How does the Internet Look Like?

Size: px
Start display at page:

Download "How does the Internet Look Like?"

Transcription

1 Computer s EEE 448 Lecture #2 Dept of Electrical and Electronics Engineering Çukurova University Organizing Functionality s are built from many components ing technologies, Wifi, Bluetooth, Fiber Optic, Cable Modem, DSL styles Circuit switch, packet switch Wired, Wireless, Optical, Satellite s , Web, FTP, Bittorrent, Skype How do we make all this stuff work together?! 2 Problem Scenario More Problems Web Bittorrent Vo Bittorrent Bittorrent This is a nightmare scenario Huge amounts of work to add new apps or media Limits growth and adoption endpoints may not be on the same media Bluetooth Cellular How does the Internet Look Like? Key Questions How do we divide functionality into layers? Routing Congestion control Error checking Security Fairness And many more How do we distribute functionality across devices? Example: who is responsible for security? 5 Switch Router Switch 6 1

2 22/03/2016 Common Services Many applications may share common functionalities Can you think of examples? These functionalities need to be integrated on each application Layering Abstraction Layer: A set of functionalities encapsulated in an object that can be used by other network components Example: The network layer implements the end-to-end (E2E) packet delivery Why layering? Think complexity and common services Layers consist of protocols Or be abstracted in common services 7 8 What are Protocols? Layering An agreement between parties on how communication should take place Module in layered structure s define: Interface to higher layers (API) Interface to peer (syntax & semantics) Actions taken on receipt of a messages Format and order of messages Error handling, termination, ordering of requests, etc. Example: Buying airline ticket Friendly greeting Muttered reply Destination? Istanbul Thank you 9 Example: -to-application channels Host-to-host connectivity Link hardware 10 Layered Stack Layering Characteristics s Layer N Layer 2 Layer 1 Media Modularity Does not specify an implementation Instead, tells us how to organize functionality Encapsulation Interfaces define cross-layer interaction Layers only rely on those below them Flexibility Reuse of code across the network Module implementations may change Unfortunately, there are tradeoffs Interfaces hide information As we will see, may hurt performance 11 Each layer relies on services from layer below and exports services to layer above defines interaction with peer on other hosts Hides implementation - layers can change without disturbing other layers (black box) 12 2

3 A simple layering example RRP: Request/reply protocol MSP: Message streaming protocol HHP: Host-to-host protocol Looking into layers a bit closer Protocols in each layer have Service interface with upper layer/lower layer Peer-to-peer interface with host on same layer The ISO OSI Model ISO: International Organization for Standardization OSI: Open Systems Interconnect Model Host 1 Switch Host 2 Layers All devices communicate Layers implement the peer-to-peer communicate peer-to-peer first three layers 15 The Layers Features Why do you need this layer? What does this layer do? How do you access this layer? How is this layer implemented? 16 Layer Deals with the transmission of 0s and 1s over the physical media Translation of bits into signals Move information between two systems connected by a physical link Specifies how to send one bit Encoding scheme for one bit Voltage levels Timing of signals Examples: coaxial cable, fiber optics, radio frequency transmitters 17 Layer Manages the flow of data over the physical media Responsible for error-free transmission over the physical media Data framing: boundaries between packets Media access control (MAC) Per-hop reliability and flow-control Send one packet between two hosts connected to the same media addressing (e.g. MAC address) Examples:, Wifi, DOCSIS 18 3

4 Layer Addressing and routing the packets Example application at the router If the packet size is large, splits into small packets Deliver packets across the network Handle fragmentation/reassembly Packet scheduling Buffer management Send one packet to a specific destination Define globally unique addresses Maintain routing tables Example: Internet Protocol (), v6 19 Layer Repackage proper and efficient delivery of packages Error free, In sequence, Without duplication Multiplexing/demultiplexing Congestion control Reliable, in-order delivery Send message to a destination Port numbers Reliability/error correction Flow-control information Examples:, 20 Layer Oversee a communication session Establish, Maintain, Terminate Access management Synchronization It depends-nfs ( File System) Token management Insert checkpoints 21 Examples: none Layer Formats data for exchange between points of communication Ex: Between nodes in a network Convert data between different representations E.g. big endian to little endian E.g. ASCII to Unicode It depends(pict,tiff,jpeg,midi,mpeg) Define data formats Apply transformation rules Examples: none 22 Layer User application to network service interface Whatever you want :) Whatever you want :D Whatever you want HTTP, SMTP, Examples: turn on your smartphone and look at the list of apps 23 Encapsulation How does data move through the layers? Data Data 24 4

5 Encapsulation Example The process of embedding a or trailer Real Life Analogy Doesn t know how the Postal network works Label contains Un-packing routing info Doesn t know contents of letter 25 Postal Service 26 Stack in Practice Encapsulation, Revisited Host 1 Switch Host 2 Video FTP Client Data n Link Data n Link FTP Video Server Data n Link 27 HTTP HTTP Segment HTTP Datagram HTTP Frame Web Page Web Page Web Page Web Page Trailer Web Server 28 The Hourglass Orthogonal Planes HTTP, FTP, RTP, IMAP, Jabber, One Internet layer means all networks,, ICMP interoperate Think about the All applications function v4 on all networks difficulty of Room for development above and deploying below v6 But, changing, x, is insanely DOCSIS, hard Fiber, Coax, Twisted Pair, Radio, 29 Data Plane Well cover this later BGP R OSPF Control Plane 30 5

