Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Size: px
Start display at page:

Download "Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE"

Transcription

1 MRES Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation and Zero Filling k-space Interpolation Elliptical filtering VIBE Summary 1/18

2 Review In 7004, module 2, k-space was introduced, which has some unique properties. By taking advantage of these properties, the acquisition time of a sequence can be reduced, or the echo time, or it can be used to improve image quality in single-shot methods. In 7005, module 1, single shot methods like EPI and SS-FSE were discussed. They are both prone to issues if the echo train length increases in time relative to the T 2 * or T 2 decay curve. 2/18

3 K-Space Review The raw data that is induced in the receiver coil is described as being in "k-space". It contains all the frequency and phase information necessary to reconstruct an image, after inverse Fourier Transform. In Cartesian imaging, the centre line of k-space is acquired where there is no phase encoding gradient (ky=0), and the centre of the echo is the centre of kx (kx=0). Figure 4.1: 3D representation of k-space. The central area holds all of the signal or low frequency information, while the outside of k-space contains the noise plus high frequency or edge information. These areas can be reconstructed separately as in Figure /18

4 Figure 4.2: Reconstruction of only the blue portion of k-space is on the bottom left, and just the outside or red frame of k-space is reconstructed on the bottom right. This is a very important feature when thinking of increasing speed for temporal resolution, which will be covered in more depth in Module 5. 4/18

5 K-space Symmetry During quadrature detection, two signals (real and imaginary) are obtained. These are a cosine and sine signal (Figure 4.3). One portion of the signal is symmetric about the k = 0 point, and the other is anti-symmetric, its amplitude at k=-m is equal and opposite that at k=m. This is also referred to as conjugate symmetry. In quadrature detection, the value at k(m,n) in k-space is A + ib and k(-m,n) is A - ib or the complex conjugate. (A is the real signal and B is the imaginary signal) Figure 4.3: The cosine and sine waves generated by signal detected from two receivers, 90 out of sync. If only the data in the positive portion of k-space is collected, it is a simple task to reconstruct the data for the negative k values. If the object has no phase information, then only half of k-space needs to be acquired, and the other half of k-space is calculated. In practice, the symmetry is not perfect, due to phase fluctuations introduced by B 0 inhomogeneity, motion, or T 2 decay. This means that more than half of k-space needs to be sampled to accurately calculate the missing part of k-space and avoid reconstruction artefacts. 5/18

6 Partial/Fractional Echo Collecting a partial echo means only acquiring part of the k x values (See Figure 4.4 for an example of a half-echo). This is done by reducing the readout dephasing gradient so the centre of the echo starts sooner than normal. For a half echo, there is no dephasing gradient (Figure 4.5a). Figure 4.4: Half of k-space is acquired so that each echo starts immediately, from the centre of k-space. In a conventional sequence, this reduces the echo time. For multiple echo or single shot sequences, the effective echo time is slightly reduced. The impact is not as big as for a sequence like EPI, as each alternate line still starts from the edge of k-space and travels back to the centre (Figure 4.5 b). There is a reduction in echo spacing however, which reduces the geometric distortions in EPI, and reduces blurring in ssfse. The acquisition time is not normally reduced, but might be slightly reduced if reducing the TE allows a shorter TR. Since only half of Nx is actually acquired, the readout gradient is either half as long with the same gradient amplitude, or uses a lower gradient amplitude and the same, or a longer time. The later possibility affects the receiver bandwidth, and can result in a larger water-fat shift. This can be useful when characterising the contribution of fat and water using DIXON or IDEAL sequences. 6/18

7 a) b) Figure 4.5: a) The readout dephasing is removed in conventional imaging and the echo signal starts from the maximum point. b) EPI sampling of k-space with partial echo collection. 7/18

8 Half / Partial Fourier Half or partial Fourier is where part of the k y dimension in k-space is sampled and the rest calculated through conjugate synthesis (an example of half Fourier is given in Figure 4.6). Figure 4.6: Half Fourier sampling of k-space, where only half of k y points are covered. In conventional imaging and FSE this is achieved by using only positive phase encoding gradients, starting with zero phase. In EPI there is only a frequency pre-phase gradient, rather than pre-phase gradients in both frequency and phase (Figure 4.7). Figure 4.7: The effective echo time is reduced in partial Fourier EPI, and the echo train length is halved, resulting in less geometric distortions. In a 3D method, partial Fourier can be applied along either k y or k z directions, as k-space symmetry extends to the k z direction as well. 8/18

