MRI Physics II: Gradients, Imaging

Size: px
Start display at page:

Download "MRI Physics II: Gradients, Imaging"

Transcription

1 MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

2 Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes the object to be imaged After excitation, the magnetization precesses around B 0 at ω 0 = γb 0 B 1 The rotating RF magnetic field. Tips magnetization into transverse plane Performs excitation On for brief periods, then off

3 Gradient Fields The last magnetic field to be used in MRI are the gradient fields 3 of them: G x, G y, G z These are for localization Make the magnetic field different in different parts of the body, e.g. for the x-gradient: B(x) ) = B 0 + G. x Observe the field points in the same direction as B 0 so it adds to B 0.

4 x z y Gradients x-gradient (G( x ) z x y y-gradient (G( y ) z x y z-gradient (G( z )

5 Imaging Basics To understand 2D and 3D localization, we will start at the beginning with one- dimensional localization. Here we image in 1D - the x-direction. (e.g. the L-R direction) We start with the simplest form of localization called frequency encoding.

6 1D Localization We acquire data while the x-gradient (G( x ) is turned on and has a constant strength. Recall that a gradient makes the magnetic field vary in a particular direction. In this case, having a positive x-gradient implies that the farther we move along in the x-direction (e.g. the farther right we move) the magnetic field will increase. B(x) ) = B 0 + G. x

7 Frequency Encoding A fundamental property of nuclear spins says that the frequency at which they precess (or emit signals) is proportional to the magnetic field strength: ω = γb - The Larmor Relationship This says that precession frequency now increases as we move along the x- direction (e.g. as we move rightwards). ω(x) ) = γ (B 0 + G. x).

8 Frequency Encoding Low Frequency B Mag. Field Strength Low Frequency Object High Frequency x Position High Frequency x Position

9 Spins in a Magnetic Field ω(x) γg x x

10 Fourier Transforms The last part of this story is the Fourier transform. The Fourier transform is the computer program that breaks down each MR signal into its frequency components. If we plot the strength of each frequency, it will form a representation (or image) of the object in one-dimension.

11 Fourier Transforms Low Frequency MR Signal Fourier Transform Object High Frequency time 1D Image x Position

12 1D Pulse Sequence Now we put this together with excitation: TR RF TE Gx Data Acq. B(x) x

13 Alternate Method for 1D Localization In the case just described, the frequency encoding gradient was constant. At different locations spins precessed at different frequencies. This was true as long as the gradient was on. on. We now look at an alternate situation where the gradient is turned on and off rapidly. At different locations spins will precess at different frequencies, but only during the times that the gradient is on. on.

14 Alternate Method for 1D Localization RF Gx Data Acq.

15 On/Off Gradients in 1D Localization In the case previously described, the spins precessed smoothly. In this case, the spins precess in a stop- action or jerky motion. What is different here is that we sample the MR signal while it has stopped precessing. At each step, the spatial information has been encoded into the phase. This is a form of phase encoding.

16 Movement of Magnetization with Constant Gradient M Smooth precession of magnetization

17 Stop-Action Movement of Magnetization M STOP STOP Sample 1 Sample 2 Sample 3

18 Different 1D Localization Methods RF Gx Data Acq. Upper - smooth precession at different frequencies. (frequency encoding) RF Gx Data Acq. Lower - precession in small steps, phase contains location info. (phase encoding).

19 Different 1D Localization Methods RF Gx Data Acq. RF Gx Data Acq. Are the sampled data the same? Yes, if we neglect T2. In both cases, the Fourier transform creates the 1D image.

20 Alternate Method #2 for 1D Localization In the above cases, gradients were turned on and samples were acquired following a single RF excitation pulse. At different locations spins precessed at different frequencies. Motion was either smooth or stop-action. stop-action. We now look at a situation where a single sample is acquired after each RF pulse. Spins precess for a particular length of time and then a single sample is acquired.

21 Alternate Method #2 for 1D Localization RF Gx Data Acq.

22 Phase Encoding in 1D Again, spins precess only as long as gradient is turned on. on. If we look spins after each step (sample location), the precession will again appear as stop-action motion. Again, spatial information has been encoded into the phase of spin. Another form of phase encoding.

23 Phase Encoding in 1D M STOP STOP Phase Encode 0 Phase Encode 1 Phase Encode 2

24 Three Methods for 1D Localization 1D Localization: Frequency encoding Phase encoding following a single RF pulse A single phase encode following each of many RF pulses Sampled data is the same (if we neglect T2). The Fourier transform creates the 1D image.