6 Reality Check The layered abstraction is very nice Does it hold in reality? No. Where to Place Functionality How do we distribute functionality across devices? Example: who is responsible for security?????? Firewalls Analyze application layer s Transparent Proxies Simulate application endpoints within the network NATs Break end-to-end network reachability 31 Switch Switch Router The End-to-End Arguments in System Design Saltzer, Reed, and Clark The Sacred Text of the Internet Endlessly debated by researchers and engineers 32 Basic Observation Example: Reliable File Transfer Some applications have end-to-end requirements Security, reliability, etc. Implementing this stuff inside the network is hard Every step along the way must be fail-proof End hosts Can t depend on the network Can satisfy these requirements without network level support 33 Integrity Check Integrity Check Solution 1: Make the network reliable Integrity Check App has to do a check anyway! Solution 2: App level, end-to-end check, retry on failure 34 Example: Reliable File Transfer Please Retry In-network implementation Doesn t reduce host complexity Does increase network complexity Increased overhead for apps that don t need functionality Full functionality can But, in-network performance may be better be built at App level Solution 1: Make the network reliable Solution 2: App level, end-to-end check, retry on failure 35 Moderate Interpretation Think twice before implementing functionality in the network If hosts can implement functionality correctly, implement it a lower layer only as a performance enhancement But do so only if it does not impose burden on applications that do not require that functionality 36 6

7 The Internet Engineering Task Force Standardization is key to network interoperability The hardware/software of communicating parties are often not built by the same vendor yet they can communicate because they use the same protocol Internet Engineering Task Force Based on working groups that focus on specific issues Request for Comments Document that provides information or defines standard Requests feedback from the community Can be promoted to standard under certain conditions consensus in the committee interoperating implementations The Internet Architecture The Internet Architecture / Model FTP HTTP TFTP Net 1 Net 1 FDDI FTP: File Transfer Protocol HTTP: Hypertext Protocol TFTP: Trivial File Transfer Protocol DNS : Transmission Control Protocol : User Datagram Protocol : Internet Protocol Layer programs using the network Layer (/) Management of end-to-end message transmission, error detection and error correction Layer () Handling of datagrams : routing and congestion Layer Management of cost effective and reliable data delivery, access to physical networks Layer Media 40 Comparison of the two architectures Structure : User Datagram Protocol: ICMP: Internet Control Message Protocol : Internet Protocol ARP: Address Resolution Protocol RARP: Reverse ARP processor processor OSI Layer 5-7 OSI Layer 4 ICMP ARP RARP OSI Layer 3 hardware interface OSI Layer

8 / protocol suite proc.a Port Number interface proc.b cable 2 proc.c proc.d proc.e PEX interface interface proc.f IDP SPP proc.g cable 1 interface XNS protocol suite 44 = User Datagram Protocol Hierarchical Addressing Scheme Connection defines the communication link between two processes 16-bit source port # 16-bit dest. port # protocol = internet 32-bit source addr internet 32-bit dest. addr frame type = 48-bit source addr 48-bit dest. addr frame data data data data trailer 45 The Layer layer defines the mechanical, electrical, and timing interfaces to the network. theoretical analysis of data transmission three kinds of transmission media : guided : copper wire and fiber optics Wireless: terrestrial radio satellite To be transmitted, data must be transformed to electromagnetic signals. 47 layer: The Theoretical Basis The number of the highest harmonic passed through is roughly 3000/(b/8) or 24,000/b Relation between data rate and harmonics : Guided Transmission Media Magnetic Media Bandwidth characteristics is excellent Delay characteristics is poor Twisted Pair A twisted pair consists of two insulated copper wires, typically about 1 mm thick. Twisting is done because two parallel wires constitute a fine antenna. Twisted pair categories: Category 3 UTP (Unshielded Twisted Pair) (a) Category 5 UTP (Unshielded Twisted Pair) (b) They are similar to category 3 pairs, but with more twists per centimeter, which results in less crosstalk and a better-quality signal over longer distances, making them more suitable for highspeed computer communication. 8

9 Coaxial Cable It has better shielding than twisted pairs, so it can span longer distances at higher speeds. Two kinds of coaxial cable 50-ohm cable : is commonly used when it is intended for digital transmission. 75-ohm cable: is commonly used for analog transmission and cable television The bandwidth possible depends on the cable quality, length, and signal-to-noise ratio of the data signal. Fiber Optics An optical transmission system has three key components: Light source: Conventionally, a pulse of light indicates a 1 bit and the absence of light indicates a 0 bit. Transmission medium: is an ultra-thin fiber of glass Detector: generates an electrical pulse when light falls on it. Fiber Optics When a light ray passes from one medium to another, for example, from fused silica to air, the ray is refracted (bent) at the silica/air boundary Fiber types multimode fiber single-mode fiber: diameter is reduced to a few wavelengths of light Fiber Optics Fiber Cables multimode fibers : The core is typically 50 microns in diameter, about the thickness of a human hair single-mode fibers : The core is 8 to 10 microns. Fibers can be connected in three different ways Connectors Mechanical Fusion Two kinds of light sources are typically used to do the signaling LEDs (Light Emitting Diodes) Semiconductor lasers receiving end of an optical fiber consists of a photodiode Fiber Optics A comparison of semiconductor diodes and LEDs as light sources. Comparison of Fiber Optics and Copper Wire Fiber can handle much higher bandwidths than copper, Fiber not being affected by power surges, electromagnetic interference, or power failures, Fiber is thin and lightweight, Security in fiber is high, Fiber is a less familiar technology requiring skills not all engineers have, Fibers can be damaged easily by being bent too much, Optical transmission is inherently unidirectional, two-way communication requires either two fibers or two frequency bands on one fiber, Fiber interfaces cost more than electrical interfaces.. 9