9 HASTE HASTE, or half Fourier acquisition single shot turbo spin echo, is a single shot FSE method, which only acquires half of the k y lines of k-space and uses half Fourier method to calculate the other half. It is takes half the acquisition time of a ssfse with the same resolution. The advantage of HASTE over ssfse is that the echo train length is half as long. There is less T 2 decay during sampling, and blurring in the images should be less. Although there can be other artefacts due to the conjugate synthesis reconstruction. a) b) Figure 4.8: a) Pulse sequence diagram of HASTE, and b) the corresponding sampling in k-space. The HASTE sequence can be segmented, so that the desired half of k-space is collected in several repetitions. The images are heavily T 2 weighted, and have a great sensitivity for fluid detection. Motion artefacts are minimized due to the speed of acquisition. HASTE is primarily used for breath-hold imaging. 9/18

10 Figure 4.9: Fat suppressed HASTE image of the liver at 3T. Recommended Reading: Mirrowitz SA, et al. Rapid acquisition spin-echo (RASE) MR imaging: a new technique for reduction of artifacts and acquisition time. Radiology, 175: , Kiefer B, et al. Image acquisition in a second with half-fourier acquisition single shot turbo spin-echo. J Magn Reson Imaging, 4[suppl P]:86-87, /18

11 Conditions for successful reconstruction Conjugate synthesis requires a few conditions to work properly. The user must not be interested in any phase deviations along the image, due to local field inhomogeneities or motion. Secondly, any phase variations must be small, otherwise the reconstruction will result in ghost-like artefacts from locations with large phase shifts. Raw data must be well-centred in k-space for the reflection property to be accurate. This requirement is achieved by a combination of hardware and software engineering. In general, greater than half of k-space is usually sampled as it creates less artefacts, and the centre of k-space holds most of the signal and contrast. The reconstruction of partial k-space images can be improved by using phased constrained reconstruction, which corrects the phase errors. The incidental phase variations that cause problems with the conjugate synthesis calculation can be removed in a number of ways: 1. Homodyne Detection A reference image can be generated from the original image by passing it through a low-pass filter. 2. POCS: projection onto convex set Iteratively generates the missing data and corrects for any k-space offset. 3. Margosian: A low resolution phase map can be generated from a central portion of k-space. 11/18

12 Interpolation and Zero Filling Interpolation of MR image data is possible, such that the final resolution of the image is higher than the acquisition matrix. There are two predominant methods to perform this; the first is zero-filling in k-space. In order to achieve this, the centre of k-space (lower frequency information) is sampled, and the high spatial frequency information is not acquired, but "zero-filled" (Figure 4.10). This means the missing data in the k-space grid is substituted with zeroes before the inverse Fourier Transform or reconstruction. Figure 4.10: Showing zero filling in k-space prior to Fourier transform for a Cartesian sequence. The second method is to perform an image interpolation, where you use the original pixel intensities to determine the value in your new smaller pixels. There are several methods of doing this (e.g. sinc, trilinear, cubic spline). Sinc interpolation in the image gives a similar result to zero-filling the raw k-space data, but can take more time. The sinc interpolation function is sinc z = (sin z)/z where z can be any complex number, including zero. a) 12/18

13 b) Figure 4.11:The result of image interpolation upon a) a low resolution image to create an image with twice the acquired resolution b). 13/18

14 k-space Interpolation Both of these approaches are different from conjugate synthesis discussed above, as the edge of k-space is not acquired on either positive or negative sides, so you can't reflect the data to calculate the missing components. You are either simply replacing with zero in the k-space domain for image frequencies that are not present, or artificially increasing the resolution in the image domain. Too much zero-filling or interpolation will lead to blurred images. You can also interpolate the raw k-space data if you have a non-cartesian sequence. A Fast Fourier Transform (FFT) requires k-space data to be regularly positioned on a grid in k-space. For example, in the case of a RADIAL sequence, the nearby radial points can be used to interpolate what the gridded or Cartesian k-space points should be (See Figure 4.12). Figure 4.12: Showing interpolation of k-space points to create Cartesian grid points from a radial sequence, prior to Fast Fourier Transform (FFT). Brighter areas are where the radial points overlap with the Cartesian Grid, and darker purple is where the data will undergo some type of weighting or interpolation to calculate what the value should be. The black edges of k-space are zero-filled. 14/18

