GUIDE TO USE OF PIC 16F690 EEProm. The 16F690 PIC has a 256 byte EEProm (mapped to 0x x21FF).

Size: px
Start display at page:

Download "GUIDE TO USE OF PIC 16F690 EEProm. The 16F690 PIC has a 256 byte EEProm (mapped to 0x x21FF)."

Transcription

1 GUIDE TO USE OF PIC 16F690 EEProm The 16F690 PIC has a 256 byte EEProm (mapped to 0x x21FF). PRESET DATA (WITH PROGRAM CODE) Data can be preset by use of the de operator: Org 0x21XX de de etc. 0x01,0x02 0xFA Bytes are allocated memory sequentially, starting at the given org address. PROGRAMMED READING AND WRITING Two control registers, EECON1 and EECON2 (both in bank 3) are used to control reading / writing. 8-bit data is sourced, for writing from register EEDAT and is sent to, when reading, register EEDAT. The address in EEProm for reading or writing must be specified in EEADR. (EEDAT and EEADR both reside in bank 2). EEADR is the offset 0x00..0xFF from the base address of the EEProm. (NB: ensure correct bank selection for the above special registers) (NB: the program memory can be read/written in a similar way. Because of the addressing range and the 13-bit wide program memory additional registers must be used for the high data byte and the high address byte, EEDATH and EEADRH)

2 Code to do a basic 1-byte read: SingleByteREad: ; EEADR is preloaded with address (00..FF) in EEProm ; w has byte read on. bsf STATUS,RP0 bcf EECON1,EEPGD ; EEPGD=0 for EEPROM bsf EECON1,RD ; RD=1 (read EEProm) ; select bank 2 movf EEDAT,w ; Get byte read from EEProm Explanation of the code above (Preload EEADR with EEProm address to be read prior to calling function) Select EEProm (not program memory) (EECON1,EEPGD) Request a READ. Set RD bit in EECON1 (self-clears after read) (data is read and placed into EEDAT in one m/c code cycle) Move read data from EEDAT to register w ready for moving elsewhere on

3 Code to do a 1-byte write: EE_AwaitByteWrite: ; EEADR has eeprom write address, EEDAT has data byte to be written ; only use for a single byte. Bank 0 selected on bsf STATUS,RP0 bcf EECON1,EEPGD ; select EEProm bsf EECON1,WREN ; unlock eeprom. Allow writing movlw 0x55 movwf EECON2 ; write 0x55 movlw 0xAA movwf EECON2 ; write 0xAA bsf EECON1,WR ; initiates erase & write cycle WaitUntilDone: btfsc EECON1,WR ; end of write cycle? (cleared by h/w) goto WaitUntilDone ; about 4ms to wait bcf EECON1,WREN ; lock eeprom. Disallows writes bcf PIR2,EEIF ; clear EEIF flag ; byte written NB: The above code is NOT RECOMMENDED because it waits for the write operation to complete (about 4ms) in which time many thousands of instructions could have been processed! This is a simple write for explanation only. (Preload EEADR with EEProm address to be written prior to calling function) (Preload EEDAT with data to be written to this address prior to calling function) Select EEProm (not program memory) (EECON1,EEPGD) Unlock Eeprom (enable write) set EECON1,WREN Now perform the magic sequence : Write to EECON2, 0x55 Write to EECON2, 0xAA Request a WRITE. Set WR bit in EECON1 (self-clears after write) (NB: If interrupts are being used, disable interrupts during the above sequence) (the write sequence has started but will take a long time to complete, about 4ms) Lock Eeprom (disable write) clear EECON1,WREN Wait for the WR bit to clear. This indicates completion. The above code loops within the function and only s on completion. A better way of doing this is to and to detect completion by use of the EEIF flag (interrupt flag in PIR2). This can either be polled in the main loop or can cause an interrupt.