10 Last words Layering is a nice way to organize network functions Unified Internet layer decouples apps, enables innovation E2E argument (attempts) to keep layer simple Think carefully when adding functionality into the network 56 10

Lecture 2: Internet Architecture

Lecture 2: Internet Architecture CS 3700 Networks and Distributed Systems Lecture 2: Internet Architecture Revised 1/6/14 Organizing Network Functionality 2 Organizing Network Functionality 2 Networks are built from many components! Networking

More information

CS4700/5700: Network fundamentals

CS4700/5700: Network fundamentals Cristina Nita-Rotaru CS4700/5700: Network fundamentals. 1: Organizing network functionality } Networks are built from many components } Networking technologies } Ethernet, Wifi, Bluetooth, Fiber Optic,

More information

TDTS21 Advanced Networking

TDTS21 Advanced Networking TDTS21 Advanced Networking Lecture 2: Hosts, the Internet architecture, and the E2E arguments Based on slides from D. Choffnes, P. Gill, and J. Rexford Revised Spring 2015 by N. Carlsson End hosts The

More information

CS4700/CS5700 Fundaments of Computer Networks

CS4700/CS5700 Fundaments of Computer Networks CS4700/CS5700 Fundaments of Computer Networks Lecture 5: Internet architecture Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu

More information

CS 268: Internet Architecture & E2E Arguments. Today s Agenda. Scott Shenker and Ion Stoica (Fall, 2010) Design goals.

CS 268: Internet Architecture & E2E Arguments. Today s Agenda. Scott Shenker and Ion Stoica (Fall, 2010) Design goals. CS 268: Internet Architecture & E2E Arguments Scott Shenker and Ion Stoica (Fall, 2010) 1 Today s Agenda Design goals Layering (review) End-to-end arguments (review) 2 1 Internet Design Goals Goals 0 Connect

More information

Page 1. Goals for Today" What Is A Protocol?" CS162 Operating Systems and Systems Programming Lecture 10. Protocols, Layering and e2e Argument"

Page 1. Goals for Today What Is A Protocol? CS162 Operating Systems and Systems Programming Lecture 10. Protocols, Layering and e2e Argument Goals for Today" CS162 Operating Systems and Systems Programming Lecture 10 Protocols, Layering and e2e Argument" What is a protocol?! Layering! End-to-end arguments!! October 3, 2011! Anthony D. Joseph

More information

Lecture 3 Protocol Stacks and Layering

Lecture 3 Protocol Stacks and Layering Lecture 3 Protocol Stacks and ing Hui Zhang School of Computer Science Carnegie Mellon University 15-441 Networking, Fall 2007 http://www.cs.cmu.edu/~srini/15-441/f07/ 1 What is a Communication Network?

More information

Announcements Computer Networking. What is the Objective of the Internet? Today s Lecture

Announcements Computer Networking. What is the Objective of the Internet? Today s Lecture Announcements 15-441 15-441 Computer ing 15-641 Lecture 2 Protocol Stacks Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Sign up for piazza: https://piazza.com/cmu/fall2016/15441641 P1 will

More information

Introduction to Networks

Introduction to Networks Introduction to Networks Khaled Harras School of Computer Science Carnegie Mellon University 15-349 Computer and Network Security Fall 2012 Some material borrowed from Hui Zhang and Adrian Perrig 1 Early

More information

Introduction to computer networking

Introduction to computer networking edge core Introduction to computer networking Comp Sci 3600 Security Outline edge core 1 2 edge 3 core 4 5 6 The edge core Outline edge core 1 2 edge 3 core 4 5 6 edge core Billions of connected computing

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 17: Internet architecture Prof. Alan Mislove (amislove@ccs.neu.edu) Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion

More information

CS 268: Lecture 4 (Internet Architecture & E2E Arguments)

CS 268: Lecture 4 (Internet Architecture & E2E Arguments) CS 268: Lecture 4 (Internet Architecture & E2E Arguments) Today s Agenda Course Theme Course overview History of the Internet Design goals Layering (review) Focus on the Internet Other topics covered,

More information

What s a protocol? What s a protocol? A closer look at network structure: What s the Internet? What s the Internet? What s the Internet?

What s a protocol? What s a protocol? A closer look at network structure: What s the Internet? What s the Internet? What s the Internet? What s the Internet? PC server laptop cellular handheld access points wired s connected computing devices: hosts = end systems running apps communication s fiber, copper, radio transmission rate = bandwidth

More information

What s a protocol? What s a protocol? A closer look at network structure: What s the Internet? Hardware view: What s the Internet?