15 Elliptical filtering Elliptical filtering is one way of improving the signal to noise, while potentially decreasing your acquisition time. A central circle of k-space is acquired and the corners are not. Since most of the noise is found in the edges of k-space, this increases the SNR. Some of the high-frequency or edge information is still being acquired, so the image is sharper than where none of the edges are sampled. This type of coverage also saves acquisition time. In the case of single shot methods like EPI, either the gradient amplitude or timing of the readout gradients are modified to achieve the coverage, and it will be 27% faster compared to acquiring full coverage of k-space. The timing between consecutive points in the phase direction changes, so there's no longer a consistent phase bandwidth. For example, the centre still takes a full echo spacing between points, but the edges of k-space there is only a small time difference between points. This means that off-resonance effects will not be a sharp shift in the phase direction, but will appear blurred. Figure 4.13: Example of EPI sequence using a circular filter. The corners of k-space are not acquired 15/18

16 VIBE VIBE or volume interpolated breath-hold examination (also known by other manufacturers as LAVA-XV, THRIVE, or TIGRE), is a 3D spoiled gradient echo method that acquires only the central portion of k z (Figure 4.14). Figure 4.14: Partial acquisition of the z dimension in k-space in VIBE. The acquisition time is greatly reduced as the number of repetitions to complete the second phase encoding direction is reduced. The image is reconstructed to a larger resolution by filling in the missing lines in k y -k z with zeroes.that is, the acquisition size could be 80x40 (Ny x Nz), but the final reconstruction size is 80x80. There is a loss in SNR due to the smaller acquisition size. VIBE provides a fast, 3D, T 1 -weighting method that is usually used for abdominal breath-hold imaging. It normally employs some type of fat saturation. a) b) 16/18

17 Figure 4.15: VIBE images of a) the wrist and b) the abdomen, acquired at 3T. Reference: Rofsky NM, Lee VS, Laub G, Pollack MA, Krinsky GA, Thomasson D, et al. Abdominal MR imaging with a volumetric interpolated breth-hold examination. Radiology 1999;212: /18

18 Summary The symmetry and features of k-space allow for improved acquisition speed and signal to noise. Even an already rapid sequence can be increased by a reduced sampling of k-space. Conjugate synthesis, zero-filling, and interpolation can all be used to increase acquisition speed and reduce some errors. For example, HASTE is a preferred method to single shot FSE as only half the echo train length needs to be acquired and it is not as prone to blurring. Zero-filling and interpolation become very important in 3-dimensional methods like VIBE, in order to allow rapid sampling. In the next module we will continue with our discussion of k-space undersampling, but in order to increase temporal resolution for sequences that are designed to follow an event over time. Review Questions What features of k-space allow us to under sample and image faster? How does the sequence HASTE work? What are its advantages and disadvantages? How does the sequence VIBE work? What are its advantages and disadvantages? What is elliptical filtering? What are its advantages and disadvantages? What is zero filling? What are its advantages and disadvantages? What is interpolation? What are its advantages and disadvantages? When would you use either elliptical filtering, zero filling or interpolation compared to full acquisition? When would you use any one technique compared to the others? 18/18

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution.