4 MULTIPLE BYTE READS AND WRITES These are more practical functions than the basic, single byte operations. Indirect addressing is used for the read destination address and for the write source address. Reading ; EEPROM READ ; Preload: Pointer_A, Pointer_B, EE_ByteCount and DEST_IRP_BIT in GenFlags ; A contiguous block of data is copied from Pointer_A (EEPROM LS ADDRESS) to Pointer_B (RAM LS ADDRESS) ; Pointer_A is the source pointer(address in EEProm 0x00..0xFF). Pointer_B is the destination pointer (LS byte of file reg) in RAM. ; DEST_IRP_BIT for the destination pointer address must be preloaded (0=banks 0/1, 1=bank 2) ; EE_ByteCount must be loaded with the number of contiguous bytes to be copied. ; Call with any bank selected. The same bank will be selected on ReadEEProm: movf STATUS,w movwf Saved_Status ; save status (inc. current bank) bsf STATUS,RP0 movf Pointer_A,w ; get source bsf STATUS,RP1 ; select bank 2 movwf EEADR ; load source address (reading EEPROM) bcf STATUS,IRP ; asume IRP=0 btfsc GenFlags,EE_DEST_IRP_BIT ; if IRP_BIT_B set then bsf STATUS,IRP ; make IRP=1 movf Pointer_B,w ; get destination movwf FSR ; load destination address (RAM-based) CopyEEProm: movf EE_ByteCount,f btfsc STATUS,Z goto ExitReadEEProm ; (bank 0 selected) ; all bytes copied? ; if not, skip ; end bsf STATUS,RP0 bcf EECON1,EEPGD ; EEPGD=0 for EEPROM bsf EECON1,RD ; RD=1 (read EEProm) ; select bank 2 movf EEDAT,w ; Get byte read from EEProm movwf INDF ; and store it in ram incf EEADR,f ; next EEProm Address

5 incf FSR,f ; next RAM Address decf EE_ByteCount,f ; one less byte to copy goto CopyEEProm ; loop ExitReadEEProm: movf Saved_Status,w movwf STATUS ; restore status (inc. bank number) ; EEPROM READ This code uses the multi-bank addressable registers (in the range 0xX70..0xX7F). It also stores and restores the content of the status register (so it can be called with any bank selected. Despite bank changing, the original bank will be selected on ). Preload: Pointer_A to the source of the data (offset in EEProm 0x00..0xFF) Pointer_B to the required destination of the data in banked ram (register file). If reading into bank 0 or 1 clear DEST_IRP_BIT. If reading into bank 2 set DEST_IRP_BIT. EE_ByteCount with the number of sequential bytes to be read. Status register saved. Pointer_A is copied to EEADR Pointer_B is copied to FSR Loop begins: Status IRP bit is copied from EE_DEST_IRP_BIT Read sequence occurs (as in single byte read) Read data is copied to INDF EEADR is incremented (next data byte source) FSR is incremented (next data byte destination) EE_ByteCount is decremented. If zero, exit loop. Loop end Status register restored.

6 Writing: ; EEPROM WRITE ; Preload: Pointer_A, Pointer_B, EE_Wr_ByteCount, GenFlags,EE_SOURCEIRP_BIT ; A contiguous block of data is copied from Pointer_A (LS RAM ADDRESS) to Pointer_B (LS EEPROM ADDRESS) ; Pointer_A is the source pointer(ls byte of RAM). Pointer 2 is the destination pointer (address in EEProm 0x00..0xFF). ; EE_SOURCE_IRP_BIT for the destination pointer address must be preloaded (0=banks 0/1, 1=bank 2) ; EE_Wr_ByteCount must be loaded with the number of contiguous bytes to be copied to EEPROM (BUT DO THIS LAST). ; call WriteEEProm with any bank selected. nb: Bank 0 will be selected on WriteEEProm: ; This starts the process by initiating the first byte write. ; Subsequent byte writes are initiated after polling a set "Write Complete Interrupt Flag" (EEIF) in reg PIR2. This flag is then cleared. movf EE_Wr_ByteCount,f ; Wr Byte Count non-zero? btfsc STATUS,Z ; ; Exit before trouble! (count=0) movf Pointer_A,w ; get source address in RAM movwf EE_SourcePointer ; store in EEProm dedicated pointer movf Pointer_B,w ; get destination (addr in EEprom) bsf STATUS,RP1 ; select bank 2 movwf EEADR ; load destination address (in EEPROM) bsf STATUS,RP0 ; select bank 3 bsf EECON1,WREN ; Enable EEPROM write goto EEFirstWrite ; Do first byte write Poll_EEProm: ; Must be polled from main loop (with bank 0 selected) btfss PIR2,EEIF ; end of write cycle? ; no, bcf PIR2,EEIF ; clear EEIF flag movf EE_Wr_ByteCount,f ; More bytes to write? btfss STATUS,Z ; goto EENextWrite ; Yes, do next write ; all EEProm writes now complete