25 Three Methods for 1D Localization Frequency Encoding RF Gx Data Acq. Phase Encoding Method #1 RF Gx Data Acq. Phase Encoding Method #2 RF Gx Data Acq.

26 2D Localization In general, we will combine two 1D localization methods to create localization in two dimensions (2D). The spin-warp method (used in almost all anatomical MRI) is a combination of : Frequency encoding in one direction (e.g. Left-Right) Phase encoding in the other direction (e.g. Anterior-Posterior)

27 2D Localization - Spin Warp RF Gx Frequency Encoding (in x direction) Data Acq. RF Gy Gx Data Acq. RF Gy Data Acq. Phase Encoding Method #2 (in y direction)

28 Spin-Warp Imaging For each RF pulse: Frequency encoding is performed in one direction A single phase encoding value is obtained With each additional RF pulse: The phase encoding value is incremented The phase encoding steps still has the appearance of stop-action motion

29 Spin-Warp Pulse Sequence RF Phase Enc. Gy Gx Freq. Enc. Data Acq.

30 Spin-Warp Data Acquisition In 1D, the Fourier transform produced a 1D image. In 2D, the Fourier transform is applied in both the frequency and phase encoding directions. This is called the 2D Fourier transform. Commonly we structure the samples in a 2D grid that we call k-space. k-space. One line of k-space is acquired at a time.

31 Spin-Warp Data Acquisition Each line has a different phase encode ky kx Frequency encoding along each line 2D Fourier Transform

32 Echo-Planar Imaging As with spin-warp imaging, echo-planar imaging (EPI) is just the combination of two 1D localization methods EPI is also a combination of : Frequency encoding in one direction (e.g. Left-Right) Phase encoding in the other direction (e.g. Anterior-Posterior) EPI uses a different phase encoding method.

33 Echo-Planar Imaging RF Gx Frequency Encoding (in x direction) Data Acq. Phase Enc. RF Gy Gx Freq. Enc. Data Acq. RF Gx Data Acq. Phase Encoding Method #1 (in y direction)

34 Echo-Planar Imaging For each RF pulse: Frequency encoding is performed many times All phase encoding steps are obtained The entire image is acquired With each additional frequency encoding (each additional line in the k-space grid): The phase encoding value is incremented The phase encoding steps still has the appearance of stop-action motion

35 EPI Pulse Sequence Phase Enc. RF Gy Gx Freq. Enc. Data Acq.

36 EPI Data Acquisition As with Spin-Warp imaging, we put the acquired data for the frequency and phase encoding into the 2D grid called k-space. Also, the 2D Fourier transform is used to create the image. In EPI, the data is filled into k-space in a rectangular zig-zag -like-like pattern.

37 EPI Data Acquisition Changing the sign of the frequency enc. changes the direction that the data is placed into this 2D grid. Each line has a different phase encode ky kx Frequency encoding along each line

38 EPI Imaging In summary, EPI data is in many ways like Spin-Warp imaging: They are combinations of two kinds of 1D localization. They have both frequency and phase encoding. Data are acquired on a 2D grid called k-space. Images are reconstructed by a 2D Fourier transform.

39 EPI Imaging It is also different from Spin-Warp Imaging: The image can be acquired with a single RF pulse. The phase encoding steps all happen in rapid succession. The frequency direction alternates in sign. The time needed to acquire data after each RF pulse is very long. Special hardware is required.

40 Multi-shot EPI While possible to acquire an entire image with a single RF pulse (single-shot), it is sometimes necessary to use multiple shots. There are two common ways of doing this: Interleaving Mosaic Multi-shot EPI is useful to: Improve spatial resolution Reduce artifacts

41 Multi-shot EPI ky ky kx kx #2 #1 #1 #2 Interleaved EPI Mosaic EPI

42 Spin-Warp vs. EPI Pulse Sequences Spin-Warp EPI RF Gy RF Gy Gx Data Acq. Gx Data Acq. Many acquisitions to make a one image. One acquisition to make one image.

43 Spiral Imaging One method that has very similar properties to EPI is Spiral Imaging. Like EPI: All image data can be acquired in a single-shot. Multi-shot variants also exist. Many of the artifacts are similar. But: Image reconstruction is different. Some artifacts are different.