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution. MRES 7005 - Fast Imaging Techniques Module 5: Dynamic Imaging and Phase Sharing (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review Improving Temporal Resolution True-FISP (I) True-FISP (II) Keyhole

More information

Partial k-space Reconstruction

Partial k-space Reconstruction Chapter 2 Partial k-space Reconstruction 2.1 Motivation for Partial k- Space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position, and hence

More information

Partial k-space Recconstruction

Partial k-space Recconstruction Partial k-space Recconstruction John Pauly September 29, 2005 1 Motivation for Partial k-space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position,

More information

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2

Fast Imaging UCLA. Class Business. Class Business. Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs. Tuesday (3/7) from 6-9pm HW #1 HW #2 Fast Imaging Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs Class Business Tuesday (3/7) from 6-9pm 6:00-7:30pm Groups Avanto Sara Said, Yara Azar, April Pan Skyra Timothy Marcum, Diana Lopez,

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Exam 8N080 - Introduction MRI

Exam 8N080 - Introduction MRI Exam 8N080 - Introduction MRI Friday January 23 rd 2015, 13.30-16.30h For this exam you may use an ordinary calculator (not a graphical one). In total there are 6 assignments and a total of 65 points can

More information

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 8 Solutions 1. Nishimura 7.1 P)jc%z 5 ivcr3. 1. I Due Wednesday April 10th, 2013 (a Scrhon5 R2iwd b 0 ZOms Xn,s r cx > qs 4-4 8ni6 4

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Multichannel Technology & Parallel Imaging Nathan Yanasak, Ph.D. Jerry Allison Ph.D. Tom Lavin, B.S. Department of Radiology Medical College of Georgia References: 1) The Physics of

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Slice interleaving Sequential, Odd/even, bit-reversed Arbitrary Other considerations:

More information

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison

MRI Imaging Options. Frank R. Korosec, Ph.D. Departments of Radiology and Medical Physics University of Wisconsin Madison MRI Imaging Options Frank R. Korosec, Ph.D. Departments of Radiolog and Medical Phsics Universit of Wisconsin Madison f.korosec@hosp.wisc.edu As MR imaging becomes more developed, more imaging options

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Timing: cine, gating, triggering Slice interleaving Sequential, Odd/even, bit-reversed

More information

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences PengHu@mednet.ucla.edu 310-267-6838 MRI... MRI has low

More information

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD

MRI. When to use What sequences. Outline 2012/09/19. Sequence: Definition. Basic Principles: Step 2. Basic Principles: Step 1. Govind Chavhan, MD MRI When to use What sequences Govind Chavhan, MD Assistant Professor and Staff Radiologist The Hospital For Sick Children, Toronto Planning Acquisition Post processing Interpretation Patient history and

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

Advanced Imaging Trajectories

Advanced Imaging Trajectories Advanced Imaging Trajectories Cartesian EPI Spiral Radial Projection 1 Radial and Projection Imaging Sample spokes Radial out : from k=0 to kmax Projection: from -kmax to kmax Trajectory design considerations

More information

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street MRI is located in the sub basement of CC wing. From Queen or Victoria, follow the baby blue arrows and ride the CC south

More information

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis Clinical Importance Rapid cardiovascular flow quantitation using sliceselective Fourier velocity encoding with spiral readouts Valve disease affects 10% of patients with heart disease in the U.S. Most

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

surface Image reconstruction: 2D Fourier Transform

surface Image reconstruction: 2D Fourier Transform 2/1/217 Chapter 2-3 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005 Field Maps John Pauly October 5, 25 The acquisition and reconstruction of frequency, or field, maps is important for both the acquisition of MRI data, and for its reconstruction. Many of the imaging methods

More information

Motion Artifacts and Suppression in MRI At a Glance

Motion Artifacts and Suppression in MRI At a Glance Motion Artifacts and Suppression in MRI At a Glance Xiaodong Zhong, PhD MR R&D Collaborations Siemens Healthcare MRI Motion Artifacts and Suppression At a Glance Outline Background Physics Common Motion

More information

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

Parallel Imaging. Marcin.

Parallel Imaging. Marcin. Parallel Imaging Marcin m.jankiewicz@gmail.com Parallel Imaging initial thoughts Over the last 15 years, great progress in the development of pmri methods has taken place, thereby producing a multitude

More information

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004 Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 24 1 Alec Chi-Wah Wong Department of Electrical Engineering University of Southern California 374 McClintock

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm L.P. Panych 1,3, B. Madore 1,3, W.S. Hoge 1,3, R.V. Mulkern 2,3 1 Brigham and

More information

SIEMENS MAGNETOM Avanto syngo MR B15

SIEMENS MAGNETOM Avanto syngo MR B15 \\USER\INVESTIGATORS\Ravi\ADNI-Subject\Localizer TA: 0:10 PAT: Voxel size: 1.9 1.5 8.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer Inline movie

More information

A Virtual MR Scanner for Education

A Virtual MR Scanner for Education A Virtual MR Scanner for Education Hackländer T, Schalla C, Trümper A, Mertens H, Hiltner J, Cramer BM Hospitals of the University Witten/Herdecke, Department of Radiology Wuppertal, Germany Purpose A

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Computational Aspects of MRI

Computational Aspects of MRI David Atkinson Philip Batchelor David Larkman Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues.

