Sign & Magnitude vs 2 s Complement ( Signed Integer Representa:ons)

Size: px
Start display at page:

Download "Sign & Magnitude vs 2 s Complement ( Signed Integer Representa:ons)"

Transcription

1 Sign & Magnitude vs 2 s Complement ( Signed Integer Representa:ons)

2 Overview Unsigned Integers Representa:on (review) binary Signed Integers Representa:on sign & magnitude (S&M) 2 s complement (2 sc) arithme:c ops (+, -, x, /) overflow rules S&M vs 2 sc (pros/cons) Summary

3 Integer Representa0ons Desirable proper:es Only one bit pajern per value Equal number of posi:ve and nega:ve values Maximum range or values No gaps in the range Fast/economic hardware implementa:on of arithme:c ops

4 Integer Representa0ons Bit Pa4ern Unsigned Sign & magnitude 2 s complement

5 Unsigned Integer Representa0ons Binary (review)

6 Rules of Binary Arithme0c Ops Addi0on Subtrac0on = = = = 1 (borrow 1) = = = 0 (carry 1) 1 1 = 0 Mul0plica0on (repeated addi0on) Division (repeated subtrac0on) 0 x 0 = 0 0 x 1 = 0 1 x 0 = 0 1 x 1 = 1 (no carry/borrow) (19) Ex: / (59/3 = 19 r 2) 11 ) (2) remaninder

7 Signed Integer Representa0ons Sign & magnitude (S&M) 2 s complement (2 sc) 1 s complement Excess- 2^n BCD

8 Sign & Magnitude (S&M)

9 sign & magnitude MSB sign bit 0 : posi:ve 1 : nega:ve Remaining bits as in binary rep (magnitude) (- 5) sign magnitude Bit Pa4ern Sign & magnitude

10 sign & magnitude Pros Simple Easy to understand (humans) Range: (- 7, +7) symmetric Cons +0, - 0 Arithme:c Ops difficult ( 2 n 1 1,+2 n 1 1) Signs need to be taken into account explicitly(adders & subtractors) Bit Pa4ern Sign & magnitude

11 sign & magnitude (cons) Arithme:c is difficult/inconsistent (+2) (+2) 1100 (- 4) 1010 (- 2) (- 6) NG 1100 (- 4) NG

12 2 s Complement (2 sc)

13 2 s complement (rep) MSB sign bit 0 : posi:ve / 1 : nega:ve Nega:ve of an integer 2 s complement of its absolute value (2^n x) M1 Take the posi:ve num Flip bits (complement) Add 1 M2 Take the posi:ve num Find first right- most 1 Flip the remaining bits to the lee M1 Ex: (+5) 1010 (flip) 1 (add) 1011 (- 5) (original) 1011 (2 s complement) (2^4)

14 2 s complement MSB sign bit 0 : posi:ve / 1 : nega:ve Nega:ve of an integer 2 s complement of its absolute value (2^n x) M1 Take the posi:ve num Flip bits (complement) Add 1 M2 Take the posi:ve num Find first right- most 1 Flip the remaining bits to the lee M2 Ex: (+5) 0101 (right- most 1) 1011 (flip / to lee) 1011 (- 5) (original) 1011 (2 s complement) (2^4)

15 2 s complement Pros +0 (just one!) Conversions easy/consistent Arithme:c Ops easy X Y = X + (- Y) Simple/fast implementa:on Cons Difficult to read Range: (- 8, +7) asymmetric ( 2 n 1, +2 n 1 1) Bit Pa4ern 2 s complement

16 2 s complement (pros) Conversion posi:ve to/from nega:ve is consistent +2 = 0010 flip the bits à 1101 and add 1 makes 1110 = = 1110 flip the bits à 0001 and add 1 makes 0010 = +2 Arithme:c is easy (same as unsigned binary) no need to keep track of sign (+2) (+2) 1100 (- 4) 1110 (- 2) (- 2) OK 0000 ( 0) OK (last carry on bit ignored)

17 2 s C Arithme0c Ops

18 2 s C Addi0on Follow the same rules as binary addi:on Discard any carry- out bit (last carry) Ex: (- 2) + (- 5) = (- 2) 1011 (- 5) (- 7) Overflow if operands have same signs and they are different from results sign (+A) + (+B) = - C Ex: (- 6) = (- 7) (- A) + (- B) = +C 1010 (- 6) 0011 (+3) ß overflow Overflow never occurs when adding operands with different signs

