Ying Gao. May 18th, rd Annual PRIMES Conference. Depths of Posets Ordered by Refinement. Ying Gao. Mentored by Sergei Bernstein.

Size: px
Start display at page:

Download "Ying Gao. May 18th, rd Annual PRIMES Conference. Depths of Posets Ordered by Refinement. Ying Gao. Mentored by Sergei Bernstein."

Transcription

1 of of 3rd Annual PRIMES Conference May 18th, 2013

2 of Partially-ordered sets, or posets, are sets in which any two elements may be related by a binary relation.

3 of Partially-ordered sets, or posets, are sets in which any two elements may be related by a binary relation. For elements A, B, C of a poset, 1. A A (reflexivity); 2. If A B and B A, then A = B (anti-symmetry); 3. If A B and B C, then A C (transitivity).

4 of Partially-ordered sets, or posets, are sets in which any two elements may be related by a binary relation. For elements A, B, C of a poset, 1. A A (reflexivity); 2. If A B and B A, then A = B (anti-symmetry); 3. If A B and B C, then A C (transitivity). may be represented by Hasse diagrams, in which elements A and B are connected, with A below B, if A < B and there is no element C such that A < C < B.

5 of Examples The set of the first 6 natural numbers, ordered by divisibility.

6 of Examples The set of the first 6 natural numbers, ordered by divisibility. Hasse Diagrams

7 of Examples The set of subsets of {1, 2}, ordered by inclusion.

8 of Examples The set of subsets of {1, 2}, ordered by inclusion. Hasse Diagrams (1, 2) (1) (2) ( )

9 of Intervals An interval I = [A, B] of a poset includes all elements C such that A C B.

10 of Intervals An interval I = [A, B] of a poset includes all elements C such that A C B. Example The color blue represents the interval. F H C D E G A B An interval I = [A, G]

11 of Interval partitions of a poset In an interval partition, the poset is completely partitioned into non-overlapping intervals. Each element of the poset is in exactly one interval. Example F H G C D E A B An interval partition P

12 of Depth Definition The depth of an element X 0 in a poset is defined to be the maximum possible number of elements in a chain X 0 > X 1 > X 2 > > X n from X 0 to the bottom of the poset.

13 of Depth Definition The depth of an element X 0 in a poset is defined to be the maximum possible number of elements in a chain X 0 > X 1 > X 2 > > X n from X 0 to the bottom of the poset. We say that a level n contains all elements of depth n. Example F H G Level 4 Level 3 C D E Level 2 A B Level 1

14 of ndepth For an interval I, [I ] = max(depth[x ]) over all elements X in I. For I = [A, B], [I ] = depth[b]. F H C D E G A B Interval I = [A, G]. [I ] = depth[g] = 3.

15 of ndepth For a partition P of a poset, [P] = min([i ]) over all intervals I in P. Which interval in the partition has the least depth? F H C D E G A B [P] = [B, E] = 2.

16 of ndepth For a poset G, [G] = max([p]) over all possible partitions P of G. Which partition(s) of the poset have the greatest depth? H H F G F G C D E C D E A B A B = 2 = 3 [G] = 3.

17 of Past work Yinghui Wang: of a product of chains n k \ 0 is (n 1) k/2 Biro, Howard, Keller, Trotter, and Young For a poset B of the non-empty subsets of an n-element set ordered by inclusion, [B] n/2 We will study the properties of posets comprised of partitions of sets ordered by.

18 of Set-Partitions A partition of a set is the division of the set of distinct points into subsets. Every element of the set is partitioned into some subset, and no element is within two or more subsets. Examples Partitions of a 6-element set.

19 of It is possible to order partitions of a set by. A partition of a set P b is considered finer than another partition P a if all subsets within P b are within some subset in P a. If P b is finer than P a, P a is coarser than P b. Examples Right partition is finer than left partition

20 of of the ordering These posets depend solely on the size of the set that is partitioned Let G i denote a poset ordered by of all set partitions of the set with i elements except the empty partition, the partition of each element into a separate subset. Example G 3.