More information

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health

MRI image formation 8/3/2016. Disclosure. Outlines. Chen Lin, PhD DABR 3. Indiana University School of Medicine and Indiana University Health MRI image formation Indiana University School of Medicine and Indiana University Health Disclosure No conflict of interest for this presentation 2 Outlines Data acquisition Spatial (Slice/Slab) selection

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

K-Space Trajectories and Spiral Scan

K-Space Trajectories and Spiral Scan K-Space and Spiral Scan Presented by: Novena Rangwala nrangw2@uic.edu 1 Outline K-space Gridding Reconstruction Features of Spiral Sampling Pulse Sequences Mathematical Basis of Spiral Scanning Variations

More information

MR Advance Techniques. Vascular Imaging. Class III

MR Advance Techniques. Vascular Imaging. Class III MR Advance Techniques Vascular Imaging Class III 1 Vascular Imaging There are several methods that can be used to evaluate the cardiovascular systems with the use of MRI. MRI will aloud to evaluate morphology

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Super-resolution Reconstruction of Fetal Brain MRI

Super-resolution Reconstruction of Fetal Brain MRI Super-resolution Reconstruction of Fetal Brain MRI Ali Gholipour and Simon K. Warfield Computational Radiology Laboratory Children s Hospital Boston, Harvard Medical School Worshop on Image Analysis for

More information

A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI

A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI Denis Chaimow 1 and Amir Shmuel 1,2 1 Centre for Magnetic Resonance Research

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

Compressed Sensing Reconstructions for Dynamic Contrast Enhanced MRI

Compressed Sensing Reconstructions for Dynamic Contrast Enhanced MRI 1 Compressed Sensing Reconstructions for Dynamic Contrast Enhanced MRI Kevin T. Looby klooby@stanford.edu ABSTRACT The temporal resolution necessary for dynamic contrast enhanced (DCE) magnetic resonance

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Collaborative Sparsity and Compressive MRI

Collaborative Sparsity and Compressive MRI Modeling and Computation Seminar February 14, 2013 Table of Contents 1 T2 Estimation 2 Undersampling in MRI 3 Compressed Sensing 4 Model-Based Approach 5 From L1 to L0 6 Spatially Adaptive Sparsity MRI

More information

Midterm Review

Midterm Review Midterm Review - 2017 EE369B Concepts Noise Simulations with Bloch Matrices, EPG Gradient Echo Imaging 1 About the Midterm Monday Oct 30, 2017. CCSR 4107 Up to end of C2 1. Write your name legibly on this

More information

SIEMENS MAGNETOM Avanto syngo MR B15

SIEMENS MAGNETOM Avanto syngo MR B15 \\USER\INVESTIGATORS\Ravi\ADNI-phantom\QC Phantom-Localizer TA: 0:10 PAT: Voxel size: 1.9 1.5 8.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

IMAGE reconstruction in conventional magnetic resonance

IMAGE reconstruction in conventional magnetic resonance IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 3, MARCH 2005 325 Conjugate Phase MRI Reconstruction With Spatially Variant Sample Density Correction Douglas C. Noll*, Member, IEEE, Jeffrey A. Fessler,

More information

Breast MRI Accreditation Program Clinical Image Quality Guide

Breast MRI Accreditation Program Clinical Image Quality Guide Breast MRI Accreditation Program Clinical Image Quality Guide Introduction This document provides guidance on breast MRI clinical image quality and describes the criteria used by the ACR Breast MRI Accreditation

More information

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images Hamed Pirsiavash¹, Mohammad Soleymani², Gholam-Ali Hossein-Zadeh³ ¹Department of electrical engineering,