44 Spiral Imaging RF ky Gy Gx kx Data Acq. Pulse Sequence k-space Data

45 Fourier Representation of Images Decomposition of images into frequency components, e.g. into sines and cosines. 1D Object Fourier Data

46 1D Fourier Transform 0 th Frequency Component New Components Cumulative Sum of Components

47 1D Fourier Transform 1 st Frequency Component New Components Cumulative Sum of Components

48 1D Fourier Transform 2 nd Frequency Component New Components Cumulative Sum of Components

49 1D Fourier Transform 3 rd Frequency Component New Components Cumulative Sum of Components

50 1D Fourier Transform 5 th Frequency Component New Components Cumulative Sum of Components

51 1D Fourier Transform 20 th Frequency Component New Components Cumulative Sum of Components

52 1D Fourier Transform 63 rd Frequency Component New Components Cumulative Sum of Components

53 Fourier Acquisition In MRI, we are acquiring Fourier components Remember, we take the FT of the acquired data to create an image The more Fourier components we acquire, the better the representation

54 Spatial Frequencies in 2D Full Low Freq High Freq Fourier Data Image Data Low Res (contrast) Edges

55 Resolution and Field of View Resolution is determined by size of the area acquired: k y Δx = 1 / W k x Field of view is determined by spacing of samples: Δk FOV = 1 / Δk W

56 Goals of Image Acquisition Acquire samples finely enough to prevent aliasing Acquire enough samples for the desired spatial resolution Acquire images with the right contrast Do it fast as possible Do it without distortions and other artifacts

57 Single-shot Imaging Hardware Single-shot imaging is an extremely rapid and useful imaging method. It does, however, require some special, high performance hardware. Why? In spin-warp, we acquire a small piece of data for an image with each RF pulse. However in EPI and spiral, we try to acquire all of the data for an image with a single RF pulse.

58 Single-shot Imaging Hardware Need powerful gradient amps. Limitations: Peripheral nerve stimulation Acoustic noise Increased noise Heating and power consumption in gradient subsystem

59 T2 Decay and Acquisition Time In spin-warp imaging, only a single phase encode need to be acquired. Only takes a short time. In EPI, all phase encode lines need to be acquired. Takes longer. Without special hardware ms to 1 second. T2 decay reduces signal throughout data acquisition.

60 T2 Decay and Acquisition Time RF Gy Gx Data Acq. Signal Strength Signal decays away during acquisition. Data Acq. takes longer.

61 Other Limitations Single-shot imaging has a variety of limitations Hardware T2 Decay B 0 inhomogneity Consequences: Limited spatial resolution Image distortions Some limits on available contrast

62 Some Common Imaging Methods Conventional (spin-warp) Imaging Echo Planar Imaging (EPI) Spiral Imaging

63 Conventional (Spin-Warp) Imaging k y k x One Line at a Time 128x128 FLASH/SPGR TR/TE/flip = 50ms/30ms/30º 0.2 slices per sec, single slice

64 Conventional (Spin-Warp) Imaging k y k x Known as: GRE, FLASH, SPGR Typically matrix sizes for fmri 128x64, 128x128 Acquisition rates 3-10 sec/image 1-4 slices One Line at a Time Usually best for structural imaging

65 Echo Planar Imaging (EPI) k y k x Zig-Zag Pattern Single-shot EPI, TE = 40 ms, TR = 2 s, 20 slices

66 Echo Planar Imaging (EPI) k y k x Single-shot acquisition Typically matrix sizes for fmri 64x64, 96x96 128x128 interleaved Acquisition rates TR = 1-2 sec slices Zig-Zag Pattern Suffers some artifacts Distortion, ghosts

67 EPI Geometric Distortions high res image field map warped epi image unwarped epi image Courtesy of P. Jezzard Jezzard and Balaban, MRM 34:

68 EPI Nyquist Ghost Courtesy of P. Jezzard

69 Spiral Imaging k y k x Spiral Pattern Single-shot spiral, TE = 25 ms, TR = 2 s, 32 slices

70 Spiral Imaging k y k x Single-shot acquisition Typically matrix sizes for fmri 64x64, 96x96 128x128 interleaved Acquisition rates TR = 1-2 sec slices Spiral Pattern Suffers some artifacts Blurring

71 Spiral Off-Resonance Distortions Courtesy of P. Jezzard perfect shim poor shim

72 Pulse Sequences Two Major Aspects Contrast (Spin Preparation) What kind of contrast does the image have? What is the TR, TE, Flip Angle, etc.? Localization (Image Acquisition) How is the image acquired? How is k-space sampled?

73 Pulse Sequences Spin Preparation (contrast) Spin Echo (T1, T2, Density) Gradient Echo Inversion Recovery Diffusion Velocity Encoding Image Acquisition Method (localization, k-space sampling) Spin-Warp EPI, Spiral RARE, FSE, etc.