21 of Now that we know what a poset ordered by looks like... How do we find the of such a poset? First, we need a few tools.

22 of A rotation of a certain partition is any other partition that may be obtained by rotating the partition around a circle. A rotation of an interval is the interval formed by rotating each element of the interval the same number of times.

23 of A rotation of a certain partition is any other partition that may be obtained by rotating the partition around a circle. A rotation of an interval is the interval formed by rotating each element of the interval the same number of times. Examples

24 of of set partitions It is possible to group set partitions into classes based on the sizes of subsets in the set partitions. The class C = (S 1, S 2, S 3,..., S n ) with all S i positive integers and S 1 S 2 S 3... S n includes all partitions which consist of exactly n subsets of size S 1, S 2,..., S n. All rotations of a partition are in the same class as the partition.

25 of of set partitions It is possible to group set partitions into classes based on the sizes of subsets in the set partitions. The class C = (S 1, S 2, S 3,..., S n ) with all S i positive integers and S 1 S 2 S 3... S n includes all partitions which consist of exactly n subsets of size S 1, S 2,..., S n. All rotations of a partition are in the same class as the partition. Examples

26 of [G 5 ] A B C (A) x1 [5] (B) x5 [4,1] (C) x10 [3,2] D F E (D) x15 [2,2,1] (E) x10 [3,1,1] (F) x10 [2,1,1,1] Poset of classes in G 5

27 of [G 5 ] In order for it to be true that [G 5 ] = L... It must be impossible to partition the poset so that all intervals I have [I ] > L It must be possible make a partiton P of G 5 such that each interval I in P has [I ] L

28 of [G 5 ] In order for it to be true that [G 5 ] = L... It must be impossible to partition the poset so that all intervals I have [I ] > L It must be possible make a partiton P of G 5 such that each interval I in P has [I ] L Lemma [G 5 ] < 4.

29 of [G 5 ] A B C (A) x1 [5] (B) x5 [4,1] (C) x10 [3,2] D F E (D) x15 [2,2,1] (E) x10 [3,1,1] (F) x10 [2,1,1,1] Poset of classes in G 5

30 of [G 5 ] We attempt to show that [G 5 ] = 3 by constructing a partition P of G 5 with 3. It is possible to make a partition P with ten non-overlapping intervals of the form [F, C] and five non-overlapping intervals of the form [D, B], as well as an interval [A, A], which will completely partition the poset into intervals of 3 or greater. Theorem The of G 5 is 3.

31 of [G 5 ] C C B D E D E D F The 10 intervals of the form [F, C] and 5 intervals of the form [D, B] include all the rotations of these three intervals. F

32 of The values of [G i ] i [G i ]

33 of The values of [G i ] i [G i ] [G i ] is non-decreasing; for all i, [G i+1 ] [G i ]

34 of The values of [G i ] i [G i ] [G i ] is non-decreasing; for all i, [G i+1 ] [G i ] [G i ] does not increase very fast; for all i, [G i+1 ] [G i ] + 1

35 of The values of [G i ] i [G i ] [G i ] is non-decreasing; for all i, [G i+1 ] [G i ] [G i ] does not increase very fast; for all i, [G i+1 ] [G i ] + 1 [G i ] increases infinitely; for any L, there is some i large enough that [G i ] = L.

36 of Future Work Describe upper and lower bounds for [G i ] for very large i Prove that [G i ] increases linearly Concretely describe the sequence [G i ]

37 of Thanks to My mentor,, for his patience and guidance Professor Richard Stanley, for suggesting the project Tanya Khovanova and Dai Yang, for their advice PRIMES, for providing this research opportunity My parents, for their continuing support

38 of Bibliography Wang, Yinghui. (2010). A New Depth Related to the Stanley Depth of Some Power Sets of Multisets. Online. Biro, C. Howard, D. Keller, M. Trotter, W. Young, S. Interval Partitions and Stanley Depth. Online. Stanley, Richard. (2011). Enumerative Combinatorics, Volume 1, Second Edition,

Math 3012 Applied Combinatorics Lecture 16

Math 3012 Applied Combinatorics Lecture 16 October 15, 2015 Math 3012 Applied Combinatorics Lecture 16 William T. Trotter trotter@math.gatech.edu Reminder Homework 2 Tuesday, October 20, 2015 (Even problems only). Test 2 Thursday, October 22, 2015.