More information

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II BMSC-GA 4428 - Practical Magnetic Resonance Imaging II 6 credits Course director: Ricardo Otazo, PhD Course description: This course is a practical introduction to image reconstruction, image analysis

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Outline High Spectral and Spatial Resolution MR Imaging (HiSS) What it is How to do it Ways to use it HiSS for Radiation

More information

ksa 400 Growth Rate Analysis Routines

ksa 400 Growth Rate Analysis Routines k-space Associates, Inc., 2182 Bishop Circle East, Dexter, MI 48130 USA ksa 400 Growth Rate Analysis Routines Table of Contents ksa 400 Growth Rate Analysis Routines... 2 1. Introduction... 2 1.1. Scan

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

Scan Acceleration with Rapid Gradient-Echo

Scan Acceleration with Rapid Gradient-Echo Scan Acceleration with Rapid Gradient-Echo Hsiao-Wen Chung ( 鍾孝文 ), Ph.D., Professor Dept. Electrical Engineering, National Taiwan Univ. Dept. Radiology, Tri-Service General Hospital 1 of 214 The Need

More information

Limited view X-ray CT for dimensional analysis

Limited view X-ray CT for dimensional analysis Limited view X-ray CT for dimensional analysis G. A. JONES ( GLENN.JONES@IMPERIAL.AC.UK ) P. HUTHWAITE ( P.HUTHWAITE@IMPERIAL.AC.UK ) NON-DESTRUCTIVE EVALUATION GROUP 1 Outline of talk Industrial X-ray

More information

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For?

Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Parallel Magnetic Resonance Imaging (pmri): How Does it Work, and What is it Good For? Nathan Yanasak, Ph.D. Chair, AAPM TG118 Department of Radiology Georgia Regents University Overview Phased-array coils

More information

An Introduction to Image Reconstruction, Processing, and their Effects in FMRI

An Introduction to Image Reconstruction, Processing, and their Effects in FMRI An Introduction to Image Reconstruction, Processing, and their Effects in FMRI Daniel B. Rowe Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette University

More information

Compressed Sensing for Rapid MR Imaging

Compressed Sensing for Rapid MR Imaging Compressed Sensing for Rapid Imaging Michael Lustig1, Juan Santos1, David Donoho2 and John Pauly1 1 Electrical Engineering Department, Stanford University 2 Statistics Department, Stanford University rapid

More information

Constrained Reconstruction of Sparse Cardiac MR DTI Data

Constrained Reconstruction of Sparse Cardiac MR DTI Data Constrained Reconstruction of Sparse Cardiac MR DTI Data Ganesh Adluru 1,3, Edward Hsu, and Edward V.R. DiBella,3 1 Electrical and Computer Engineering department, 50 S. Central Campus Dr., MEB, University

More information

SIEMENS MAGNETOM Verio syngo MR B17

SIEMENS MAGNETOM Verio syngo MR B17 \\USER\Dr. Behrmann\routine\Ilan\ep2d_bold_PMU_resting TA: 8:06 PAT: Voxel size: 3.03.03.0 mm Rel. SNR: 1.00 USER: ep2d_bold_pmu Properties Special sat. Prio Recon System Before measurement Body After

More information

ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2

ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2 ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2 Presented by Rahil Kothari PARTIAL FOURIER RECONSTRUCTION WHAT IS PARTIAL FOURIER RECONSTRUCTION? In Partial Fourier Reconstruction data is not collected symmetrically

More information

Siemens AG, Healthcare Sector. syngo MR D13 0. Supplement - Parameters and image text 0.

Siemens AG, Healthcare Sector. syngo MR D13 0. Supplement - Parameters and image text 0. Siemens AG, Healthcare Sector 0 0 n.a. English Cs2 syngo Neuro Operator MR-05014 630 05/2010 01 02 Informatik, Manual D11 Cape syngo MR D13 0.0 Supplement - Parameters and image text 0. syngo MR D13 0.