19 2 s C Subtrac0on Same as the binary addi0on of the minuend to the 2 sc of the the subtrahend (adding a nega:ve number is the same as subtrac:ng a posi:ve one) Discard any carry- out bit (last carry) Ex: 5 3 = (+5) 1101 (- 3) ß 2 sc of 3 = (+2) Overflow if operands have different signs and the results sign is the same as that of the subtrahend (+A) - (- B) = - C Ex: +7 (- 6) = (+7) (- A) - (+B) = +C 1010 (- 6) (+6) ß 2 sc of (- 6)= (- 3) ß overflow Overflow never occurs when subtrac:ng operands with same signs

20 2 s C Mul0plica0on Follow the same rules as binary mul:plica:on First convert the 2 sc numbers to their absolute values and negate the result if the operands sign are different Ex: +3 x - 2 = x (+3) 0010 (+2) ß abs(- 2) (+6) 1010 (- 6) negated (2 sc) Similar rules for Division!

21 Summary Signed Integer Representa:ons Sign & Magnitude 2 s complement 2 s complement is most commonly used in computers Arithme:c ops are easy and consistent Subtrac:on can be done with addi:on (one operator!) Just one 0 Fast implementa:on

22 Integer Representa0ons Bit Pa4ern Unsigned Sign & magnitude 2 s complement

23 End

24 2 s complement Quiz What range of integers can be represented using 16- bit 2 s complement representa:on? A. - 2^15 to 2^15-1 B. - 2^16 to 2^16-1 C. - 16^2 to 16^2 What is the decimal equivalent of the 8- bit 2 s complement number ? A B C What is the 8- bit 2 s representa:on of the decimal number - 18? A B C

25 2 s C Mul0plica0on (Notes) The product of two N- bit numbers requires 2N bits to contain all possible values Do sign extension to 2N- bit number Wasteful! Adapt algorithms to work with 2 sc numbers If the mul:plier is nega:ve à negate (i.e. take the 2 sc of) both operands The mul:plier will be now posi:ve (good!) Because both operands we negated the s:ll have the correct sign

26 2 s C Division Repeated 2 sc subtrac:on. Calculate the 2 s C of the divisor then add to dividend. Next replace the dividend with the quo:ent. Repeat un:l quo:ent is too small for subtrac:on or is zero. Answer is the total of subtrac:on cycles plus the reminder. Ex: 7/ 3 = 2 r (+7) 1101 (- 3) (+4) 1101 (- 3) (+4) 0001 (+1) reminder

27 2 s C <- > decimal 2 sc - > decimal M1: negate and add one Ex: 1011 to decimal à - ( ) = = - 5 M2: For n bits, treat MSB as nega:ve number and add it to the remaining bits (as posi:ve) Ex: 1011 = = = - 5 decimal - > 2 sc M1: subtract one and negate Ex: - 3 = - (0011) à 0010 à 1101 M2: For n bits, treat MSB as nega:ve number and add it to the remaining bits (as posi:ve) Ex:- 3 = à à 1101

28 2 s C Sign Extension To add two numbers, we must represent them with the same number of bits. Replicate the MSB (sign bit) to the lee 4- bit 8- bit 0100 (+4) (+4) 1100 (- 4) (- 4) If we just pad with zeroes on the lee (NG!!!) 4- bit 8- bit 0100 (+4) (+4) 1100 (- 4) (12 not - 4) Similarly, when shieed to right the MSB must be maintained However, when shieed to the lee, a 0 is shieed in! These rules preserve the seman:cs that lee shies mul:ply by two, while right shie divide by two.

UNIT IV: DATA PATH DESIGN

UNIT IV: DATA PATH DESIGN UNIT IV: DATA PATH DESIGN Agenda Introduc/on Fixed Point Arithme/c Addi/on Subtrac/on Mul/plica/on & Serial mul/plier Division & Serial Divider Two s Complement (Addi/on, Subtrac/on) Booth s algorithm

More information

Representa7on of integers: unsigned and signed Conversion, cas7ng Expanding, trunca7ng Addi7on, nega7on, mul7plica7on, shiaing

Representa7on of integers: unsigned and signed Conversion, cas7ng Expanding, trunca7ng Addi7on, nega7on, mul7plica7on, shiaing Today s Topics Representa7on of integers: unsigned and signed Conversion, cas7ng Expanding, trunca7ng Addi7on, nega7on, mul7plica7on, shiaing CSE351 Inaugural Edi7on Spring 2010 1 Encoding Integers C short