More information

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs

Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs Rational Hyperplane Arrangements and Counting Independent Sets of Symmetric Graphs MIT PRIMES Conference Nicholas Guo Mentor: Guangyi Yue May 21, 2016 Nicholas Guo (Mentor: Guangyi Yue) PRIMES Presentation

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation

CS 441 Discrete Mathematics for CS Lecture 24. Relations IV. CS 441 Discrete mathematics for CS. Equivalence relation CS 441 Discrete Mathematics for CS Lecture 24 Relations IV Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Equivalence relation Definition: A relation R on a set A is called an equivalence relation

More information

Foundations of Computer Science Spring Mathematical Preliminaries

Foundations of Computer Science Spring Mathematical Preliminaries Foundations of Computer Science Spring 2017 Equivalence Relation, Recursive Definition, and Mathematical Induction Mathematical Preliminaries Mohammad Ashiqur Rahman Department of Computer Science College

More information

Discrete Mathematics. Kruskal, order, sorting, induction

Discrete Mathematics.   Kruskal, order, sorting, induction Discrete Mathematics wwwmifvult/~algis Kruskal, order, sorting, induction Kruskal algorithm Kruskal s Algorithm for Minimal Spanning Trees The algorithm constructs a minimal spanning tree as follows: Starting

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements

It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements It All Depends on How You Slice It: An Introduction to Hyperplane Arrangements Paul Renteln California State University San Bernardino and Caltech April, 2008 Outline Hyperplane Arrangements Counting Regions

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

What Is A Relation? Example. is a relation from A to B.

What Is A Relation? Example. is a relation from A to B. 3.3 Relations What Is A Relation? Let A and B be nonempty sets. A relation R from A to B is a subset of the Cartesian product A B. If R A B and if (a, b) R, we say that a is related to b by R and we write

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions Logic and Discrete Mathematics Section 2.5 Equivalence relations and partitions Slides version: January 2015 Equivalence relations Let X be a set and R X X a binary relation on X. We call R an equivalence

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

On the Number of Linear Extensions of Graphs

On the Number of Linear Extensions of Graphs On the Number of Linear Extensions of Graphs Annie Hu under the direction of Mr. Benjamin Iriarte Massachusetts Institute of Technology Research Science Institute 15 January 2014 Abstract Given a bipartite

More information

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings

10/11/2018. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings. Partial Orderings Sometimes, relations define an order on the elements in a set. Definition: A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

Lattice Tutorial Version 1.0

Lattice Tutorial Version 1.0 Lattice Tutorial Version 1.0 Nenad Jovanovic Secure Systems Lab www.seclab.tuwien.ac.at enji@infosys.tuwien.ac.at November 3, 2005 1 Introduction This tutorial gives an introduction to a number of concepts

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

13 Interval Orders and Interval Graphs

13 Interval Orders and Interval Graphs November 14, 2017 13 Interval Orders and Interval Graphs William T. Trotter trotter@math.gatech.edu Interval Orders A poset P is an interval order if there exists a function I assigning to each x in P

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

1. Consider the 62-element set X consisting of the twenty-six letters (case sensitive) of the English

1. Consider the 62-element set X consisting of the twenty-six letters (case sensitive) of the English MATH 3012 Final Exam, May 3, 2013, WTT Student Name and ID Number 1. Consider the 62-element set X consisting of the twenty-six letters (case sensitive) of the English alphabet and the ten digits {0, 1,