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/67 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

FMRI Pre-Processing and Model- Based Statistics

FMRI Pre-Processing and Model- Based Statistics FMRI Pre-Processing and Model- Based Statistics Brief intro to FMRI experiments and analysis FMRI pre-stats image processing Simple Single-Subject Statistics Multi-Level FMRI Analysis Advanced FMRI Analysis

More information

Computer Vision and Graphics (ee2031) Digital Image Processing I

Computer Vision and Graphics (ee2031) Digital Image Processing I Computer Vision and Graphics (ee203) Digital Image Processing I Dr John Collomosse J.Collomosse@surrey.ac.uk Centre for Vision, Speech and Signal Processing University of Surrey Learning Outcomes After

More information

University of Cape Town

University of Cape Town Development of a 3D radial MR Imaging sequence to be used for (self) navigation during the scanning of the fetal brain in utero by Leah Morgan Thesis presented for the degree of Master of Science June

More information

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals.

GE Healthcare CLINICAL GALLERY. Discovery * MR750w 3.0T. This brochure is intended for European healthcare professionals. GE Healthcare CLINICAL GALLERY Discovery * MR750w 3.0T This brochure is intended for European healthcare professionals. NEURO PROPELLER delivers high resolution, motion insensitive imaging in all planes.

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/60 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction

Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction Felix Lugauer 1,3, Jens Wetzl 1, Christoph Forman 2, Manuel Schneider 1, Berthold Kiefer

More information

Blind Sparse Motion MRI with Linear Subpixel Interpolation

Blind Sparse Motion MRI with Linear Subpixel Interpolation Blind Sparse Motion MRI with Linear Subpixel Interpolation Anita Möller, Marco Maaß, Alfred Mertins Institute for Signal Processing, University of Lübeck moeller@isip.uni-luebeck.de Abstract. Vital and

More information

New Technology Allows Multiple Image Contrasts in a Single Scan

New Technology Allows Multiple Image Contrasts in a Single Scan These images were acquired with an investigational device. PD T2 T2 FLAIR T1 MAP T1 FLAIR PSIR T1 New Technology Allows Multiple Image Contrasts in a Single Scan MR exams can be time consuming. A typical

More information

Plane Wave Imaging Using Phased Array Arno Volker 1

Plane Wave Imaging Using Phased Array Arno Volker 1 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16409 Plane Wave Imaging Using Phased Array

More information

Reconstruction of Images Distorted by Water Waves

Reconstruction of Images Distorted by Water Waves Reconstruction of Images Distorted by Water Waves Arturo Donate and Eraldo Ribeiro Computer Vision Group Outline of the talk Introduction Analysis Background Method Experiments Conclusions Future Work

More information

Imaging Notes, Part IV

Imaging Notes, Part IV BME 483 MRI Notes 34 page 1 Imaging Notes, Part IV Slice Selective Excitation The most common approach for dealing with the 3 rd (z) dimension is to use slice selective excitation. This is done by applying

More information

Dynamic Contrast enhanced MRA

Dynamic Contrast enhanced MRA Dynamic Contrast enhanced MRA Speaker: Yung-Chieh Chang Date : 106.07.22 Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan 1 Outline Basic and advanced principles of Diffusion

More information

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved

Computer Vision. Fourier Transform. 20 January Copyright by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved Van de Loosdrecht Machine Vision Computer Vision Fourier Transform 20 January 2017 Copyright 2001 2017 by NHL Hogeschool and Van de Loosdrecht Machine Vision BV All rights reserved j.van.de.loosdrecht@nhl.nl,

More information

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition

TOPICS 2/5/2006 8:17 PM. 2D Acquisition 3D Acquisition TOPICS 2/5/2006 8:17 PM 2D Acquisition 3D Acquisition 2D Acquisition Involves two main steps : Slice Selection Slice selection is accomplished by spatially saturating (single or multi slice imaging) or

More information

Phase Difference Reconstruction. Outline

Phase Difference Reconstruction. Outline Advanced MRI Phase Difference Reconstruction Faik Can MERAL Outline Introduction Quantitative Description Arctangent operation ATAN2 Phased-Array Multiple Coil Data Correction of Predictable Phase Errors

More information

Development of fast imaging techniques in MRI From the principle to the recent development

Development of fast imaging techniques in MRI From the principle to the recent development 980-8575 2-1 2012 10 13 Development of fast imaging techniques in MRI From the principle to the recent development Yoshio MACHIDA and Issei MORI Health Sciences, Tohoku University Graduate School of Medicine