74 Localization vs. Contrast In many cases, the localization method and the contrast weighting are independent. For example, the spin-warp method can be used for T1, T2, or nearly any other kind of contrast. T2-weighted images can be acquired with spin-warp, EPI, spiral and RARE pulse sequences.

75 Localization vs. Contrast But, some localization methods are better than others at some kinds of contrast. For example, RARE (FSE) is not very good at generating short-tr, T1-weighted images. In general, however, we can think about localization methods and contrast separately.

76 The 3 rd Dimension We ve talked about 1D and 2D imaging, but the head is 3D. Solution #1 3D Imaging Acquire data in a 3D Fourier domain Image is created by using the 3D Fourier transform E.g. 3D spin-warp pulse sequence Solution #2 Slice Selection Excite a 2D plane and do 2D imaging Most common approach

77 Slice Selection The 3 rd dimension is localized during excitation Slice selective excitation Makes use of the resonance phenomenon Only on-resonant spins are excited

78 Slice Selection With the z-gradient on, slices at different z positions have a different magnetic fields: B(z) ) = B 0 + G. z z and therefore different frequencies: B(z) Slice 1 Slice 2 Slice 3 ω(z) ) = ω 0 + γg. z z G z ω(z 1 ) < ω(z 2 ) < ω(z 3 ) z

79 Slice Selection Slice 1 is excited by setting the excitation frequency to ω(z 1 ) Slice 2 is excited by setting the excitation frequency to ω(z 2 ) and similarly for other slices. B(z) Slice 1 Slice 2 Slice 3 G z Interesting note: Exciting a slice does not perturb relaxation processes that are occurring in the other slices. z

80 Slice Thickness Slice thickness is adjusted by changing the bandwidth of the RF pulse Bandwidth ~ 1 / (duration of RF pulse) E.g., for duration = 1 ms, BW = 1 khz ω(z) Δω γg z Δz z

81 Multi-Slice Imaging Since T1 s s are long, we often would like to have long TR s ( ms) While one slice is recovering (T1), we can image other slices without perturbing the recovery process

82 Multi-Slice Imaging RF pulses ω(z 1 ) Data acquisition Slice 1 RF pulses ω(z 2 ) Data acquisition Slice 2 RF pulses Data acquisition ω(z 3 ) TR Slice 3

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 8 Solutions 1. Nishimura 7.1 P)jc%z 5 ivcr3. 1. I Due Wednesday April 10th, 2013 (a Scrhon5 R2iwd b 0 ZOms Xn,s r cx > qs 4-4 8ni6 4

More information

Imaging Notes, Part IV

Imaging Notes, Part IV BME 483 MRI Notes 34 page 1 Imaging Notes, Part IV Slice Selective Excitation The most common approach for dealing with the 3 rd (z) dimension is to use slice selective excitation. This is done by applying

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

XI Signal-to-Noise (SNR)

XI Signal-to-Noise (SNR) XI Signal-to-Noise (SNR) Lecture notes by Assaf Tal n(t) t. Noise. Characterizing Noise Noise is a random signal that gets added to all of our measurements. In D it looks like this: while in D

More information

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

Exam 8N080 - Introduction MRI

Exam 8N080 - Introduction MRI Exam 8N080 - Introduction MRI Friday January 23 rd 2015, 13.30-16.30h For this exam you may use an ordinary calculator (not a graphical one). In total there are 6 assignments and a total of 65 points can

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

K-Space Trajectories and Spiral Scan

K-Space Trajectories and Spiral Scan K-Space and Spiral Scan Presented by: Novena Rangwala nrangw2@uic.edu 1 Outline K-space Gridding Reconstruction Features of Spiral Sampling Pulse Sequences Mathematical Basis of Spiral Scanning Variations

More information

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI Figure 1. In the brain, the gray matter has substantially more blood vessels and capillaries than white matter. The magnified image on the right displays the rich vasculature in gray matter forming porous,

More information

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis Clinical Importance Rapid cardiovascular flow quantitation using sliceselective Fourier velocity encoding with spiral readouts Valve disease affects 10% of patients with heart disease in the U.S. Most

More information

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health MRI image formation Indiana University School of Medicine and Indiana University Health Disclosure No conflict of interest for this presentation 2 Outlines Data acquisition Spatial (Slice/Slab) selection

More information

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street MRI is located in the sub basement of CC wing. From Queen or Victoria, follow the baby blue arrows and ride the CC south