7 bsf STATUS,RP0 bcf EECON1,WREN ; Disable EEPROM write goto Bank0_Return ; all writes completed EENextWrite: ; bsf STATUS,RP1 ; bank 2 incf EEADR,f ; next EEProm Address incf EE_SourcePointer,f ; next RAM source address EEFirstWrite: decf EE_Wr_ByteCount,f ; one less byte to copy EEWrite: movf EE_SourcePointer,w movwf FSR ; set source pointer bcf STATUS,IRP btfsc GenFlags,EE_SOURCE_IRP_BIT bsf STATUS,IRP movf INDF,w ; get source data bsf STATUS,RP1 ; select bank 2 movwf EEDAT ; store data to be written bsf STATUS,RP0 ; select bank 3 bcf EECON1,EEPGD ; select EEPROM movlw 0x55 movwf EECON2 ; write 0x55 movlw 0xAA movwf EECON2 ; write 0xAA bsf EECON1,WR ; request erase/write cycle ; allow erase/write cycle to complete

8 EEPROM WRITE Prepolad: Pointer_A with start address of source data. Pointer_B with start address of destination in EEProm. GenFlags,EE_SOURCE_IRP_BIT =0 for source bank=0/1 or =1 for bank 2 EE_Wr_ByteCount with the number of bytes to copy into EEProm NB: call WriteEEProm with any selected. However: Bank 0 is selected on. NB: poll in mainllop. Bank 0 selected on entry and on. The first section of code Write_EE_Prom only executes for the first byte to be written only and does the following: Checks for zero byte count (error condition). Exits if zero. Pointer_A is copied to EE_Source_Pointer (so it can be reused by other code) Pointer_B is copied to EEADR (so it can be reused by other code) Unlock Eeprom (enable write) set EECON1,WREN EE_WriteCount is decremented Goto EE_Write Poll in the main loop:. call Poll_EEProm ; EEProm ready to write?.. Poll_EEProm checks for a write completed condition and a non-zero EE_WriteCount. If neither of these are true an immediate occurs. Poll_EEProm: Flag PIR2,EEI F is tested for completion of a previous EEprom write. If busy with a write, immediate to main loop occurs. If not busy, EE_Wr_ByteCount is tested. If count=zero, no more writes to do so: Lock the EEProm and. EEADR write address is incremented EE_WriteCount is decremented Goto EE_Write EE_Write: The EE_Source Pointer is copied to the FSR Indirect addressed data in INDF is copied to EEDAT Write one byte. (code is the same as for a single byte write.) Return (await write cycle completion)

9 Notes Sometimes it may be prudent to check the write cycle flag (EECON1) before starting a new read or write to ensure that the EEProm system is not busy still completing a write operation. In some circumstances it may be prudent to check the wrerr (write error flag in EECON1) after each write operation. Unless the device is faulty this can only occur if the write operation was curtailed for some reason. If interrupts are enabled then disable interrupts (bcf INTCON,GIE) prior to each write sequence and re-enable after the write sequence. The write sequence must be continuous.

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices

More information

Chapter 5 Sections 1 6 Dr. Iyad Jafar

Chapter 5 Sections 1 6 Dr. Iyad Jafar Building Assembler Programs Chapter 5 Sections 1 6 Dr. Iyad Jafar Outline Building Structured Programs Conditional Branching Subroutines Generating Time Delays Dealing with Data Example Programs 2 Building

More information

D:\PICstuff\PartCounter\PartCounter.asm

D:\PICstuff\PartCounter\PartCounter.asm 1 ;********************************************************************** 2 ; This file is a basic code template for assembly code generation * 3 ; on the PICmicro PIC16F84A. This file contains the basic

More information

Embedded Systems Lab Lab 8 EEPROM

Embedded Systems Lab Lab 8 EEPROM Islamic University of Gaza College of Engineering Computer Department Embedded Systems Lab EEPROM Prepared By: Eng.Ola M. Abd El-Latif Apr. /2010 :D 0 Objectives To get familiar with using the EEPROM of

More information

PIC Discussion By Eng. Tamar Jomaa

PIC Discussion By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Outlines 2.6 TMR0 2.7 EEPROM 2.8 Look up table 2.9 Macro 2.6 TMR0 Example#1 Write an assembly program to make a counter using TMR0, the count should increment it s value

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

Lecture (04) PIC16F84A (3)

Lecture (04) PIC16F84A (3) Lecture (04) PIC16F84A (3) By: Dr. Ahmed ElShafee ١ Central Processing Unit Central processing unit (CPU) is the brain of a microcontroller responsible for finding and fetching the right instruction which

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution For each of the following complex operations, write a sequence of PIC 16F1829 instructions that performs an equivalent operation. Assume that X, Y, and Z are 16-bit values split into individual bytes as