More information

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube)

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Tu A12 15 High-Resolution Reflection FWI M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Summary We demonstrate reflection FWI on a less-than-ideal 3D narrow-azimuth

More information

Lucy Phantom MR Grid Evaluation

Lucy Phantom MR Grid Evaluation Lucy Phantom MR Grid Evaluation Anil Sethi, PhD Loyola University Medical Center, Maywood, IL 60153 November 2015 I. Introduction: The MR distortion grid, used as an insert with Lucy 3D QA phantom, is

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

8/11/2009. Common Areas of Motion Problem. Motion Compensation Techniques and Applications. Type of Motion. What s your problem

8/11/2009. Common Areas of Motion Problem. Motion Compensation Techniques and Applications. Type of Motion. What s your problem Common Areas of Motion Problem Motion Compensation Techniques and Applications Abdominal and cardiac imaging. Uncooperative patient, such as pediatric. Dynamic imaging and time series. Chen Lin, PhD Indiana

More information

The SIMRI project A versatile and interactive MRI simulator *

The SIMRI project A versatile and interactive MRI simulator * COST B21 Meeting, Lodz, 6-9 Oct. 2005 The SIMRI project A versatile and interactive MRI simulator * H. Benoit-Cattin 1, G. Collewet 2, B. Belaroussi 1, H. Saint-Jalmes 3, C. Odet 1 1 CREATIS, UMR CNRS

More information

Zigzag Sampling for Improved Parallel Imaging

Zigzag Sampling for Improved Parallel Imaging Magnetic Resonance in Medicine 60:474 478 (2008) Zigzag Sampling for Improved Parallel Imaging Felix A. Breuer, 1 * Hisamoto Moriguchi, 2 Nicole Seiberlich, 3 Martin Blaimer, 1 Peter M. Jakob, 1,3 Jeffrey

More information

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING Mark Steven Lawton Master of Engineering Thesis Lawrence Berkeley Laboratory University of California Berkeley, California

More information

General and Efficient Super-Resolution Method for Multi-slice MRI

General and Efficient Super-Resolution Method for Multi-slice MRI General and Efficient Super-Resolution Method for Multi-slice MRI D.H.J. Poot 1,2,V.VanMeir 2, and J. Sijbers 2 1 BIGR, Erasmus Medical Center, Rotterdam 2 Visionlab, University of Antwerp, Antwerp Abstract.

More information

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA)

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Magnetic Resonance in Medicine 53:981 985 (2005) Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Felix A. Breuer, 1 * Peter Kellman, 2 Mark A. Griswold, 1 and Peter M. Jakob 1 Current

More information

SIEMENS MAGNETOM Verio syngo MR B15V

SIEMENS MAGNETOM Verio syngo MR B15V \\USER\ZAHID_RESEARCH\MS\No Name\3D SWI TA: 6:39 PAT: 2 Voxel size: 1.0 0.5 2.0 mm Rel. SNR: 1.00 SIEMENS: gre Properties Prio Recon Before measurement After measurement Load to viewer Inline movie Auto

More information

Orthopedic MRI Protocols. Philips Panorama HFO

Orthopedic MRI Protocols. Philips Panorama HFO Orthopedic MRI Protocols Philips Panorama HFO 1 2 Prepared in collaboration with Dr. John F. Feller, Medical Director of Desert Medical Imaging, Palm Springs, CA. Desert Medical Imaging will provide the

More information

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ):

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ): (Anti)Aliasing and Image Manipulation for (y = 0; y < Size; y++) { for (x = 0; x < Size; x++) { Image[x][y] = 7 + 8 * sin((sqr(x Size) + SQR(y Size)) / 3.0); } } // Size = Size / ; Aliasing Can t draw

More information

SIEMENS MAGNETOM Skyra syngo MR D13

SIEMENS MAGNETOM Skyra syngo MR D13 Page 1 of 8 SIEMENS MAGNETOM Skyra syngo MR D13 \\USER\CIND\StudyProtocols\PTSA\*dm_ep2d_mono70_b0_p2_iso2.0 TA:1:05 PAT:2 Voxel size:2.0 2.0 2.0 mm Rel. SNR:1.00 :epse Properties Routine Prio Recon Load

More information