More information

Compressed Sensing for Rapid MR Imaging

Compressed Sensing for Rapid MR Imaging Compressed Sensing for Rapid Imaging Michael Lustig1, Juan Santos1, David Donoho2 and John Pauly1 1 Electrical Engineering Department, Stanford University 2 Statistics Department, Stanford University rapid

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2 Fast Imaging Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs Class Business Tuesday (3/7) from 6-9pm 6:00-7:30pm Groups Avanto Sara Said, Yara Azar, April Pan Skyra Timothy Marcum, Diana Lopez,

More information

Sources of Distortion in Functional MRI Data

Sources of Distortion in Functional MRI Data Human Brain Mapping 8:80 85(1999) Sources of Distortion in Functional MRI Data Peter Jezzard* and Stuart Clare FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK Abstract:

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Slice interleaving Sequential, Odd/even, bit-reversed Arbitrary Other considerations:

More information

Midterm Review

Midterm Review Midterm Review - 2017 EE369B Concepts Noise Simulations with Bloch Matrices, EPG Gradient Echo Imaging 1 About the Midterm Monday Oct 30, 2017. CCSR 4107 Up to end of C2 1. Write your name legibly on this

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution.

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution. MRES 7005 - Fast Imaging Techniques Module 5: Dynamic Imaging and Phase Sharing (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review Improving Temporal Resolution True-FISP (I) True-FISP (II) Keyhole

More information

Dynamic Contrast enhanced MRA

Dynamic Contrast enhanced MRA Dynamic Contrast enhanced MRA Speaker: Yung-Chieh Chang Date : 106.07.22 Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan 1 Outline Basic and advanced principles of Diffusion

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

An Introduction to Image Reconstruction, Processing, and their Effects in FMRI

An Introduction to Image Reconstruction, Processing, and their Effects in FMRI An Introduction to Image Reconstruction, Processing, and their Effects in FMRI Daniel B. Rowe Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette University

More information

Scan Acceleration with Rapid Gradient-Echo

Scan Acceleration with Rapid Gradient-Echo Scan Acceleration with Rapid Gradient-Echo Hsiao-Wen Chung ( 鍾孝文 ), Ph.D., Professor Dept. Electrical Engineering, National Taiwan Univ. Dept. Radiology, Tri-Service General Hospital 1 of 214 The Need

More information

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison MRI Imaging Options Frank R. Korosec, Ph.D. Departments of Radiolog and Medical Phsics Universit of Wisconsin Madison f.korosec@hosp.wisc.edu As MR imaging becomes more developed, more imaging options

More information

Functional MRI. Jerry Allison, Ph. D. Medical College of Georgia

Functional MRI. Jerry Allison, Ph. D. Medical College of Georgia Functional MRI Jerry Allison, Ph. D. Medical College of Georgia BOLD Imaging Technique Blood Oxygen Level Dependent contrast can be used to map brain function Right Hand Motor Task Outline fmri BOLD Contrast

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences PengHu@mednet.ucla.edu 310-267-6838 MRI... MRI has low

More information

This Time. fmri Data analysis

This Time. fmri Data analysis This Time Reslice example Spatial Normalization Noise in fmri Methods for estimating and correcting for physiologic noise SPM Example Spatial Normalization: Remind ourselves what a typical functional image

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Timing: cine, gating, triggering Slice interleaving Sequential, Odd/even, bit-reversed

More information

Development of fast imaging techniques in MRI From the principle to the recent development

Development of fast imaging techniques in MRI From the principle to the recent development 980-8575 2-1 2012 10 13 Development of fast imaging techniques in MRI From the principle to the recent development Yoshio MACHIDA and Issei MORI Health Sciences, Tohoku University Graduate School of Medicine

More information

Parallel Imaging. Marcin.

Parallel Imaging. Marcin. Parallel Imaging Marcin m.jankiewicz@gmail.com Parallel Imaging initial thoughts Over the last 15 years, great progress in the development of pmri methods has taken place, thereby producing a multitude

More information

SIEMENS MAGNETOM Verio syngo MR B17

SIEMENS MAGNETOM Verio syngo MR B17 \\USER\Dr. Behrmann\routine\Ilan\ep2d_bold_PMU_resting TA: 8:06 PAT: Voxel size: 3.03.03.0 mm Rel. SNR: 1.00 USER: ep2d_bold_pmu Properties Special sat. Prio Recon System Before measurement Body After

More information

Following on from the two previous chapters, which considered the model of the

Following on from the two previous chapters, which considered the model of the Chapter 5 Simulator validation Following on from the two previous chapters, which considered the model of the simulation process and how this model was implemented in software, this chapter is concerned