More information

Chapter 2 Sections 1 8 Dr. Iyad Jafar

Chapter 2 Sections 1 8 Dr. Iyad Jafar Introducing the PIC 16 Series and the 16F84A Chapter 2 Sections 1 8 Dr. Iyad Jafar Outline Overview of the PIC 16 Series An Architecture Overview of the 16F84A The 16F84A Memory Organization Memory Addressing

More information

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Embedded Systems Design (630470) Lecture 4 Memory Organization Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Memory Organization: PIC16F84 has two separate memory blocks, for data and for program. EEPROM

More information

PIC 16F84A programming (II)

PIC 16F84A programming (II) Lecture (05) PIC 16F84A programming (II) Dr. Ahmed M. ElShafee ١ Introduction to 16F84 ٣ PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Program memory (FLASH) EEPROM RAM PORTA

More information

Performance & Applications

Performance & Applications EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 15th March 2002 CLR Part VI Performance & Applications It is possible to predict the execution time of code, on the basis

More information

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

SOLUTIONS!! DO NOT DISTRIBUTE!!

SOLUTIONS!! DO NOT DISTRIBUTE!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF FEBRUARY MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: One Hour INSTRUCTIONS TO CANDIDATES:

More information

PIC Discussion. By Eng. Tamar Jomaa

PIC Discussion. By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Chapter#2 Programming Microcontroller Using Assembly Language Quiz#1 : Time: 10 minutes Marks: 10 Fill in spaces: 1) PIC is abbreviation for 2) Microcontroller with..architecture

More information

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 E4160 Microprocessor & Microcontroller System Learning Outcomes 2 At the end of this topic, students should

More information

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Starting to Program Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Outline Introduction Program Development Process The PIC 16F84A Instruction Set Examples The PIC 16F84A Instruction Encoding Assembler Details

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 Semester 2 Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J2 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

Assembly Language Instructions

Assembly Language Instructions Assembly Language Instructions Content: Assembly language instructions of PIC16F887. Programming by assembly language. Prepared By- Mohammed Abdul kader Assistant Professor, EEE, IIUC Assembly Language

More information

Instuction set

Instuction set Instuction set http://www.piclist.com/images/www/hobby_elec/e_pic3_1.htm#1 In PIC16 series, RISC(Reduced Instruction Set Computer) is adopted and the number of the instructions to use is 35 kinds. When

More information

PICDEM-1 USER S GUIDE

PICDEM-1 USER S GUIDE PICDEM- USER S GUIDE Information contained in this publication regarding device applications and the like is intended by way of suggestion only. No representation or warranty is given and no liability

More information

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang

ME 475 Lab2 Introduction of PIC and Programming. Instructor: Zhen Wang ME 475 Lab2 Introduction of PIC and Programming Instructor: Zhen Wang 2013.1.25 Outline Lecture Introduction of PIC microcontroller Programming cycle Read CH5 Programming guidelines Read CH6 Sample program

More information

Laboratory Exercise 5 - Analog to Digital Conversion

Laboratory Exercise 5 - Analog to Digital Conversion Laboratory Exercise 5 - Analog to Digital Conversion The purpose of this lab is to control the blinking speed of an LED through the Analog to Digital Conversion (ADC) module on PIC16 by varying the input

More information

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Sample Programs Eng. Anis Nazer First Semester 2017-2018 Development cycle (1) Write code (2) Assemble / compile (3) Simulate (4) Download to MCU (5) Test Inputs / Outputs PIC16F84A

More information

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER Amey Arvind Madgaonkar 1, Sumit Dhere 2 & Rupesh Ratnakar Kadam 3 1. Block diagram International Journal of Latest Trends in Engineering

More information

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University PIC ming in C and Assembly Outlines Microprocessor vs. MicroController PIC in depth PIC ming Assembly ming Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University Embedded C

More information

Micro II and Embedded Systems

Micro II and Embedded Systems 16.480/552 Micro II and Embedded Systems Introduction to PIC Microcontroller Revised based on slides from WPI ECE2801 Moving Towards Embedded Hardware Typical components of a PC: x86 family microprocessor

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J1 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006 CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT Spring 2006 Recitation 01 21.02.2006 CEng336 1 OUTLINE LAB & Recitation Program PIC Architecture Overview PIC Instruction Set PIC Assembly Code Structure 21.02.2006

More information

TB026. Calculating Program Memory Checksums Using a PIC16F87X ACCESSING MEMORY INTRODUCTION. PIC16C7X vs. PIC16F87X. Microchip Technology Inc.