More information

Connected Components of Underlying Graphs of Halving Lines

Connected Components of Underlying Graphs of Halving Lines arxiv:1304.5658v1 [math.co] 20 Apr 2013 Connected Components of Underlying Graphs of Halving Lines Tanya Khovanova MIT November 5, 2018 Abstract Dai Yang MIT In this paper we discuss the connected components

More information

THE DIMENSION OF POSETS WITH PLANAR COVER GRAPHS

THE DIMENSION OF POSETS WITH PLANAR COVER GRAPHS THE DIMENSION OF POSETS WITH PLANAR COVER GRAPHS STEFAN FELSNER, WILLIAM T. TROTTER, AND VEIT WIECHERT Abstract. Kelly showed that there exist planar posets of arbitrarily large dimension, and Streib and

More information

CS422 - Programming Language Design

CS422 - Programming Language Design 1 CS422 - Programming Language Design Denotational Semantics Grigore Roşu Department of Computer Science University of Illinois at Urbana-Champaign 2 Denotational semantics, alsoknownasfix-point semantics,

More information

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying.

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying. May 9, 2003 Show all work Name There are 260 points available on this test 1 (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying where

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014

Kyle Gettig. Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Linear Extensions of Directed Acyclic Graphs Kyle Gettig Mentor Benjamin Iriarte Fourth Annual MIT PRIMES Conference May 17, 2014 Motivation Individuals can be modeled as vertices of a graph, with edges

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

The Prism of the Acyclic Orientation Graph is Hamiltonian

The Prism of the Acyclic Orientation Graph is Hamiltonian The Prism of the Acyclic Orientation Graph is Hamiltonian Gara Pruesse Department of Computer Science and Electrical Engineering University of Vermont, Burlington, VT, 05405-0156, USA email: gara@cs.uvm.edu

More information

Generell Topologi. Richard Williamson. May 27, 2013

Generell Topologi. Richard Williamson. May 27, 2013 Generell Topologi Richard Williamson May 27, 2013 1 1 Tuesday 15th January 1.1 Topological spaces definition, terminology, finite examples Definition 1.1. A topological space is a pair (X, O) of a set

More information

Big Mathematical Ideas and Understandings

Big Mathematical Ideas and Understandings Big Mathematical Ideas and Understandings A Big Idea is a statement of an idea that is central to the learning of mathematics, one that links numerous mathematical understandings into a coherent whole.

More information

Fundamentals of Discrete Mathematical Structures

Fundamentals of Discrete Mathematical Structures Fundamentals of Discrete Mathematical Structures THIRD EDITION K.R. Chowdhary Campus Director JIET School of Engineering and Technology for Girls Jodhpur Delhi-110092 2015 FUNDAMENTALS OF DISCRETE MATHEMATICAL

More information

Section 13. Basis for a Topology

Section 13. Basis for a Topology 13. Basis for a Topology 1 Section 13. Basis for a Topology Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a

More information

DISCRETE MATHEMATICS

DISCRETE MATHEMATICS DISCRETE MATHEMATICS WITH APPLICATIONS THIRD EDITION SUSANNA S. EPP DePaul University THOIVISON * BROOKS/COLE Australia Canada Mexico Singapore Spain United Kingdom United States CONTENTS Chapter 1 The

More information

Brussels Sprouts, Noncrossing Trees, and Parking Functions

Brussels Sprouts, Noncrossing Trees, and Parking Functions Brussels Sprouts, Noncrossing Trees, and Parking Functions arxiv:1805.03608v1 [math.co] 9 May 2018 Caleb Ji and James Propp Abstract: We consider a variant of the game of Brussels Sprouts that, like Conway

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 8 Thursday 7th February 8.1 Using connectedness to distinguish between topological spaces I Proposition 8.1. Let (, O ) and (Y, O Y ) be topological spaces.