More information

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005 Field Maps John Pauly October 5, 25 The acquisition and reconstruction of frequency, or field, maps is important for both the acquisition of MRI data, and for its reconstruction. Many of the imaging methods

More information

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition TOPICS 2/5/2006 8:17 PM 2D Acquisition 3D Acquisition 2D Acquisition Involves two main steps : Slice Selection Slice selection is accomplished by spatially saturating (single or multi slice imaging) or

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

Page 1 of 9. Protocol: adult_other_adni3basichumanprotocol25x_ _ _1. 3 Plane Localizer. 3 Plane Localizer PATIENT POSITION

Page 1 of 9. Protocol: adult_other_adni3basichumanprotocol25x_ _ _1. 3 Plane Localizer. 3 Plane Localizer PATIENT POSITION 3 Localizer FOV 26.0 Slice Thickness 5.0 Slice Spacing 0.0 Freq 256 Phase 128 3-PLANE 3 Localizer Unswap Phase Correction Gradient Echo Imaging Options Seq, Fast Recon All Images 3 Localizer Pause / SCIC

More information

Advanced Imaging Trajectories

Advanced Imaging Trajectories Advanced Imaging Trajectories Cartesian EPI Spiral Radial Projection 1 Radial and Projection Imaging Sample spokes Radial out : from k=0 to kmax Projection: from -kmax to kmax Trajectory design considerations

More information

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD MRI When to use What sequences Govind Chavhan, MD Assistant Professor and Staff Radiologist The Hospital For Sick Children, Toronto Planning Acquisition Post processing Interpretation Patient history and

More information

Applications Guide for Interleaved

Applications Guide for Interleaved Applications Guide for Interleaved rephase/dephase MRAV Authors: Yongquan Ye, Ph.D. Dongmei Wu, MS. Tested MAGNETOM Systems : 7TZ, TRIO a Tim System, Verio MR B15A (N4_VB15A_LATEST_20070519) MR B17A (N4_VB17A_LATEST_20090307_P8)

More information

Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories

Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories by Antonis Matakos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Desmond T.B. Yeo 1,2, Jeffery A. Fessler 2, and Boklye Kim 1 1 Department of Radiology, University of

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

2D spatially selective excitation pulse design and the artifact evaluation

2D spatially selective excitation pulse design and the artifact evaluation EE 591 Project 2D spatially selective excitation pulse design and the artifact evaluation 12/08/2004 Zungho Zun Two-dimensional spatially selective excitation is used to excite a volume such as pencil

More information

SIEMENS MAGNETOM Skyra syngo MR D13

SIEMENS MAGNETOM Skyra syngo MR D13 Page 1 of 8 SIEMENS MAGNETOM Skyra syngo MR D13 \\USER\CIND\StudyProtocols\PTSA\*dm_ep2d_mono70_b0_p2_iso2.0 TA:1:05 PAT:2 Voxel size:2.0 2.0 2.0 mm Rel. SNR:1.00 :epse Properties Routine Prio Recon Load

More information

Computational Medical Imaging Analysis

Computational Medical Imaging Analysis Computational Medical Imaging Analysis Chapter 2: Image Acquisition Systems Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky

More information

Lucy Phantom MR Grid Evaluation

Lucy Phantom MR Grid Evaluation Lucy Phantom MR Grid Evaluation Anil Sethi, PhD Loyola University Medical Center, Maywood, IL 60153 November 2015 I. Introduction: The MR distortion grid, used as an insert with Lucy 3D QA phantom, is

More information

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004 Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 24 1 Alec Chi-Wah Wong Department of Electrical Engineering University of Southern California 374 McClintock

More information

Fast methods for magnetic resonance angiography (MRA)

Fast methods for magnetic resonance angiography (MRA) Fast methods for magnetic resonance angiography (MRA) Bahareh Vafadar Department of Electrical and Computer Engineering A thesis presented for the degree of Doctor of Philosophy University of Canterbury,

More information

surface Image reconstruction: 2D Fourier Transform

surface Image reconstruction: 2D Fourier Transform 2/1/217 Chapter 2-3 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

University of Cape Town

University of Cape Town Development of a 3D radial MR Imaging sequence to be used for (self) navigation during the scanning of the fetal brain in utero by Leah Morgan Thesis presented for the degree of Master of Science June