What s a protocol? What s a protocol? A closer look at network structure: What s the Internet? Hardware view: What s the Internet? What s the Internet? Hardware view: What s the Internet? Hardware view: PC server wireless laptop cellular handheld access points wired s connected computing devices: hosts = end systems running apps communication

More information

Need For Protocol Architecture

Need For Protocol Architecture Chapter 2 CS420/520 Axel Krings Page 1 Need For Protocol Architecture E.g. File transfer Source must activate communications path or inform network of destination Source must check destination is prepared

More information

Need For Protocol Architecture

Need For Protocol Architecture Chapter 2 CS420/520 Axel Krings Page 1 Need For Protocol Architecture E.g. File transfer Source must activate communications path or inform network of destination Source must check destination is prepared

More information

Internet Design Principles

Internet Design Principles Internet Design Principles EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information

Computer Communication Networks Lecture No. 4

Computer Communication Networks Lecture No. 4 Computer Network Lectures Computer Communication Networks Lecture No. 4 6- Physical Layer: we will look at the lowest layer. It defines the mechanical, electrical, and timing interfaces to the network.

More information

416 Distributed Systems. Networks review; Day 1 of 2 Jan 5 + 8, 2018

416 Distributed Systems. Networks review; Day 1 of 2 Jan 5 + 8, 2018 416 Distributed Systems Networks review; Day 1 of 2 Jan 5 + 8, 2018 1 Distributed Systems vs. Networks Low level (c/go) Run forever Support others Adversarial environment Distributed & concurrent Resources

More information

Switching Networks (Fall 2010) EE 586 Communication and. August 27, Lecture 2. (modified by Cheung for EE586; based on K&R original) 1-1

Switching Networks (Fall 2010) EE 586 Communication and. August 27, Lecture 2. (modified by Cheung for EE586; based on K&R original) 1-1 EE 586 Communication and Switching Networks (Fall 2010) Lecture 2 August 27, 2010 (modified by Cheung for EE586; based on K&R original) 1-1 Announcements Read Chapter 1 First homework is due 9/3 In Blackboard

More information

Computer Network : Lecture Notes Nepal Engineering College Compiled by: Junior Professor: Daya Ram Budhathoki Nepal Engineering college, Changunarayan

Computer Network : Lecture Notes Nepal Engineering College Compiled by: Junior Professor: Daya Ram Budhathoki Nepal Engineering college, Changunarayan Computer Network : Lecture Notes Nepal Engineering College Compiled by: Junior Professor: Daya Ram Budhathoki Nepal Engineering college, Changunarayan Chapter3: OSI Reference Model: Network Software: Network

More information

Parts of a Network. app. router. link. host. Computer Networks 2

Parts of a Network. app. router. link. host. Computer Networks 2 Network Components Parts of a Network app host router link Computer Networks 2 Parts of a Network app host router link Computer Networks 3 Component Names Component Function Example Application, or app,

More information

Page # Last Time. Lecture 2 Protocol Stacks and Layering. Today s Lecture. Why protocols and layering? What is a Protocol.

Page # Last Time. Lecture 2 Protocol Stacks and Layering. Today s Lecture. Why protocols and layering? What is a Protocol. Last Time Lecture Protocol Stacks and Layering David Andersen School of Computer Science Carnegie Mellon University - ing, Fall 00 http://www.cs.cmu.edu/~srini/-/f0/ The Big Picture» Goals: Efficiency

More information

Layering in Networked computing. OSI Model TCP/IP Model Protocols at each layer

Layering in Networked computing. OSI Model TCP/IP Model Protocols at each layer Layering in Networked computing OSI Model TCP/IP Model Protocols at each layer Learning outcomes Understand the need of layering in Networked computing Understand the OSI model and the tcp/ip model Understand

More information

Component Function Example

Component Function Example Network Components Component Names Component Function Example Application, or app, user Uses the network Skype, itunes, Amazon Host, or end-system, edge device, node, source, sink Router, or switch, node,

More information

Chapter 1. Computer Networks and the Internet

Chapter 1. Computer Networks and the Internet Chapter 1 Computer Networks and the Internet Internet traffic What s the Internet? (hardware) PC server wireless laptop cellular handheld wired links millions of connected computing devices: hosts = end

More information

Peer entities. Protocol Layering. Protocols. Example

Peer entities. Protocol Layering. Protocols. Example Peer entities Protocol Layering An Engineering Approach to Computer Networking Customer A and B are peers Postal worker A and B are peers Protocols A protocol is a set of rules and formats that govern

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 3: Protocols & Layering Alex Snoeren (standing in for Stefan Savage) Yesterday How to send data from point A to point B? January 13, 2005 CSE 123A -- Lecture

More information

ECE 4400:427/527 - Computer Networks Spring 2017

ECE 4400:427/527 - Computer Networks Spring 2017 ECE 4400:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 3: Network Architectures Dr. Nghi Tran (ECE-University of Akron) ECE 4400:427/527

More information

Course on Computer Communication and Networks. Lecture 1 Chapter 1: Introduction Part A: Internet, Protocol Layering and Data

Course on Computer Communication and Networks. Lecture 1 Chapter 1: Introduction Part A: Internet, Protocol Layering and Data Course on Computer Communication and Networks Lecture 1 Chapter 1: Introduction Part A: Internet, Protocol Layering and Data CTH EDA344/ GU DIT 420 Based on the book Computer Networking: A Top Down Approach,

More information

Transmission Media. Criteria for selection of media. Criteria for selection of media 2/17/2016. Chapter 3: Transmission Media.