More information

Lecture 2: Number Representa2on

Lecture 2: Number Representa2on CSE 30: Computer Organization and Systems Programming Lecture 2: Number Representa2on Diba Mirza University of California, San Diego 1 Levels of Representation High Level Language Program (e.g., C) Compiler

More information

How a computer runs a program. Binary Representa8on and Opera8ons on Binary Data. Opera8ng System 9/17/13. You can view binary file contents

How a computer runs a program. Binary Representa8on and Opera8ons on Binary Data. Opera8ng System 9/17/13. You can view binary file contents Consider the following type defini8on and variable declara8ons: struct persont { struct persont p1; char name[32]; int age; struct persont people[40] float heart_rate; }; (1) What type is each of the following

More information

Bits, Bytes, and Integers

Bits, Bytes, and Integers Bits, Bytes, and Integers B&O Readings: 2.1-2.3 CSE 361: Introduc=on to Systems So@ware Instructor: I- Ting Angelina Le e Note: these slides were originally created by Markus Püschel at Carnegie Mellon

More information

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation Complement Number Systems A complement number system is used to represent positive and negative integers A complement number system is based on a fixed length representation of numbers Pretend that integers

More information

Basic Definition INTEGER DATA. Unsigned Binary and Binary-Coded Decimal. BCD: Binary-Coded Decimal

Basic Definition INTEGER DATA. Unsigned Binary and Binary-Coded Decimal. BCD: Binary-Coded Decimal Basic Definition REPRESENTING INTEGER DATA Englander Ch. 4 An integer is a number which has no fractional part. Examples: -2022-213 0 1 514 323434565232 Unsigned and -Coded Decimal BCD: -Coded Decimal

More information

Semester Transition Point. EE 109 Unit 11 Binary Arithmetic. Binary Arithmetic ARITHMETIC

Semester Transition Point. EE 109 Unit 11 Binary Arithmetic. Binary Arithmetic ARITHMETIC 1 2 Semester Transition Point EE 109 Unit 11 Binary Arithmetic At this point we are going to start to transition in our class to look more at the hardware organization and the low-level software that is

More information

Digital Fundamentals. CHAPTER 2 Number Systems, Operations, and Codes

Digital Fundamentals. CHAPTER 2 Number Systems, Operations, and Codes Digital Fundamentals CHAPTER 2 Number Systems, Operations, and Codes Decimal Numbers The decimal number system has ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 The decimal numbering system has a base of

More information

Binary Addition. Add the binary numbers and and show the equivalent decimal addition.

Binary Addition. Add the binary numbers and and show the equivalent decimal addition. Binary Addition The rules for binary addition are 0 + 0 = 0 Sum = 0, carry = 0 0 + 1 = 0 Sum = 1, carry = 0 1 + 0 = 0 Sum = 1, carry = 0 1 + 1 = 10 Sum = 0, carry = 1 When an input carry = 1 due to a previous

More information

10.1. Unit 10. Signed Representation Systems Binary Arithmetic

10.1. Unit 10. Signed Representation Systems Binary Arithmetic 0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

More information

Chapter 3: part 3 Binary Subtraction

Chapter 3: part 3 Binary Subtraction Chapter 3: part 3 Binary Subtraction Iterative combinational circuits Binary adders Half and full adders Ripple carry and carry lookahead adders Binary subtraction Binary adder-subtractors Signed binary

More information

Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

More information

Chapter 10 Binary Arithmetics

Chapter 10 Binary Arithmetics 27..27 Chapter Binary Arithmetics Dr.-Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

More information

Outline. Integer representa+on and opera+ons Bit opera+ons Floa+ng point numbers. Reading Assignment:

Outline. Integer representa+on and opera+ons Bit opera+ons Floa+ng point numbers. Reading Assignment: Outline Integer representa+on and opera+ons Bit opera+ons Floa+ng point numbers Reading Assignment: Chapter 2 Integer & Float Number Representa+on related content (Sec+on 2.2, 2.3, 2.4) 1 Why we need to

More information

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26)

Lecture Topics. Announcements. Today: Integer Arithmetic (P&H ) Next: continued. Consulting hours. Introduction to Sim. Milestone #1 (due 1/26) Lecture Topics Today: Integer Arithmetic (P&H 3.1-3.4) Next: continued 1 Announcements Consulting hours Introduction to Sim Milestone #1 (due 1/26) 2 1 Overview: Integer Operations Internal representation