More information

Philips MRI Protocol Dump Created on Comment Software Stream

Philips MRI Protocol Dump Created on Comment Software Stream Page 1 of 5 Philips MRI Protocol Dump Created on 2/17/2011 4:11:01 PM Comment Created by ExamCard_to_XML with inputs: "J:\ADNI GO - ADNI 2 Phantom5.ExamCard" on system (BU SCHOOL OF MEDICINE :: 192.168.71.10)

More information

New Technology Allows Multiple Image Contrasts in a Single Scan

New Technology Allows Multiple Image Contrasts in a Single Scan These images were acquired with an investigational device. PD T2 T2 FLAIR T1 MAP T1 FLAIR PSIR T1 New Technology Allows Multiple Image Contrasts in a Single Scan MR exams can be time consuming. A typical

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5

2. Creating Field Maps Using the Field Map GUI (Version 2.0) in SPM5 1. Introduction This manual describes how to use the Field Map Toolbox Version 2.0 for creating unwrapped field maps that can be used to do geometric distortion correction of EPI images in SPM5. 1. 1.

More information

Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging

Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging Correction for EPI Distortions Using Multi-Echo Gradient-Echo Imaging Nan-kuei Chen and Alice M. Wyrwicz* Magnetic Resonance in Medicine 41:1206 1213 (1999) A novel and effective technique is described

More information

Orthopedic MRI Protocols. Philips Panorama HFO

Orthopedic MRI Protocols. Philips Panorama HFO Orthopedic MRI Protocols Philips Panorama HFO 1 2 Prepared in collaboration with Dr. John F. Feller, Medical Director of Desert Medical Imaging, Palm Springs, CA. Desert Medical Imaging will provide the

More information

Spatially selective RF excitation using k-space analysis

Spatially selective RF excitation using k-space analysis Spatially selective RF excitation using k-space analysis Dimitrios Pantazis a, a Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089-2564 Abstract This project

More information

SIEMENS MAGNETOM TrioTim syngo MR B17

SIEMENS MAGNETOM TrioTim syngo MR B17 \\USER\KNARRGROUP\MultiBand\LavretskyMultiBand\trufi localizer 3-plane TA: 5.1 s PAT: Voxel size: 1.2 1.2 5. Rel. SNR: 1.00 SIEMENS: trufi Load to stamp Slice group 1 Slices 1 Dist. factor 20 % Phase enc.

More information

NUS: non-uniform sampling

NUS: non-uniform sampling FMP, 10.10.2012 2/48 NMR-spectroscopy uses the nuclear spin that can be thought of as a mixture between gyroscope and magnet 3/48 The frequency of the rotation of the spin in a magnetic field is what we

More information

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Daniel B. Rowe Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm L.P. Panych 1,3, B. Madore 1,3, W.S. Hoge 1,3, R.V. Mulkern 2,3 1 Brigham and

More information

Non-Cartesian Parallel Magnetic Resonance Imaging

Non-Cartesian Parallel Magnetic Resonance Imaging Non-Cartesian Parallel Magnetic Resonance Imaging Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Robin Heidemann

More information

Compressed Sensing And Joint Acquisition Techniques In Mri

Compressed Sensing And Joint Acquisition Techniques In Mri Wayne State University Wayne State University Theses 1-1-2013 Compressed Sensing And Joint Acquisition Techniques In Mri Rouhollah Hamtaei Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

More information

Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging

Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging by Amanda K. Funai A dissertation submitted in partial fulfillment of the requirements

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

EE225E/BIOE265 Spring 2011 Principles of MRI. Assignment 5. Solutions

EE225E/BIOE265 Spring 2011 Principles of MRI. Assignment 5. Solutions EE225E/BIOE265 Spring 211 Principles of MRI Miki Lustig Handout Assignment 5 Solutions 1. Matlab Exercise: 2DFT Pulse sequence design. In this assignment we will write functions to design a 2DFT pulse

More information

The SIMRI project A versatile and interactive MRI simulator *

The SIMRI project A versatile and interactive MRI simulator * COST B21 Meeting, Lodz, 6-9 Oct. 2005 The SIMRI project A versatile and interactive MRI simulator * H. Benoit-Cattin 1, G. Collewet 2, B. Belaroussi 1, H. Saint-Jalmes 3, C. Odet 1 1 CREATIS, UMR CNRS

More information

Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction

Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction Removal of EPI Nyquist Ghost Artifacts With Two- Dimensional Phase Correction Nan-kuei Chen 1,5 and Alice M. Wyrwicz 4 * Magnetic Resonance in Medicine 51:147 153 (004) Odd even echo inconsistencies result

More information

General and Efficient Super-Resolution Method for Multi-slice MRI

General and Efficient Super-Resolution Method for Multi-slice MRI General and Efficient Super-Resolution Method for Multi-slice MRI D.H.J. Poot 1,2,V.VanMeir 2, and J. Sijbers 2 1 BIGR, Erasmus Medical Center, Rotterdam 2 Visionlab, University of Antwerp, Antwerp Abstract.