Transmission Media. Criteria for selection of media. Criteria for selection of media 2/17/2016. Chapter 3: Transmission Media. Chapter 3: Transmission Media Marks- 20 Transmission Media Transmission media carries the information from sender to receiver. Different types of cables or waves to transmit data. Data is transmitted through

More information

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications Data and Computer Communications Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based s 1 Need For Protocol Architecture data exchange can involve complex procedures better if task broken into subtasks

More information

Chapter 2 Network Architectures A global view

Chapter 2 Network Architectures A global view Chapter 2 Architectures A global view Professor Dongning uo Architecture Architecture, n. 2a: formation or construction as or as if as the result of conscious act, 2b: a unifying or coherent form or structure.

More information

CS 204: Advanced Computer Networks

CS 204: Advanced Computer Networks CS 204: Advanced Computer Networks Jiasi Chen Lectures: MWF 12:10-1pm Humanities and Social Sciences 1403 http://www.cs.ucr.edu/~jiasi/teaching/cs204_spring17/ 1 Why Networks? Supports the applications

More information

end systems, access networks, links 1.3 network core

end systems, access networks, links 1.3 network core Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core packet switching, circuit switching, work structure 1.4 delay, loss, throughput in works 1.5 protocol layers,

More information

Lecture 2 Protocol Stacks. Last Tuesday

Lecture 2 Protocol Stacks. Last Tuesday Lecture 2 Protocol Stacks David Andersen School of Computer Science Carnegie Mellon University 1-441 ing, Spring 200 http://www.cs.cmu.edu/~srini/1-441/s0/ 1 Last Tuesday The Big Picture» Goals: Efficiency

More information

Network Architecture

Network Architecture Unit 7 Network Architecture Acknowledgments: These slides were originally developed by Prof. Jean Walrand for EE122. The past and current EE122 instructors including Kevin Fall, Abhay Parekh, Shyam Parekh,

More information

E&CE 358: Tutorial 1. Instructor: Sherman (Xuemin) Shen TA: Miao Wang

E&CE 358: Tutorial 1. Instructor: Sherman (Xuemin) Shen TA: Miao Wang E&CE 358: Tutorial 1 Instructor: Sherman (Xuemin) Shen TA: Miao Wang Email: m59wang@uwaterloo.ca 1 About Tutorials TA: Miao Wang Office: EIT 3133; Tutorials: Th 4:30 5:20 pm Topics Supplementary knowledge

More information

Special expressions, phrases, abbreviations and terms of Computer Networks

Special expressions, phrases, abbreviations and terms of Computer Networks access access point adapter Adderssing Realm ADSL (Asymmetrical Digital Subscriber Line) algorithm amplify amplitude analog antenna application architecture ARP (Address Resolution Protocol) AS (Autonomous

More information

Chapter 1: introduction

Chapter 1: introduction Chapter 1: introduction our goal: v get feel and terminology v more depth, detail later in course v approach: use Internet as example overview: v what s the Internet? v what s a protocol? v edge; hosts,

More information

Network Architecture. TOC Architecture

Network Architecture. TOC Architecture Network Architecture Introduction Layering Example Internet Layers First Look Layering Step by Step Downside of Layering Interconnecting Networks The Internet TOC Architecture Introduction Issues: Inter-operability

More information

Physical Layer Part 3

Physical Layer Part 3 Physical Layer Part 3 Transmission Media Networks: Transmission Media 1 Transmission Media Transmission medium:: the physical path between transmitter and receiver. Repeaters or amplifiers may be used

More information

Communicating over the Network

Communicating over the Network Communicating over the Network Network Fundamentals Chapter 2 Version 4.0 1 Network Structure The elements of communication 3 common elements of communication Message source people/electronic devices need

More information

Networking Applications

Networking Applications Networking Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport 1 Outline Internet Layers Internet Data Packet transmission

More information

3 Chapter Introduction. 3.2 Copper Cable

3 Chapter Introduction. 3.2 Copper Cable 3 Chapter 3 3.1 Introduction The Network Media is the device that physically carries the data from computer to computer. The three major types of network media are: Copper Cable Fiber-Optic Cable Wireless

More information

CS 640: Introduction to Computer Networks. Today s Lecture. Page 1

CS 640: Introduction to Computer Networks. Today s Lecture. Page 1 CS 640: Introduction to Computer Networks Aditya Akella Lecture 2 Layering, Protocol Stacks, and Standards 1 Today s Lecture Layers and Protocols A bit about s 2 Network Communication: Lots of Functions

More information

Announcements. TAs office hours: Mohamed Grissa: Mohamed Alkalbani:

Announcements. TAs office hours: Mohamed Grissa: Mohamed Alkalbani: Announcements TAs office hours: Mohamed Grissa: grissam@oregonstate.edu Tuesday: 4-5 Friday: 11-12 Mohamed Alkalbani: alkalbmo@oregonstate.edu Wednesday: 11-12 Thursday: 11-12 Lecture slides: Will be posted

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 36 I/O : Networks 2008-04-25 TA Brian Zimmer CS61C L36 I/O : Networks (1) inst.eecs/~cs61c-th NASA To Develop Small Satellites NASA has

More information

Chapter 12. Network Organization and Architecture

Chapter 12. Network Organization and Architecture Chapter 12 Network Organization and Architecture Chapter 12 Objectives Learn the basic physical components of networks. Become familiar with routing protocols. 2 Computer networks are often classified

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7 CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 7 Announcements Reminder: Project 1 is due on Thursday. 2/1/07 CIS/TCOM 551 2 Network Architecture General blueprints that guide the

More information

Physical Layer V What does the physical layer provide?

Physical Layer V What does the physical layer provide? SEMESTER 1 Chapter 8 Physical Layer V 4.0 90 Points 8.1.1 What does the physical layer provide? What are the four elements of delivering frames across the media? 8.1.2 What are the three basic forms of

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.1 Chapter 1 Introduction Text Book for this course Computer Networking:

More information

OSI Model. Teran Subasinghe MBCS, Bsc.(Hons) in Computer Science - University of Greenwich, UK

OSI Model. Teran Subasinghe MBCS, Bsc.(Hons) in Computer Science - University of Greenwich, UK OSI Model Teran Subasinghe MBCS, Bsc.(Hons) in Computer Science - University of Greenwich, UK What is OSI Model? Open Systems Interconnection Reference Model Developed in 1984 by the International Standards

More information

end systems, access networks, links circuit switching, packet switching, network structure

end systems, access networks, links circuit switching, packet switching, network structure Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge end systems, access networks, links 1.3 Network core circuit switching, packet switching, network structure 1.4 Delay, loss and throughput

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 2 Aims:- Communications System Model and Concepts Protocols and Architecture Analog and Digital Signal Concepts Frequency Spectrum and Bandwidth 1 A Communications Model 2 Communications Tasks Transmission

More information

Layered Architecture

Layered Architecture 1 Layered Architecture Required reading: Kurose 1.7 CSE 4213, Fall 2006 Instructor: N. Vlajic Protocols and Standards 2 Entity any device capable of sending and receiving information over the Internet

More information

Lecture Outline. Lecture 2. OSI model and networking. The OSI model and networking. The OSI model and networking. The OSI model and networking

Lecture Outline. Lecture 2. OSI model and networking. The OSI model and networking. The OSI model and networking. The OSI model and networking Lecture 2 The OSI model Chapter 2, specifically pages 42-58 Dave Novak School of Business Administration, University of Vermont Sources: 1) Network+ Guide to Networks, Dean 2013 2) Comer, Computer Networks

More information

Network Architecture. EE 122, Fall 2013 Sylvia Ratnasamy

Network Architecture. EE 122, Fall 2013 Sylvia Ratnasamy Network Architecture EE 122, Fall 2013 Sylvia Ratnasamy http://inst.eecs.berkeley.edu/~ee122/ Administrivia l Enrollment l l Discussion sections are *not* the bottleneck to enrollment State of the waitlist

More information

The OSI Model. Open Systems Interconnection (OSI). Developed by the International Organization for Standardization (ISO).

The OSI Model. Open Systems Interconnection (OSI). Developed by the International Organization for Standardization (ISO). Network Models The OSI Model Open Systems Interconnection (OSI). Developed by the International Organization for Standardization (ISO). Model for understanding and developing computer-to-computer communication

More information

Communication Networks

Communication Networks Session 2. Application and Layered Architectures Dongsoo S. Kim Electrical and Computer Engineering. Indiana U. Purdue U. Indianapolis Communication s Various services and flexibility architectures Grouping

More information

Objectives. Learn how computers are connected. Become familiar with different types of transmission media

Objectives. Learn how computers are connected. Become familiar with different types of transmission media Objectives Learn how computers are connected Become familiar with different types of transmission media Learn the differences between guided and unguided media Learn how protocols enable networking 2 Objectives

More information

Lecture 2: Links and Signaling

Lecture 2: Links and Signaling Lecture 2: Links and Signaling CSE 123: Computer Networks Alex C. Snoeren DISCUSSION @7pm Tomorrow Our Problem Communications is complicated Modulation and encoding bits Splitting sequences of bits into

More information

416 Distributed Systems. Networks review; Day 2 of 2 Fate sharing, e2e principle And start of RPC Jan 10, 2018

416 Distributed Systems. Networks review; Day 2 of 2 Fate sharing, e2e principle And start of RPC Jan 10, 2018 416 Distributed Systems Networks review; Day 2 of 2 Fate sharing, e2e principle And start of RPC Jan 10, 2018 1 Last Time Modularity, Layering, and Decomposition Example: UDP layered on top of IP to provide

More information

end systems, access networks, links circuit switching, packet switching, network structure

end systems, access networks, links circuit switching, packet switching, network structure Introduction Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge end systems, access networks, links 1.3 Network core circuit switching, packet switching, network structure 1.4 Delay, loss and

