesheim grundmann@csi-tu-darmstadt.de

More information

TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA)

TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA) JOURNAL OF MAGNETIC RESONANCE IMAGING 26:432 436 (2007) Technical Note TOF-MRA Using Multi-Oblique-Stack Acquisition (MOSA) Ed X. Wu, PhD, 1,2 * Edward S. Hui, BEng, 1,2 and Jerry S. Cheung, BEng 1,2 Purpose:

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Outline High Spectral and Spatial Resolution MR Imaging (HiSS) What it is How to do it Ways to use it HiSS for Radiation

More information

Acquisition Methods for fmri at 7 Tesla

Acquisition Methods for fmri at 7 Tesla Acquisition Methods for fmri at 7 Tesla Peter J. Koopmans, Nuffield department for clinical neurosciences, University of Oxford, UK fmri at 7 Tesla is mostly used in the context of high spatial resolution

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2007W1 SEMESTER 2 EXAMINATION 2014-2015 MEDICAL PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two questions

More information

Motion Artifact Suppression in MRI Using k-space Overlap Processing ABSTRACT

Motion Artifact Suppression in MRI Using k-space Overlap Processing ABSTRACT C04 1 Motion Artifact Suppression in MRI Using k-space Overlap Processing Yasser M. Kadah Biomedical Engineering Department, Cairo University, Egypt (E-mail: ymk@k-space.org) ABSTRACT Starting from the

More information

What is pmri? Overview. The Need for Speed: A Technical and Clinical Primer for Parallel MR Imaging 8/1/2011

What is pmri? Overview. The Need for Speed: A Technical and Clinical Primer for Parallel MR Imaging 8/1/2011 The Need for Speed: A Technical and Clinical Primer for Parallel MR Imaging Nathan Yanasak, Ph.D. Chair, AAPM TG118 Assistant Professor Department of Radiology Director, Core Imaging Facility for Small

More information

SIEMENS MAGNETOM Avanto syngo MR B15

SIEMENS MAGNETOM Avanto syngo MR B15 \\USER\INVESTIGATORS\Ravi\ADNI-Subject\Localizer TA: 0:10 PAT: Voxel size: 1.9 1.5 8.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer Inline movie

More information

design as a constrained maximization problem. In principle, CODE seeks to maximize the b-value, defined as, where

design as a constrained maximization problem. In principle, CODE seeks to maximize the b-value, defined as, where Optimal design of motion-compensated diffusion gradient waveforms Óscar Peña-Nogales 1, Rodrigo de Luis-Garcia 1, Santiago Aja-Fernández 1,Yuxin Zhang 2,3, James H. Holmes 2,Diego Hernando 2,3 1 Laboratorio

More information

Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging

Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging Nan-kuei Chen and Alice M. Wyrwicz* Magnetic Resonance in Medicine 41:1206 1213 (1999) A novel and effective technique is described

More information

Multishot Diffusion-Weighted FSE Using PROPELLER MRI

Multishot Diffusion-Weighted FSE Using PROPELLER MRI Multishot Diffusion-Weighted FSE Using PROPELLER MRI James G. Pipe, 1 * Victoria G. Farthing, 1 and Kirsten P. Forbes 2 Magnetic Resonance in Medicine 47:42 52 (2002) A method for obtaining diffusion-weighted

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

SIEMENS MAGNETOM Avanto syngo MR B15

SIEMENS MAGNETOM Avanto syngo MR B15 \\USER\INVESTIGATORS\Ravi\ADNI-phantom\QC Phantom-Localizer TA: 0:10 PAT: Voxel size: 1.9 1.5 8.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer

More information

Imaging protocols for navigated procedures

Imaging protocols for navigated procedures 9732379 G02 Rev. 1 2015-11 Imaging protocols for navigated procedures How to use this document This document contains imaging protocols for navigated cranial, DBS and stereotactic, ENT, and spine procedures

More information

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING Mark Steven Lawton Master of Engineering Thesis Lawrence Berkeley Laboratory University of California Berkeley, California

More information

Non-Cartesian Parallel Magnetic Resonance Imaging

Non-Cartesian Parallel Magnetic Resonance Imaging Non-Cartesian Parallel Magnetic Resonance Imaging Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Robin Heidemann

More information

ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2

ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2 ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2 Presented by Rahil Kothari PARTIAL FOURIER RECONSTRUCTION WHAT IS PARTIAL FOURIER RECONSTRUCTION? In Partial Fourier Reconstruction data is not collected symmetrically

More information

Referenceless Interleaved Echo-Planar Imaging

Referenceless Interleaved Echo-Planar Imaging Referenceless Interleaved Echo-Planar Imaging Magnetic Resonance in Medicine 41:87 94 (1999) Scott B. Reeder, 1 Ergin Atalar, * Anthony Z. Faranesh, 1 and Elliot R. McVeigh 1, Interleaved echo-planar imaging

More information

SIEMENS MAGNETOM Skyra syngo MR D13

SIEMENS MAGNETOM Skyra syngo MR D13 Page 1 of 8 SIEMENS MAGNETOM Skyra syngo MR D13 \\USER\CIND\StudyProtocols\PTSA\*dm_ep2d_mono70_b0_p2_iso2.0 TA:1:05 PAT:2 Voxel size:2.0 2.0 2.0 mm Rel. SNR:1.00 :epse Properties Routine Prio Recon Load

More information