TB026. Calculating Program Memory Checksums Using a PIC16F87X ACCESSING MEMORY INTRODUCTION. PIC16C7X vs. PIC16F87X. Microchip Technology Inc. M TB026 Calculating Program Memory Checksums Using a PIC16F87X Author: INTRODUCTION Many applications require the microcontroller to calculate a checksum on the program memory to determine if the contents

More information

LPTCOM. Bruce Misner Lakehead University h d3 RD2 pin 21. RD3 pin h d4. RD4 pin 27 RD5 pin h d5. RD6 pin 29 RD7 pin H d6

LPTCOM. Bruce Misner Lakehead University h d3 RD2 pin 21. RD3 pin h d4. RD4 pin 27 RD5 pin h d5. RD6 pin 29 RD7 pin H d6 LPTCOM By Bruce Misner Lakehead University LPTCOM is a demonstration of a robust bi-directional communcation between the PIC microcontroller and the printer port of your PC. Incorporating more handshaking

More information

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features:

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features: M PIC6F84A 8-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller High Performance RISC CPU Features: Pin Diagrams Only 35 single word instructions to learn All instructions single-cycle except for program branches

More information

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 18th February 2002 CLR Part V Hardware Interfacing There are several features of computers/microcontrollers which have not

More information

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Starting with Serial Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Outline Introduction Synchronous Serial Communication Asynchronous Serial Communication Physical Limitations Overview of PIC 16 Series The

More information

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ /* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC & _WRT_OFF & _LVP_OFF & _CPD_OFF ;***** VARIABLE DEFINITIONS COUNT_L EQU 0x01 ;**********************************************************************

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design Year: IV DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 Microcontroller based system design Semester : VII UNIT I Introduction to PIC Microcontroller

More information

Discrete Logic Replacement Message Dispatch Engine

Discrete Logic Replacement Message Dispatch Engine Message Dispatch Engine Author: OVERVIEW As we all know, the 8-pin PICmicro has limited resources. A nice way of using interrupts is for queuing events, prioritizing them, or even buffering them. This

More information

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work LAB WORK 1 We are studying with PIC16F84A Microcontroller. We are responsible for writing assembly codes for the microcontroller. For the code, we are using MPLAB IDE software. After opening the software,

More information

Done 1 NVB THF TLF T/R POL 1SHOT. Figure 1: Status register

Done 1 NVB THF TLF T/R POL 1SHOT. Figure 1: Status register Introduction to Microprocessors Feisal Mohammed 12th January 2001 Mini-project This project is to implement a temperature monitor using the PicStic4, the DS1821 temperature sensor and a LCD display. The

More information

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling Interfacing PIC Microcontrollers ADC8BIT2 Schematic This application demonstrates analogue input sampling A manually adjusted test voltage 0-5V is provided at AN0 input A reference voltage of 2.56V is

More information

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller Maxim/Dallas > App Notes > REAL-TIME CLOCKS Keywords: DS1305, SPI, PIC, real time clock, RTC, spi interface, pic microcontroller Aug 20, 2003 APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Bank Switching, Table, Macros & Modules Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu PIC18 memory access up to 2 MB of program memory Inside the

More information

ECE 354 Computer Systems Lab II. Memory and Indirect Addressing

ECE 354 Computer Systems Lab II. Memory and Indirect Addressing ECE 354 Computer Systems Lab II Memory and Indirect Addressing Lab report for lab 1 Schematics Lab 2 Comments Label pins used on all chips Use standard chip names/numbers (DB25,SP-233) from the datasheet

More information

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features:

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features: 8-bit CMOS EEPROM Microcontroller High Performance RISC CPU Features: Only 35 single word instructions to learn All instructions single cycle (400 ns @ 10 MHz) except for program branches which are two-cycle

More information

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Work Completed: Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Last week started with the goal to complete writing the overall program for the game.

More information

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX20. During Programming

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX20. During Programming FLASH Microcontroller Programming Specification 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F6520 PIC18F6620 PIC18F6720 PIC18F8520 PIC18F8620

More information

DERTS Design Requirements (1): Microcontroller Architecture & Programming

DERTS Design Requirements (1): Microcontroller Architecture & Programming Lecture (5) DERTS Design Requirements (1): Microcontroller Architecture & Programming Prof. Kasim M. Al-Aubidy Philadelphia University 1 Lecture Outline: Features of microcomputers and microcontrollers.