More information

Since enrollment is very small this semester, we have flexibilty. Traditional lecture Assigned reading, and then student(s) present during class time

Since enrollment is very small this semester, we have flexibilty. Traditional lecture Assigned reading, and then student(s) present during class time Syllabus You can go to cs.rpi.edu and then Faculty and my website from my profile Or you can go to www.cs.rpi.edu/~holzbh Or to be very direct, you can go to www.cs.rpi.edu/~holzbh/ccn18/index.php 1 Textbook

More information

Chapter -4 OSI Reference Model

Chapter -4 OSI Reference Model Chapter -4 OSI Reference Model Objectives Concept of Reference Model. OSI Reference Model Concept. Layers of OSI Reference Model. 4.1 Introduction Layered Architecture, Peer-to- Peer Processes, Interfaces

More information

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS Prof. Dr. Hasan Hüseyin BALIK (2 nd Week) 2. Protocol Architecture, TCP/IP, and Internet-Based Applications 2.Outline The Need for a Protocol Architecture

More information

Networking Background

Networking Background Networking Background CMSC 414 October 30, 2017 General Overview We are going to take a quick look at What a network protocol is The abstract design of the network The 7-Layer network stack Protocols We

More information

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski Operating Systems 16. Networking Paul Krzyzanowski Rutgers University Spring 2015 1 Local Area Network (LAN) LAN = communications network Small area (building, set of buildings) Same, sometimes shared,

More information

Lecture 2: Internet Structure

Lecture 2: Internet Structure Lecture 2: Internet Structure COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose and K.W. Ross,

More information

EECS 228a Lecture 1 Overview: Networks. Jean Walrand

EECS 228a Lecture 1 Overview: Networks. Jean Walrand EECS 228a Lecture 1 Overview: Networks Jean Walrand www.eecs.berkeley.edu/~wlr Fall 2002 Course Information Instructor: Jean Walrand n Office Hours: M-Tu 1:00-2:00 Time/Place: MW 2:00-3:30 in 285 Cory

More information

Chapter 2 Communicating Over the Network

Chapter 2 Communicating Over the Network Chapter 2 Communicating Over the Network Elements of Communication Communicating the Messages Continuous stream of bits 00101010100101010101010101010101010 I have to wait Single communications (e.g. video,

More information

The Internet. Overview. Network building blocks

The Internet. Overview. Network building blocks The Internet Lecture 24 Based in part on material from Computer Networks: A Systems Approach by Larry Peterson & Bruce Davie CS 638 Web Programming Overview Network building blocks Nodes: PC, special-purpose

More information

CS61C : Machine Structures

CS61C : Machine Structures CS61C L36 I/O : Networks (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 36 I/O : Networks TA Sameer The Yellow Dart Iyengar inst.eecs/~cs61c-ti Next year: Forget Elmo Get a Robot

More information

Physical Layer Part 3

Physical Layer Part 3 Physical Layer Part 3 Transmission Media Networks: Transmission Media 1 Transmission Media Transmission medium:: the physical path between transmitter and receiver. Repeaters or amplifiers may be used

More information

Network Media and Layer 1 Functionality

Network Media and Layer 1 Functionality Network Media and Layer 1 Functionality BSAD 146 Dave Novak Dean, Chapter 3, pp 93-124 Objectives Introduction to transmission media Basic cabling Coaxial Twisted pair Optical fiber Basic wireless (NIC)

More information

Number: Passing Score: 750 Time Limit: 120 min File Version: 1.0. Microsoft Exam Name: Identity with Windows Server 2016 (beta)

Number: Passing Score: 750 Time Limit: 120 min File Version: 1.0. Microsoft Exam Name: Identity with Windows Server 2016 (beta) 70-742 Number: 70-742 Passing Score: 750 Time Limit: 120 min File Version: 1.0 Microsoft 70-742 Exam Name: Identity with Windows Server 2016 (beta) Sections 1. Understanding Local Area Networks 2. Defining

More information

Section 1.1: Networking Overview

Section 1.1: Networking Overview Section 1.1: Networking Overview This section provides an introduction to networking. Students will become familiar with the following aspects of a network: Components of a network o Computers o Transmission

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Networking Introduction Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Computer Networking A background of important areas

More information

Part VI. Appendixes. Appendix A OSI Model and Internet Protocols Appendix B About the CD

Part VI. Appendixes. Appendix A OSI Model and Internet Protocols Appendix B About the CD Part VI Appendixes Appendix A OSI Model and Internet Protocols Appendix B About the CD OSI Model and Internet Protocols APPENDIX A In this appendix, you will Learn about the OSI model Review the network

More information

CCNA 1 Capítulo 8 OSI Physical Layer. 2004, Cisco Systems, Inc. All rights reserved.