More information

MR Advance Techniques. Vascular Imaging. Class III

MR Advance Techniques. Vascular Imaging. Class III MR Advance Techniques Vascular Imaging Class III 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

IMAGE reconstruction in conventional magnetic resonance

IMAGE reconstruction in conventional magnetic resonance IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 3, MARCH 2005 325 Conjugate Phase MRI Reconstruction With Spatially Variant Sample Density Correction Douglas C. Noll*, Member, IEEE, Jeffrey A. Fessler,

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Multichannel Technology & Parallel Imaging Nathan Yanasak, Ph.D. Jerry Allison Ph.D. Tom Lavin, B.S. Department of Radiology Medical College of Georgia References: 1) The Physics of

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) C. A. Bouman: Digital Image Processing - January 12, 215 1 Magnetic Resonance Imaging (MRI) Can be very high resolution No radiation exposure Very flexible and programable Tends to be expensive, noisy,

More information

Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques for fmri

Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques for fmri Motion Robust Magnetic Susceptibility and Field Inhomogeneity Estimation Using Regularized Image Restoration Techniques for fmri Desmond Tec Beng Yeo 1,, Jeffrey A. Fessler 1,, and Bolye Kim 1 1 Department

More information

SIEMENS MAGNETOM Avanto syngo MR B15

SIEMENS MAGNETOM Avanto syngo MR B15 \\USER\INVESTIGATORS\Ravi\ADNI-phantom\QC Phantom-Localizer TA: 0:10 PAT: Voxel size: 1.9 1.5 8.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer

More information

We have proposed a new method of image reconstruction in EIT (Electrical Impedance

We have proposed a new method of image reconstruction in EIT (Electrical Impedance Impedance tomography using internal current density distribution measured by nuclear magnetic resonance Eung Je Woo, Soo Yeol Lee, Chi Woong Mun Kon Kuk University, Department of Biomedical Engineering

More information

fmri Image Preprocessing

fmri Image Preprocessing fmri Image Preprocessing Rick Hoge, Ph.D. Laboratoire de neuroimagerie vasculaire (LINeV) Centre de recherche de l institut universitaire de gériatrie de Montréal, Université de Montréal Outline Motion

More information

SIEMENS MAGNETOM Verio syngo MR B15V

SIEMENS MAGNETOM Verio syngo MR B15V \\USER\ZAHID_RESEARCH\MS\No Name\3D SWI TA: 6:39 PAT: 2 Voxel size: 1.0 0.5 2.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer Inline movie Auto

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING Mark Steven Lawton Master of Engineering Thesis Lawrence Berkeley Laboratory University of California Berkeley, California

More information

ADNI, ADNI_QH, SURVEY. Geometry. connection

ADNI, ADNI_QH, SURVEY. Geometry. connection ADNI, ADNI_QH, SURVEY Geometry Coil selection = Head connection = d Multi coil Homogeneity correction ne FOV (mm) = 250.00 RFOV (%) = 100.00 Foldover suppression Matrix scan = 256 reconstruction = 256

More information

Magnetic Resonance Elastography (MRE) of Liver Disease

Magnetic Resonance Elastography (MRE) of Liver Disease Magnetic Resonance Elastography (MRE) of Liver Disease Authored by: Jennifer Dolan Fox, PhD VirtualScopics Inc. jennifer_fox@virtualscopics.com 1-585-249-6231 1. Overview of MRE Imaging MRE is a magnetic

More information

3D3C & 2D3D Velocity Measurements Using Magnetic Resonance Velocimetry

3D3C & 2D3D Velocity Measurements Using Magnetic Resonance Velocimetry 3D3C & 2D3D Velocity Measurements Using Magnetic Resonance Velocimetry Sven Grundmann Center of Smart Interfaces Technische Universität Darmstadt Flughafenstrasse 19 64347 Griesheim grundmann@csi-tu-darmstadt.de

More information

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For?

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Nathan Yanasak, Ph.D. Chair, AAPM TG118 Department of Radiology Georgia Regents University Overview Phased-array coils

More information

Partial k-space Reconstruction

Partial k-space Reconstruction Chapter 2 Partial k-space Reconstruction 2.1 Motivation for Partial k- Space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position, and hence

More information