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 - Microcontroller Based System Design UNIT III PERIPHERALS AND INTERFACING PART A 1. What is an

More information

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming

FLASH Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming FLASH Microcontroller Programming Specification 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F242 PIC18F248 PIC18F252 PIC18F258 PIC18F442 PIC18F448

More information

16.317: Microprocessor-Based Systems I Summer 2012

16.317: Microprocessor-Based Systems I Summer 2012 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

16.317: Microprocessor-Based Systems I Spring 2012

16.317: Microprocessor-Based Systems I Spring 2012 16.317: Microprocessor-Based Systems I Spring 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Application Note - PIC Source Code v1.1.doc

Application Note - PIC Source Code v1.1.doc Programmable, RGB-backlit LCD Keyswitches APPLICATION NOTE PIC SOURCE CODE 2004-2006 copyright [E³] Engstler Elektronik Entwicklung GmbH. All rights reserved. PIC Source Code The following Assembler source

More information

Section 31. Instruction Set

Section 31. Instruction Set 31 HIGHLIGHTS Section 31. Instruction Set Instruction Set This section of the manual contains the following major topics: 31.1 Introduction... 31-2 31.2 Data Memory Map... 31-3 31.3 Instruction Formats...

More information

ECE Test #1: Name

ECE Test #1: Name ECE 376 - Test #1: Name Closed Book, Closed Notes. Calculators Permitted. September 23, 2016 20 15 10 5 0

More information

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PIC6F87X 3.0 INSTRUCTION SET SUMMARY Each PIC6F87X instruction is a 4bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of

More information

Programming for PIC18FXX2/FXX8 FLASH MCUs PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming. Pin Name Pin Type Pin Description

Programming for PIC18FXX2/FXX8 FLASH MCUs PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18FXX2/XX8. During Programming. Pin Name Pin Type Pin Description M Programming for PIC18FXX2/FXX8 FLASH MCUs 1.0 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F242 PIC18F248 PIC18F252 PIC18F258 PIC18F442 PIC18F448

More information

Flow Charts and Assembler Programs

Flow Charts and Assembler Programs Flow Charts and Assembler Programs Flow Charts: A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a flow chart is to make the program easier to understand.

More information

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers 18-pin Flash/EEPROM 8-Bit Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16F84 PIC16CR83 PIC16CR84 Extended voltage range devices available (PIC16LF8X, PIC16LCR8X) High Performance RISC

More information

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet:

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet: This document was created with FrameMaker 404 PIC16F8X 8-Bit CMOS Flash/EEPROM Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16CR83 PIC16F84 PIC16CR84 Extended voltage range devices

More information

Flash Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F872X FAMILY. During Programming

Flash Microcontroller Programming Specification PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18F872X FAMILY. During Programming Flash Microcontroller Programming Specification 10 DEVICE OVERVIEW This document includes the programming specifications for the following devices: PIC18F6527 PIC18F6622 PIC18F6627 PIC18F6628 PIC18F6722

More information

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!!

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF APRIL MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: MidTerm Date and Time: Thursday April 14th 2005 8AM Duration:

More information

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller 1 von 8 24.02.2010 21:53 More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller As with the FPGA board previously, the connections are made by soldering standard IDC

More information

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle.

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle. PIC PROGRAMMING You have been introduced to PIC chips and the assembly language used to program them in the past number of lectures. The following is a revision of the ideas and concepts covered to date.

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 15 Instruction Set Most instructions execution Time One instruction cycle If XTAL frequency = 20 MHz, then instruction cycle time is 0.2 s or 200 ns (= 4/20

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Microchip PIC Manufacturer Information: Company: Website: http://www.microchip.com Reasons for success: Became the hobbyist's

More information

How Stuff Works: Processors

How Stuff Works: Processors How Stuff Works: Processors Principles and Examples Joe Finney joe@comp.lancs.ac.uk Aims Today we re going to Discuss the purpose for Assembly Language Review the common principles on which Assembly Languages

More information

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features:

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features: M PIC6F84A 8-pin Enhanced Flash/EEPROM 8-Bit Microcontroller Devices Included in this Data Sheet: PIC6F84A Extended voltage range device available (PIC6LF84A) High Performance RISC CPU Features: Only 35

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

Learning Objectives:

Learning Objectives: Topic 5.2.1 PIC microcontrollers Learning Objectives: At the end of this topic you will be able to; Recall the architecture of a PIC microcontroller, consisting of CPU, clock, data memory, program memory

More information

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada A Better Mouse Trap Author: APPLICATION OPERATION: My application uses a PIC12C508 to produce realistic sounding mouse-like coos that all mice are sure to find seductive. The entire circuit should be imbedded

More information

The Islamic University of Gaza Electrical Engineering Department Fall semester

The Islamic University of Gaza Electrical Engineering Department Fall semester The Islamic University of Gaza Electrical Engineering Department 2009-2010 Fall semester Course title & Code Microcontroller Systems Design (EELE 4315) Instructor Prof. Dr. Muhammed ABDELATI Tel 2871 E-mail

More information

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch.