CCNA 1 Capítulo 8 OSI Physical Layer. 2004, Cisco Systems, Inc. All rights reserved. CCNA 1 Capítulo 8 OSI Physical Layer 1 Physical Layer Protocols & Services There are three basic forms of network media on which data is represented: Copper cable Fiber Wireless 2 Physical Layer Protocols

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 206 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture #2 preview: Data Communications

More information

The Network Access Layer. In This Lecture. Network Access Layer. Hour 3

The Network Access Layer. In This Lecture. Network Access Layer. Hour 3 The Network Access Layer Hour 3 In This Lecture Explain what the Network Access layer is Discuss how TCP/IP's Network Access layer relates to the OSI networking model Explain what a network architecture

More information

The data transmission mode describes the direction of data flow. It is either simplex, half duplex or full duplex.

The data transmission mode describes the direction of data flow. It is either simplex, half duplex or full duplex. Data transmission Data transmission on a network involves serial transmission. It transfers data by sending one bit at a time through a single line. All data on a network is transferred using a data transmission

More information

Network Architecture Models

Network Architecture Models School of Business Eastern Illinois University Network Architecture Models (September 8, 2009) Abdou Illia, Fall 2009 Learning Objectives 2 Discuss the OSI reference Model Discuss the Internet Model Compare

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 36 I/O : Networks TA Sameer The Yellow Dart Iyengar inst.eecs/~cs61c-ti Next year: Forget Elmo Get a Robot buddy New human-like robots that

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

COMPONENTS OF DATA COMMUNICATION

COMPONENTS OF DATA COMMUNICATION COMPONENTS OF DATA COMMUNICATION ANALOG AND DIGITAL TRANSMISSION An analog signal is one that is continuous with respect to time and may take on any value within a given range of values. Eg Human voice.

More information

Introduction to Information Technology Turban, Rainer and Potter John Wiley & Sons, Inc. Copyright 2005

Introduction to Information Technology Turban, Rainer and Potter John Wiley & Sons, Inc. Copyright 2005 Introduction to Information Technology Turban, Rainer and Potter John Wiley & Sons, Inc. Copyright 2005 Network and Telecommunications Basics Chapter Outline The telecommunications system Network services

More information

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples.

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples. About the Tutorial Internet Protocol version 4 (IPv4) is the fourth version in the development of the Internet Protocol (IP) and the first version of the protocol to be widely deployed. IPv4 is described

More information

Module 11. OSI Model, Network Devices, and Network Standards

Module 11. OSI Model, Network Devices, and Network Standards Module 11 OSI Model, Network Devices, and Network Standards Objectives 1. Networking A.Differentiate between layers of the OSI model B.2.9 Compare network devices C.Compare network standards D.2.7 Compare

More information

Multiplexing (Recap)

Multiplexing (Recap) Multiplexing (Recap) Multiplexing How to transfer data between two sites once there is a digital link between them? Analog to Digital (A2D) conversion Human voice is a continuous signal in the range 0-4

More information

Introduction to Information Science and Technology 2017 Networking I. Sören Schwertfeger 师泽仁

Introduction to Information Science and Technology 2017 Networking I. Sören Schwertfeger 师泽仁 I Sören Schwertfeger 师泽仁 Outline Internet History of the Internet Internet Structure Internet Protocols Network layer details 1. Physical Layer 2. Data Link Layer 3. Network Layer Internet: Huge network

More information

CS321: Computer Networks Introduction to Computer Networks and Internet

CS321: Computer Networks Introduction to Computer Networks and Internet CS321: Computer Networks Introduction to Computer Networks and Internet Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in What is Data Communication? Data communications

More information

Page 1. Review: The Problem" Software System Modularity" Solution: Intermediate Layers"

Page 1. Review: The Problem Software System Modularity Solution: Intermediate Layers Review: The Problem" CS162 Operating Systems and Systems Programming Lecture 16 Layering" Transmission" Media" Skype " SSH" NFS" Coaxial " cable" Fiber" optic" HTTP" Packet" Radio" March 31, 2014 Anthony

More information

Networking Jamie Tees

Networking Jamie Tees Ethernet is the main networking technology, UTP (Unshielded Twisted Pair) cabling is the main networking cable types, this cabling uses RJ-45 connectors either end. While UTP is the main type we have STP

More information

Guide to Networking Essentials, 6 th Edition. Chapter 6: Network Reference Models and Standards

Guide to Networking Essentials, 6 th Edition. Chapter 6: Network Reference Models and Standards Guide to Networking Essentials, 6 th Edition Chapter 6: Network Reference Models and Standards Objectives Explain the OSI reference model layers and their relationship to hardware and software Explain

More information

CS 416: Operating Systems Design April 11, 2011

CS 416: Operating Systems Design April 11, 2011 Modes of connection Operating Systems Design 3. Client-Server Networking Paul Krzyzanowski pxk@cs.rutgers.edu Circuit-switched dedicated path guaranteed (fixed) bandwidth [almost] constant latency Packet-switched

More information

Computer Networks and the Internet. CMPS 4750/6750: Computer Networks

Computer Networks and the Internet. CMPS 4750/6750: Computer Networks Computer Networks and the Inter CMPS 4750/6750: Computer Networks Outline What Is the Inter? Access Networks Packet Switching and Circuit Switching A closer look at delay, loss, and throughput Interconnection

More information

Computer Communication Networks

Computer Communication Networks Contents ELL 785 Computer Communication Networks Introduction Lecture 1 Taxonomy of communication works Computer Communication Networks Building a work ed work architecture 1-1 Introduction PC server wireless

More information