More information

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

Introductory Combinatorics

Introductory Combinatorics Introductory Combinatorics Third Edition KENNETH P. BOGART Dartmouth College,. " A Harcourt Science and Technology Company San Diego San Francisco New York Boston London Toronto Sydney Tokyo xm CONTENTS

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Math 3012 Applied Combinatorics Lecture 15

Math 3012 Applied Combinatorics Lecture 15 October 8, 2015 Math 3012 Applied Combinatorics Lecture 15 William T. Trotter trotter@math.gatech.edu Reminder Homework 2 Tuesday, October 20, 2015 (Even problems only). Test 2 Thursday, October 22, 2015.

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

Combinatorics MAP363 Sheet 1. Mark: /10. Name. Number. Hand in by 19th February. date marked: / /2007

Combinatorics MAP363 Sheet 1. Mark: /10. Name. Number. Hand in by 19th February. date marked: / /2007 Turn over Combinatorics MAP6 Sheet Hand in by 9th February Name Number Year Mark: /0 date marked: / /200 Please attach your working, with this sheet at the front. Guidance on notation: graphs may have

More information

axiomatic semantics involving logical rules for deriving relations between preconditions and postconditions.

axiomatic semantics involving logical rules for deriving relations between preconditions and postconditions. CS 6110 S18 Lecture 18 Denotational Semantics 1 What is Denotational Semantics? So far we have looked at operational semantics involving rules for state transitions, definitional semantics involving translations

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below:

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below: Chapter 4 Relations & Graphs 4.1 Relations Definition: Let A and B be sets. A relation from A to B is a subset of A B. When we have a relation from A to A we often call it a relation on A. When we have

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 10 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 13 (1) HW5 is due

More information

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis Contents Chapter 1. Relations 8 1. Relations and Their Properties 8 1.1. Definition of a Relation 8 1.2. Directed Graphs 9 1.3. Representing Relations with Matrices 10 1.4. Example 1.4.1 10 1.5. Inverse

More information

4.1 Interval Scheduling

4.1 Interval Scheduling 41 Interval Scheduling Interval Scheduling Interval scheduling Job j starts at s j and finishes at f j Two jobs compatible if they don't overlap Goal: find maximum subset of mutually compatible jobs a

More information

Relational Database: The Relational Data Model; Operations on Database Relations

Relational Database: The Relational Data Model; Operations on Database Relations Relational Database: The Relational Data Model; Operations on Database Relations Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Overview

More information

Abstract Combinatorial Games

Abstract Combinatorial Games Abstract Combinatorial Games Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@email.uncc.edu

More information

Cardinality of Sets. Washington University Math Circle 10/30/2016

Cardinality of Sets. Washington University Math Circle 10/30/2016 Cardinality of Sets Washington University Math Circle 0/0/06 The cardinality of a finite set A is just the number of elements of A, denoted by A. For example, A = {a, b, c, d}, B = {n Z : n } = {,,, 0,,,

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

MT5821 Advanced Combinatorics

MT5821 Advanced Combinatorics MT5821 Advanced Combinatorics 4 Graph colouring and symmetry There are two colourings of a 4-cycle with two colours (red and blue): one pair of opposite vertices should be red, the other pair blue. There

More information

Binary Relations Part One

Binary Relations Part One Binary Relations Part One Outline for Today Binary Relations Reasoning about connections between objects. Equivalence Relations Reasoning about clusters. A Fundamental Theorem How do we know we have the

More information

THEORY OF COMPUTATION

THEORY OF COMPUTATION THEORY OF COMPUTATION UNIT-1 INTRODUCTION Overview This chapter begins with an overview of those areas in the theory of computation that are basic foundation of learning TOC. This unit covers the introduction

More information

Introduction to Algorithms October 12, 2005 Massachusetts Institute of Technology Professors Erik D. Demaine and Charles E. Leiserson Quiz 1.

Introduction to Algorithms October 12, 2005 Massachusetts Institute of Technology Professors Erik D. Demaine and Charles E. Leiserson Quiz 1. Introduction to Algorithms October 12, 2005 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik D. Demaine and Charles E. Leiserson Quiz 1 Quiz 1 Do not open this quiz booklet until you

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise.