More information

Outline. Integer representa+on and opera+ons Bit opera+ons Floa+ng point numbers. Reading Assignment:

Outline. Integer representa+on and opera+ons Bit opera+ons Floa+ng point numbers. Reading Assignment: Outline Integer representa+on and opera+ons Bit opera+ons Floa+ng point numbers Reading Assignment: Chapter 2 Integer & Float Number Representa+on related content (Sec+on 2.2, 2.3, 2.4) 1 Why we need to

More information

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems Decimal & Binary Representation Systems Decimal & binary are positional representation systems each position has a value: d*base i for example: 321 10 = 3*10 2 + 2*10 1 + 1*10 0 for example: 101000001

More information

COMPUTER ARITHMETIC (Part 1)

COMPUTER ARITHMETIC (Part 1) Eastern Mediterranean University School of Computing and Technology ITEC255 Computer Organization & Architecture COMPUTER ARITHMETIC (Part 1) Introduction The two principal concerns for computer arithmetic

More information

Principles of Computer Architecture. Chapter 3: Arithmetic

Principles of Computer Architecture. Chapter 3: Arithmetic 3-1 Chapter 3 - Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 3-2 Chapter 3 - Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition

More information

Floa=ng- Point Numbers

Floa=ng- Point Numbers ECPE 170 Jeff Shafer University of the Pacific Floa=ng- Point Numbers 2 Schedule Today Finish up Floa=ng- Point Numbers Homework #3 assigned Monday Character representa=on Homework #2 due Quiz #1 Wednesday

More information

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010

Number Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris Hui-Ru Jiang Spring 2010 Contents Number systems and conversion Binary arithmetic Representation of negative numbers Addition of two s complement numbers Addition of one s complement numbers Binary s Readings Unit.~. UNIT NUMBER

More information

Number representations

Number representations Number representations Number bases Three number bases are of interest: Binary, Octal and Hexadecimal. We look briefly at conversions among them and between each of them and decimal. Binary Base-two, or

More information

Computer Organization

Computer Organization Computer Organization Register Transfer Logic Number System Department of Computer Science Missouri University of Science & Technology hurson@mst.edu 1 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5,

More information

Chapter 1 Review of Number Systems

Chapter 1 Review of Number Systems 1.1 Introduction Chapter 1 Review of Number Systems Before the inception of digital computers, the only number system that was in common use is the decimal number system which has a total of 10 digits

More information

Binary Arithme-c CS 64: Computer Organiza-on and Design Logic Lecture #2

Binary Arithme-c CS 64: Computer Organiza-on and Design Logic Lecture #2 Binary Arithme-c CS 64: Computer Organiza-on and Design Logic Lecture #2 Ziad Matni Dept. of Computer Science, UCSB Adding this Class The class is s>ll full at 80 people Unless others drops, people on

More information

BINARY SYSTEM. Binary system is used in digital systems because it is:

BINARY SYSTEM. Binary system is used in digital systems because it is: CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Representation of Non Negative Integers

Representation of Non Negative Integers Representation of Non Negative Integers In each of one s complement and two s complement arithmetic, no special steps are required to represent a non negative integer. All conversions to the complement

More information

EE 109 Unit 6 Binary Arithmetic

EE 109 Unit 6 Binary Arithmetic EE 109 Unit 6 Binary Arithmetic 1 2 Semester Transition Point At this point we are going to start to transition in our class to look more at the hardware organization and the low-level software that is

More information

Chapter 1. Digital Systems and Binary Numbers

Chapter 1. Digital Systems and Binary Numbers Chapter 1. Digital Systems and Binary Numbers Tong In Oh 1 1.1 Digital Systems Digital age Characteristic of digital system Generality and flexibility Represent and manipulate discrete elements of information

More information

CS 31: Intro to Systems Binary Arithmetic. Kevin Webb Swarthmore College January 26, 2016

CS 31: Intro to Systems Binary Arithmetic. Kevin Webb Swarthmore College January 26, 2016 CS 31: Intro to Systems Binary Arithmetic Kevin Webb Swarthmore College January 26, 2016 Reading Quiz Unsigned Integers Suppose we had one byte Can represent 2 8 (256) values If unsigned (strictly non-negative):

More information

Numbering systems. Dr Abu Arqoub

Numbering systems. Dr Abu Arqoub Numbering systems The decimal numbering system is widely used, because the people Accustomed (معتاد) to use the hand fingers in their counting. But with the development of the computer science another