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch. Introduction to microprocessors Feisal Mohammed 3rd January 2001 Additional features 1 Input/Output Ports One of the features that differentiates a microcontroller from a microprocessor is the presence

More information

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background:

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background: Background: Timer2 Interrupts The execution time for routines sometimes needs to be set. This chapter loops at several ways to set the sampling rate. Example: Write a routine which increments an 8-bit

More information

Directives & Memory Spaces. Dr. Farid Farahmand Updated: 2/18/2019

Directives & Memory Spaces. Dr. Farid Farahmand Updated: 2/18/2019 Directives & Memory Spaces Dr. Farid Farahmand Updated: 2/18/2019 Memory Types Program Memory Data Memory Stack Interna PIC18 Architecture Data Memory I/O Ports 8 wires 31 x 21 Stack Memory Timers 21 wires

More information

EE6008-Microcontroller Based System Design Department Of EEE/ DCE

EE6008-Microcontroller Based System Design Department Of EEE/ DCE UNIT- II INTERRUPTS AND TIMERS PART A 1. What are the interrupts available in PIC? (Jan 14) Interrupt Source Enabled by Completion Status External interrupt from INT INTE = 1 INTF = 1 TMR0 interrupt T0IE

More information

President Alan VK6ZWZ Acting Sec. Don VK6HK Vice President Terry VK6ZLT Treasurer Ces VK6AO

President Alan VK6ZWZ Acting Sec. Don VK6HK Vice President Terry VK6ZLT Treasurer Ces VK6AO The West Australian VHF Group Bulletin JANUARY 2002 THE WEST AUSTRALIAN VHF GROUP (INC) PO BOX 189 APPLECROSS e-mail for editor to: pi@multiline.com.au President Alan VK6ZWZ Acting Sec. Don VK6HK Vice

More information

Chapter 3: Further Microcontrollers

Chapter 3: Further Microcontrollers Chapter 3: Further Microcontrollers Learning Objectives: At the end of this topic you will be able to: recall and describe the structure of microcontrollers as programmable assemblies of: memory; input

More information

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS Interfacing to an LCD Module AN587 INTRODUCTION TABLE 1: CONTROL SIGNAL FUNCTIONS This application note interfaces a PIC16CXX device to the Hitachi LM02L LCD character display module. This module is a

More information

Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP

Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 3022: Embedded Systems Discussion Chapter 3 BRANCH, CALL, AND TIME DELAY LOOP Eng. Eman R. Habib February, 2014 2 Embedded

More information

PIC Microcontroller Embedded Systems Hadassah College Spring 2012 PIC Microcontroller Dr. Martin Land

PIC Microcontroller Embedded Systems Hadassah College Spring 2012 PIC Microcontroller Dr. Martin Land PIC Microcontroller 1 (MCU) Widely used device from Microchip Technology Sold > 10 billion PIC controllers Several device families Many devices per family Common development environment Widely available

More information

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors Input/Output 1 Introduction Embedded system functionality aspects Processing Transformation of data Implemented using processors Storage Retention of data Implemented using memory Communication Transfer

More information

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27)

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Lesson 14 Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Name and affiliation of the author: N W K Jayatissa Department of Physics,

More information

Experiment 7:The USART

Experiment 7:The USART University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 7 Experiment 7:The USART Objectives Introduce the USART module of the PIC

More information

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller Maxim > App Notes > 1-Wire DEVICES BATTERY MANAGEMENT Keywords: 1-wire, PICmicro, Microchip PIC, 1-Wire communication, PIC microcontroller, PICmicro microcontroller, 1 wire communication, PICs, micros,

More information

DISCONTINUED. SPI Communication with AMT bit Absolute Encoder

DISCONTINUED. SPI Communication with AMT bit Absolute Encoder ApplicAtion note An-1001 SPI Communication with AMT203 12-bit Absolute Encoder introduction This application note is designed to provide guidelines on how to properly interface with the AMT 203 Absolute

More information

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model)

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model) ELCD SERIES INTRODUCTION ALCD is Serial LCD module which is controlled through Serial communication. Most of existing LCD adopts Parallel communication which needs lots of control lines and complicated

More information

PIC12F529T48A Data Sheet

PIC12F529T48A Data Sheet Data Sheet 14-Pin, 8-Bit Flash Microcontrollers 2012 Microchip Technology Inc. Preliminary DS41634A Note the following details of the code protection feature on Microchip devices: Microchip products meet