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise. Final exam This is a closed book exam. No calculators are allowed. Unless stated otherwise, justify all your steps. You may use lemmas and theorems that were proven in class and on assignments unless stated

More information

Modified Farey Sequences

Modified Farey Sequences Modified Farey Sequences Dhroova Aiylam MIT PRIMES May, Dhroova Aiylam (MIT PRIMES) Modified Farey Sequences May, / 8 The Farey Sequence a b, c d a + c b + d Dhroova Aiylam (MIT PRIMES) Modified Farey

More information

Discovering 5-Valent Semi-Symmetric Graphs

Discovering 5-Valent Semi-Symmetric Graphs Discovering 5-Valent Semi-Symmetric Graphs Berkeley Churchill NSF REU in Mathematics Northern Arizona University Flagstaff, AZ 86011 July 27, 2011 Groups and Graphs Graphs are taken to be simple (no loops,

More information

Constructing self-dual chiral polytopes

Constructing self-dual chiral polytopes Constructing self-dual chiral polytopes Gabe Cunningham Northeastern University, Boston, MA October 25, 2011 Definition of an abstract polytope Let P be a ranked poset, whose elements we call faces. Then

More information

Fast Detection of Stable and Count Predicates in Parallel Computations

Fast Detection of Stable and Count Predicates in Parallel Computations Fast Detection of Stable and Count Predicates in Parallel Computations NVMOVE Himanshu Chauhan and Vijay K. Garg University of Texas at Austin Context: Verifying Parallel or Distributed Programs Correct

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

ADJACENCY POSETS OF PLANAR GRAPHS

ADJACENCY POSETS OF PLANAR GRAPHS ADJACENCY POSETS OF PLANAR GRAPHS STEFAN FELSNER, CHING MAN LI, AND WILLIAM T. TROTTER Abstract. In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below,

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 9.3: An arithmetic progression is an increasing sequence of numbers of the form a, a+d, a+ d, a + 3d.... Van der Waerden s theorem says that no matter how we partition the natural numbers into

More information

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University)

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University) Math 395: Topology Bret Benesh (College of Saint Benedict/Saint John s University) October 30, 2012 ii Contents Acknowledgments v 1 Topological Spaces 1 2 Closed sets and Hausdorff spaces 7 iii iv CONTENTS

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

(l) Represent each of the sets A, B and C using bit strings. Then, use bit string representation and bitwise logical operations to find

(l) Represent each of the sets A, B and C using bit strings. Then, use bit string representation and bitwise logical operations to find Fall 2004 Ahmed Elgammal CS 205: Sample Final Exam December 6th, 2004 1. [10 points] Let A = {1, 3, 5, 7, 9}, B = {4, 5, 6, 7, 8}, C = {2, 4, 6, 8, 10}, D = {1, 2, 3} and let the universal set be U = {1,

More information

Calculating Cardinalities

Calculating Cardinalities Math Circle Monday March 20, 2017 Calculating Cardinalities Martin Zeman To say that a set A has 5 elements means that we can write the elements of A as a list a 1, a 2, a 3, a 4, a 5 in a way that (a)

More information

Infinity and Uncountability. Countable Countably infinite. Enumeration

Infinity and Uncountability. Countable Countably infinite. Enumeration Infinity and Uncountability. Countable Countably infinite. Enumeration How big is the set of reals or the set of integers? Infinite! Is one bigger or smaller? Same size? Same number? Make a function f

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park

Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph. Nechama Florans. Mentor: Dr. Boram Park Research Question Presentation on the Edge Clique Covers of a Complete Multipartite Graph Nechama Florans Mentor: Dr. Boram Park G: V 5 Vertex Clique Covers and Edge Clique Covers: Suppose we have a graph

More information

Computational Discrete Mathematics

Computational Discrete Mathematics Computational Discrete Mathematics Combinatorics and Graph Theory with Mathematica SRIRAM PEMMARAJU The University of Iowa STEVEN SKIENA SUNY at Stony Brook CAMBRIDGE UNIVERSITY PRESS Table of Contents

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London Discrete Mathematics SECOND EDITION Norman L. Biggs Professor of Mathematics London School of Economics University of London OXFORD UNIVERSITY PRESS Contents PART I FOUNDATIONS Statements and proofs. 1

More information

LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS. Gary D. Hachtel University of Colorado. Fabio Somenzi University of Colorado.

LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS. Gary D. Hachtel University of Colorado. Fabio Somenzi University of Colorado. LOGIC SYNTHESIS AND VERIFICATION ALGORITHMS by Gary D. Hachtel University of Colorado Fabio Somenzi University of Colorado Springer Contents I Introduction 1 1 Introduction 5 1.1 VLSI: Opportunity and

More information

Braid groups and Curvature Talk 2: The Pieces

Braid groups and Curvature Talk 2: The Pieces Braid groups and Curvature Talk 2: The Pieces Jon McCammond UC Santa Barbara Regensburg, Germany Sept 2017 Rotations in Regensburg Subsets, Subdisks and Rotations Recall: for each A [n] of size k > 1 with

More information

Noncrossing sets and a Graßmann associahedron

Noncrossing sets and a Graßmann associahedron Noncrossing sets and a Graßmann associahedron Francisco Santos, Christian Stump, Volkmar Welker (in partial rediscovering work of T. K. Petersen, P. Pylyavskyy, and D. E. Speyer, 2008) (in partial rediscovering

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Space vs Time, Cache vs Main Memory

Space vs Time, Cache vs Main Memory Space vs Time, Cache vs Main Memory Marc Moreno Maza University of Western Ontario, London, Ontario (Canada) CS 4435 - CS 9624 (Moreno Maza) Space vs Time, Cache vs Main Memory CS 4435 - CS 9624 1 / 49

More information

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions 1 Distance Reading [SB], Ch. 29.4, p. 811-816 A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions (a) Positive definiteness d(x, y) 0, d(x, y) =

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

Binary Relations McGraw-Hill Education

Binary Relations McGraw-Hill Education Binary Relations A binary relation R from a set A to a set B is a subset of A X B Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B. We can also represent

More information

Scan Scheduling Specification and Analysis

Scan Scheduling Specification and Analysis Scan Scheduling Specification and Analysis Bruno Dutertre System Design Laboratory SRI International Menlo Park, CA 94025 May 24, 2000 This work was partially funded by DARPA/AFRL under BAE System subcontract

More information

Relations, Equivalence Relations, and Partial Orders

Relations, Equivalence Relations, and Partial Orders Massachusetts Institute of Technology Lecture 6 6.042J/18.062J: Mathematics for Computer Science February 17, 2000 Professors David Karger and Nancy Lynch Relations, Equivalence Relations, and Partial

More information

Star Decompositions of the Complete Split Graph

Star Decompositions of the Complete Split Graph University of Dayton ecommons Honors Theses University Honors Program 4-016 Star Decompositions of the Complete Split Graph Adam C. Volk Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

More information

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions

13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 2011 Automata Theory EUR solutions 13 th Annual Johns Hopkins Math Tournament Saturday, February 19, 011 Automata Theory EUR solutions Problem 1 (5 points). Prove that any surjective map between finite sets of the same cardinality is a

More information

Concurrent Models of Computation

Concurrent Models of Computation Concurrent Models of Computation Edward A. Lee Robert S. Pepper Distinguished Professor, UC Berkeley EECS 219D: Concurrent Models of Computation Fall 2011 Copyright 2011, Edward A. Lee, All rights reserved

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

Discrete Math: Selected Homework Problems

Discrete Math: Selected Homework Problems Discrete Math: Selected Homework Problems 2006 2.1 Prove: if d is a common divisor of a and b and d is also a linear combination of a and b then d is a greatest common divisor of a and b. (5 3.1 Prove:

More information