More information

MIPS Instruc,ons CS 64: Computer Organiza,on and Design Logic Lecture #8

MIPS Instruc,ons CS 64: Computer Organiza,on and Design Logic Lecture #8 MIPS Instruc,ons CS 64: Computer Organiza,on and Design Logic Lecture #8 Ziad Matni Dept. of Computer Science, UCSB Administra:ve Your midterm exam is next week on Thurs. 2/15 2/8/18 Matni, CS64, Wi18

More information

Chapter 2: Number Systems

Chapter 2: Number Systems Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

More information

Number systems & Bit opera1ons. h#p://xkcd.com/99/

Number systems & Bit opera1ons. h#p://xkcd.com/99/ Number systems & Bit opera1ons h#p://xkcd.com/99/ CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Last 9me: Overview Represen9ng posi9ve integers in base 2, 8, 16 Bit opera9ons

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

Korea University of Technology and Education

Korea University of Technology and Education MEC52 디지털공학 Binary Systems Jee-Hwan Ryu School of Mechanical Engineering Binary Numbers a 5 a 4 a 3 a 2 a a.a - a -2 a -3 base or radix = a n r n a n- r n-...a 2 r 2 a ra a - r - a -2 r -2...a -m r -m

More information

(+A) + ( B) + (A B) (B A) + (A B) ( A) + (+ B) (A B) + (B A) + (A B) (+ A) (+ B) + (A - B) (B A) + (A B) ( A) ( B) (A B) + (B A) + (A B)

(+A) + ( B) + (A B) (B A) + (A B) ( A) + (+ B) (A B) + (B A) + (A B) (+ A) (+ B) + (A - B) (B A) + (A B) ( A) ( B) (A B) + (B A) + (A B) COMPUTER ARITHMETIC 1. Addition and Subtraction of Unsigned Numbers The direct method of subtraction taught in elementary schools uses the borrowconcept. In this method we borrow a 1 from a higher significant

More information

Numerical Representations On The Computer: Negative And Rational Numbers

Numerical Representations On The Computer: Negative And Rational Numbers Numerical Representations On The Computer: Negative And Rational Numbers How are negative and rational numbers represented on the computer? How are subtractions performed by the computer? Subtraction In

More information

World Inside a Computer is Binary

World Inside a Computer is Binary C Programming 1 Representation of int data World Inside a Computer is Binary C Programming 2 Decimal Number System Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Radix-10 positional number system. The radix

More information

Chapter 2 Number System

Chapter 2 Number System Chapter 2 Number System Embedded Systems with ARM Cortext-M Updated: Tuesday, January 16, 2018 What you should know.. Before coming to this class Decimal Binary Octal Hex 0 0000 00 0x0 1 0001 01 0x1 2

More information

Arithmetic Operations on Binary Numbers

Arithmetic Operations on Binary Numbers Arithmetic Operations on Binary Numbers Because of its widespread use, we will concentrate on addition and subtraction for Two's Complement representation. The nice feature with Two's Complement is that

More information

15110 Principles of Computing, Carnegie Mellon University - CORTINA. Digital Data

15110 Principles of Computing, Carnegie Mellon University - CORTINA. Digital Data UNIT 7A Data Representa1on: Numbers and Text 1 Digital Data 10010101011110101010110101001110 What does this binary sequence represent? It could be: an integer a floa1ng point number text encoded with ASCII

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

More information

CHAPTER 6 ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS

CHAPTER 6 ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS CHAPTER 6 ARITHMETIC, LOGIC INSTRUCTIONS, AND PROGRAMS Addition of Unsigned Numbers The instruction ADD is used to add two operands Destination operand is always in register A Source operand can be a register,

More information

Numerical Representations On The Computer: Negative And Rational Numbers

Numerical Representations On The Computer: Negative And Rational Numbers Numerical Representations On The Computer: Negative And Rational Numbers How are negative and rational numbers represented on the computer? How are subtractions performed by the computer? Subtraction In

More information

Chapter 4 Arithmetic Functions

Chapter 4 Arithmetic Functions Logic and Computer Design Fundamentals Chapter 4 Arithmetic Functions Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Iterative combinational

More information

Writing a Fraction Class

Writing a Fraction Class Writing a Fraction Class So far we have worked with floa0ng-point numbers but computers store binary values, so not all real numbers can be represented precisely In applica0ons where the precision of real

More information

Lecture 8: Addition, Multiplication & Division

Lecture 8: Addition, Multiplication & Division Lecture 8: Addition, Multiplication & Division Today s topics: Signed/Unsigned Addition Multiplication Division 1 Signed / Unsigned The hardware recognizes two formats: unsigned (corresponding to the C