More information

PART TWO LISTING 8 PROGRAM TK3TUT8 MOVF PORTA,W ANDLW B ADDWF COUNT,F MOVF COUNT,W MOVWF PORTB GOTO LOOP

PART TWO LISTING 8 PROGRAM TK3TUT8 MOVF PORTA,W ANDLW B ADDWF COUNT,F MOVF COUNT,W MOVWF PORTB GOTO LOOP EPE PIC TUTORIAL V2 JOHN BECKER PART TWO Quite simply the easiest low-cost way to learn about using PIC Microcontrollers! EPE PIC TUTORIAL In this part we play with switches, make noises, count times,

More information

Introduction to PICL and PICLab

Introduction to PICL and PICLab Introduction to PICL and PICLab Introduction Assembling and running your first program: 1)Enter assembly code in the PICL text window. 2)Press the Build button to assemble your code and check for syntax

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan PIC18 Serial Port Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu Serial vs. parallel data transfer 2 Simplex, half-, and full-duplex transfers 3

More information

ALU and Arithmetic Operations

ALU and Arithmetic Operations EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 6th February 2002 CLR Part IV ALU and Arithmetic Operations There are several issues connected with the use of arithmetic

More information

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware:

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: HCMIU - DEE Subject: ERTS RISC MCU Architecture PIC16F877 Hardware 1 Outline Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: Program Memory Data memory organization: banks,

More information

ECE 354 Introduction to Lab 2. February 23 rd, 2003

ECE 354 Introduction to Lab 2. February 23 rd, 2003 ECE 354 Introduction to Lab 2 February 23 rd, 2003 Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system supervisors

More information

16.317: Microprocessor Systems Design I Fall 2015

16.317: Microprocessor Systems Design I Fall 2015 16.317: Microprocessor Systems Design I Fall 2015 Exam 2 Solution 1. (16 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

AN530. Interfacing 93 Series Serial EEPROMs. Interfacing 93CX6 Serial EEPROMs to PIC16C5X Microcontrollers INTRODUCTION THE HARDWARE CONNECTION

AN530. Interfacing 93 Series Serial EEPROMs. Interfacing 93CX6 Serial EEPROMs to PIC16C5X Microcontrollers INTRODUCTION THE HARDWARE CONNECTION AN530 Interfacing 93CX6 Serial EEPROMs to PIC16C5X Microcontrollers INTRODUCTION Microchip Technology Inc. s popular 93C46/56/66 and 93LC46/56/66 Serial EEPROMs feature a three/four wire serial interface

More information

Model Answer Microcontrollers. MCQ Problems Total Q1 Q2

Model Answer Microcontrollers. MCQ Problems Total Q1 Q2 Model Answer Course name: Microcontrollers Exam numer: Midterm - Fall 2017 Course Code: ECE401 Exam Date: Nov 2016 Lecturer: Dr. Ahmed ElShafee Time Allowed: 60 minutes ID:... Name:.... MCQ Prolems Total

More information

Interrupts. ELEC 330 Digital Systems Engineering Dr. Ron Hayne. Images Courtesy of Ramesh Gaonkar and Delmar Learning

Interrupts. ELEC 330 Digital Systems Engineering Dr. Ron Hayne. Images Courtesy of Ramesh Gaonkar and Delmar Learning Interrupts ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic Concepts of Interrupts An interrupt is a communication process A device Requests

More information

Lecture (02) PIC16F84 (I)

Lecture (02) PIC16F84 (I) Lecture (02) PIC16F84 (I) By: Dr. Ahmed ElShafee ١ Review of Memory Technologies The PIC 16 Series PIC 16F84A The PIC 16F84A Memory The Oscillator Instruction Cycle Power up and Reset Parallel ports Technical

More information

Chapter 5. Problems All programming problems should include design pseudo code either as a separate design document on embedded comments in the code.

Chapter 5. Problems All programming problems should include design pseudo code either as a separate design document on embedded comments in the code. Chapter 5. Problems All programming problems should include design pseudo code either as a separate design document on embedded comments in the code. 1S. Prior to execution of the following code segment,

More information

PTK8756B 8 Bit Micro-controller Data Sheet

PTK8756B 8 Bit Micro-controller Data Sheet PTK8756B 8 Bit Micro-controller DEC 15, 2008 Ver1.1 普泰半導體股份有限公司 PORTEK Technology Corporation 公司地址 : 臺北縣新店市寶橋路 235 巷 120 號 4 樓 聯絡電話 : 886-2-89121055 傳真號碼 : 886-2-89121473 公司網址 : www.portek.com.tw Page1

More information