More information

MC1601 Computer Organization

MC1601 Computer Organization MC1601 Computer Organization Unit 1 : Digital Fundamentals Lesson1 : Number Systems and Conversions (KSB) (MCA) (2009-12/ODD) (2009-10/1 A&B) Coverage - Lesson1 Shows how various data types found in digital

More information

Binary Addition & Subtraction. Unsigned and Sign & Magnitude numbers

Binary Addition & Subtraction. Unsigned and Sign & Magnitude numbers Binary Addition & Subtraction Unsigned and Sign & Magnitude numbers Addition and subtraction of unsigned or sign & magnitude binary numbers by hand proceeds exactly as with decimal numbers. (In fact this

More information

Chapter 10 - Computer Arithmetic

Chapter 10 - Computer Arithmetic Chapter 10 - Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 10 - Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

Floa.ng Point : Introduc;on to Computer Systems 4 th Lecture, Sep. 10, Instructors: Randal E. Bryant and David R.

Floa.ng Point : Introduc;on to Computer Systems 4 th Lecture, Sep. 10, Instructors: Randal E. Bryant and David R. Floa.ng Point 15-213: Introduc;on to Computer Systems 4 th Lecture, Sep. 10, 2015 Instructors: Randal E. Bryant and David R. O Hallaron Today: Floa.ng Point Background: Frac;onal binary numbers IEEE floa;ng

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

CS 31: Introduction to Computer Systems. 03: Binary Arithmetic January 29

CS 31: Introduction to Computer Systems. 03: Binary Arithmetic January 29 CS 31: Introduction to Computer Systems 03: Binary Arithmetic January 29 WiCS! Swarthmore Women in Computer Science Slide 2 Today Binary Arithmetic Unsigned addition Subtraction Representation Signed magnitude

More information

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence

Computer Sc. & IT. Digital Logic. Computer Sciencee & Information Technology. 20 Rank under AIR 100. Postal Correspondence GATE Postal Correspondence Computer Sc. & IT 1 Digital Logic Computer Sciencee & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key concepts,

More information

4/8/17. Admin. Assignment 5 BINARY. David Kauchak CS 52 Spring 2017

4/8/17. Admin. Assignment 5 BINARY. David Kauchak CS 52 Spring 2017 4/8/17 Admin! Assignment 5 BINARY David Kauchak CS 52 Spring 2017 Diving into your computer Normal computer user 1 After intro CS After 5 weeks of cs52 What now One last note on CS52 memory address binary

More information

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0

Integers. N = sum (b i * 2 i ) where b i = 0 or 1. This is called unsigned binary representation. i = 31. i = 0 Integers So far, we've seen how to convert numbers between bases. How do we represent particular kinds of data in a certain (32-bit) architecture? We will consider integers floating point characters What

More information

Main Memory Organization

Main Memory Organization Main Memory Organization Bit Smallest piece of memory Stands for binary digit Has values 0 (off) or 1 (on) Byte Is 8 consecu>ve bits Word Usually 4 consecu>ve bytes Has an address 8 bits 0 1 1 0 0 1 1

More information

Five classic components

Five classic components CS/COE0447: Computer Organization and Assembly Language Chapter 3 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower

More information

Chapter 5: Computer Arithmetic. In this chapter you will learn about:

Chapter 5: Computer Arithmetic. In this chapter you will learn about: Slide 1/29 Learning Objectives In this chapter you will learn about: Reasons for using binary instead of decimal numbers Basic arithmetic operations using binary numbers Addition (+) Subtraction (-) Multiplication

More information

*Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits

*Instruction Matters: Purdue Academic Course Transformation. Introduction to Digital System Design. Module 4 Arithmetic and Computer Logic Circuits Purdue IM:PACT* Fall 2018 Edition *Instruction Matters: Purdue Academic Course Transformation Introduction to Digital System Design Module 4 Arithmetic and Computer Logic Circuits Glossary of Common Terms

More information

Organisasi Sistem Komputer

Organisasi Sistem Komputer LOGO Organisasi Sistem Komputer OSK 8 Aritmatika Komputer 1 1 PT. Elektronika FT UNY Does the calculations Arithmetic & Logic Unit Everything else in the computer is there to service this unit Handles

More information

MYcsvtu Notes DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes

MYcsvtu Notes DATA REPRESENTATION. Data Types. Complements. Fixed Point Representations. Floating Point Representations. Other Binary Codes DATA REPRESENTATION Data Types Complements Fixed Point Representations Floating Point Representations Other Binary Codes Error Detection Codes Hamming Codes 1. DATA REPRESENTATION Information that a Computer

More information

Binary Codes. Dr. Mudathir A. Fagiri

Binary Codes. Dr. Mudathir A. Fagiri Binary Codes Dr. Mudathir A. Fagiri Binary System The following are some of the technical terms used in binary system: Bit: It is the smallest unit of information used in a computer system. It can either

More information

Representation of Numbers

Representation of Numbers Computer Architecture 10 Representation of Numbers Made with OpenOffice.org 1 Number encodings Additive systems - historical Positional systems radix - the base of the numbering system, the positive integer

More information

Chapter 5 : Computer Arithmetic

Chapter 5 : Computer Arithmetic Chapter 5 Computer Arithmetic Integer Representation: (Fixedpoint representation): An eight bit word can be represented the numbers from zero to 255 including = 1 = 1 11111111 = 255 In general if an nbit

More information

CS 33. Data Representation, Part 2. CS33 Intro to Computer Systems VII 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

CS 33. Data Representation, Part 2. CS33 Intro to Computer Systems VII 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. CS 33 Data Representation, Part 2 CS33 Intro to Computer Systems VII 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Signed Integers Two s complement b w-1 = 0 Þ non-negative number value = b

More information

CS 121 Digital Logic Design. Chapter 1. Teacher Assistant. Hadeel Al-Ateeq

CS 121 Digital Logic Design. Chapter 1. Teacher Assistant. Hadeel Al-Ateeq CS 121 Digital Logic Design Chapter 1 Teacher Assistant Hadeel Al-Ateeq Announcement DON T forgot to SIGN your schedule OR you will not be allowed to attend next lecture. Communication Office hours (8

More information

Learning Objectives. Binary over Decimal. In this chapter you will learn about:

Learning Objectives. Binary over Decimal. In this chapter you will learn about: Ref Page Slide 1/29 Learning Objectives In this chapter you will learn about: Reasons for using binary instead of decimal numbers Basic arithmetic operations using binary numbers Addition (+) Subtraction

More information

Arithmetic and Logical Operations

Arithmetic and Logical Operations Arithmetic and Logical Operations 2 CMPE2c x +y + sum Or in tabular form Binary Addition Carry Out Sum B A Carry In Binary Addition And as a full adder a b co ci sum 4-bit Ripple-Carry adder: Carry values

More information

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer CS 61C: Great Ideas in Computer Architecture Everything is a Number Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13 9/19/13 Fall 2013 - - Lecture #7 1 New- School Machine Structures

More information

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK Computer (Literacy Skills Number representations and memory Lubomír Bulej KDSS MFF UK Number representations? What for? Recall: computer works with binary numbers Groups of zeroes and ones 8 bits (byte,

More information

carry in carry 1101 carry carry

carry in carry 1101 carry carry Chapter Binary arithmetic Arithmetic is the process of applying a mathematical operator (such as negation or addition) to one or more operands (the values being operated upon). Binary arithmetic works

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal.

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal. Page < 1 > Math in MIPS Adding and Subtracting Numbers Adding two binary numbers together is very similar to the method used with decimal numbers, except simpler. When you add two binary numbers together,

More information

Number Systems Base r

Number Systems Base r King Fahd University of Petroleum & Minerals Computer Engineering Dept COE 2 Fundamentals of Computer Engineering Term 22 Dr. Ashraf S. Hasan Mahmoud Rm 22-44 Ext. 724 Email: ashraf@ccse.kfupm.edu.sa 3/7/23

More information

NUMBER OPERATIONS. Mahdi Nazm Bojnordi. CS/ECE 3810: Computer Organization. Assistant Professor School of Computing University of Utah

NUMBER OPERATIONS. Mahdi Nazm Bojnordi. CS/ECE 3810: Computer Organization. Assistant Professor School of Computing University of Utah NUMBER OPERATIONS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 3810: Computer Organization Overview Homework 4 is due tonight Verify your uploaded file before the

More information

Kinds Of Data CHAPTER 3 DATA REPRESENTATION. Numbers Are Different! Positional Number Systems. Text. Numbers. Other

Kinds Of Data CHAPTER 3 DATA REPRESENTATION. Numbers Are Different! Positional Number Systems. Text. Numbers. Other Kinds Of Data CHAPTER 3 DATA REPRESENTATION Numbers Integers Unsigned Signed Reals Fixed-Point Floating-Point Binary-Coded Decimal Text ASCII Characters Strings Other Graphics Images Video Audio Numbers

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE COMPUTER ORGANIZATION AND ARCHITECTURE For COMPUTER SCIENCE COMPUTER ORGANIZATION. SYLLABUS AND ARCHITECTURE Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface,

More information

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures Homework 3 Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) 1 CSCI 402: Computer Architectures Arithmetic for Computers (2) Fengguang Song Department

More information

Number Systems and Their Representations

Number Systems and Their Representations Number Representations Cptr280 Dr Curtis Nelson Number Systems and Their Representations In this presentation you will learn about: Representation of numbers in computers; Signed vs. unsigned numbers;

More information

Chapter 2 Data Representations

Chapter 2 Data Representations Computer Engineering Chapter 2 Data Representations Hiroaki Kobayashi 4/21/2008 4/21/2008 1 Agenda in Chapter 2 Translation between binary numbers and decimal numbers Data Representations for Integers

More information

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System

Moodle WILLINGDON COLLEGE SANGLI. ELECTRONICS (B. Sc.-I) Introduction to Number System Moodle 1 WILLINGDON COLLEGE SANGLI ELECTRONICS (B. Sc.-I) Introduction to Number System E L E C T R O N I C S Introduction to Number System and Codes Moodle developed By Dr. S. R. Kumbhar Department of

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

Arithmetic and Bitwise Operations on Binary Data

Arithmetic and Bitwise Operations on Binary Data Arithmetic and Bitwise Operations on Binary Data CSCI 2400: Computer Architecture ECE 3217: Computer Architecture and Organization Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides

More information

CS 261 Fall Mike Lam, Professor Integer Encodings

CS 261 Fall Mike Lam, Professor   Integer Encodings CS 261 Fall 2018 Mike Lam, Professor https://xkcd.com/571/ Integer Encodings Integers Topics C integer data types Unsigned encoding Signed encodings Conversions Integer data types in C99 1 byte 2 bytes

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

Chapter 4 Section 2 Operations on Decimals

Chapter 4 Section 2 Operations on Decimals Chapter 4 Section 2 Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers.

More information

Computer Architecture and Organization

Computer Architecture and Organization 3-1 Chapter 3 - Arithmetic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 3 Arithmetic 3-2 Chapter 3 - Arithmetic Chapter Contents 3.1 Fixed Point Addition and Subtraction

More information

Adding Binary Integers. Part 4. Negative Binary. Integers. Adding Base 10 Numbers. Adding Binary Example = 10. Arithmetic Logic Unit

Adding Binary Integers. Part 4. Negative Binary. Integers. Adding Base 10 Numbers. Adding Binary Example = 10. Arithmetic Logic Unit Part 4 Adding Binary Integers Arithmetic Logic Unit = Adding Binary Integers Adding Base Numbers Computer's add binary numbers the same way that we do with decimal Columns are aligned, added, and "'s"

More information

9/23/15. Agenda. Goals of this Lecture. For Your Amusement. Number Systems and Number Representation. The Binary Number System

9/23/15. Agenda. Goals of this Lecture. For Your Amusement. Number Systems and Number Representation. The Binary Number System For Your Amusement Number Systems and Number Representation Jennifer Rexford Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com

More information

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation Data Representation II CMSC 313 Sections 01, 02 The conversions we have so far presented have involved only unsigned numbers. To represent signed integers, computer systems allocate the high-order bit

More information

Data Representations & Arithmetic Operations

Data Representations & Arithmetic Operations Data Representations & Arithmetic Operations Hiroaki Kobayashi 7/13/2011 7/13/2011 Computer Science 1 Agenda Translation between binary numbers and decimal numbers Data Representations for Integers Negative

More information

Chapter 5: Computer Arithmetic

Chapter 5: Computer Arithmetic Slide 1/29 Learning Objectives Computer Fundamentals: Pradeep K. Sinha & Priti Sinha In this chapter you will learn about: Reasons for using binary instead of decimal numbers Basic arithmetic operations

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-278: Digital Logic Design Fall Notes - Unit 4. hundreds. ECE-78: Digital Logic Design Fall 6 UNSIGNED INTEGER NUMBERS Notes - Unit 4 DECIMAL NUMBER SYSTEM A decimal digit can take values from to 9: Digit-by-digit representation of a positive integer number (powers

More information