Hello and welcome to this Renesas Interactive module that covers the Independent watchdog timer found on RX MCUs.

Size: px
Start display at page:

Download "Hello and welcome to this Renesas Interactive module that covers the Independent watchdog timer found on RX MCUs."

Transcription

1 Hello and welcome to this Renesas Interactive module that covers the Independent watchdog timer found on RX MCUs. 1

2 This course covers specific features of the independent watchdog timer on RX MCUs. If you need basic information on watchdog timers please refer to the Watchdog Timer Overview Course. If you are looking for information that applies to a specific RX group please refer to that group's Technical Marketing Overview Course. In this course we will cover the watchdog timer s block diagram, the available clocking and timeout options, how to start and refresh the watchdog, what happens when a counter underflows, general usage notes, and how to use the independent watchdog timer with the RX s watchdog timer. 2

3 This figure shows the block diagram of a typical Independent watchdog timer on an RX MCU. First notice the independent watchdog timer s registers which include the IWDT refresh register, control register, and status register. Note that these registers are accessed using the peripheral clock as can be seen by the PCLK coming in from the left. To the right of the registers you will see the different clocks that can be selected for the independent watchdog. Notice that all of the clock options are based upon the on-chip oscillator. Next we can see the 14-bit down counter of the independent watchdog. If this counter underflows the IWDT control circuit can issue a reset command to the MCU. 3

4 As shown on the block diagram slide, all the independent watchdog's clocking options are based upon the on-chip oscillator or OCO. By setting the CKS bits in the IWDT's control register the user can select a divisor of between 1 and 256 for the on-chip oscillator. Different timeout values can also be chosen for the independent watchdog. Whatever value is chosen will be the value that is put into the watchdog's 14-bit counter when it is refreshed. Since the independent watchdog is a down counting timer, the larger the value chosen, the longer the timeout. With these options the user has a large timeout range to choose from. The shortest timeout would be to use the on-chip oscillator with no division and a timeout value of hex 3FF which is 1024 OCO cycles. With an on-chip oscillator frequency of 125kHz this gives the user a timeout value of 8.192ms. The longest timeout that could be achieved would be to use a 256 divisor on the on-chip oscillator and have the timeout value be hex 3FFF or 4,194,304 on-chip oscillator cycles. Using the 125kHz OCO frequency this would give the user a timeout value of around 33 and a half seconds. An important thing to note is that the IWDTCR register can only be written once per reset. Once the register has been written the MCU has an internal lock bit that prevents it from being written again until after a reset. This means that the clock and timeout values cannot be changed after the user has written their initial values. 4

5 Starting and refreshing the independent watchdog timer are done in the same manner, which is to write to the independent watchdog s refresh register. To write the refresh register hex 00 should first be written and then hex FF. If this sequence is not maintained then the watchdog will not be refreshed. Here are some examples of invalid write sequences. This first example is invalid because the first write was not hex 00, but hex 23h. In this case, the first write was correct but the second write was hex 54 when it should have been hex FF. Writing something other than hex FF after writing hex 00 also invalidates the sequence as shown here. Let s look at two valid write sequences. The first is the normal case where writing hex 00 is followed by writing hex FF. It is also valid to have multiple writes of hex 00 as long as hex FF follows one of them. When a valid write sequence is performed the counter will be refreshed with the value chosen by the TOPS bits in the independent watchdog s control register. 5

6 What happens when the independent watchdog underflows is a reset of the MCU. This figure shows an example of IWDT operation. The IWDT starts counting when the timer is refreshed. When a refresh occurs, the counters value is reset to the value chosen by the TOPS bits in the IWDT's control register. In the event that the IWDT is not refreshed, an underflow occurs and a reset signal is sent out from the IWDT to the MCU. At this point the MCU is reset. The user can check to see if the cause for the reset was due to an IWDT timeout by reading the value of the underflow flag in the IWDT's status register. In the event of an IWDT underflow, this flag is set. The user should make sure to clear the flag after reading so that proper checking can be done if there is another reset. After the reset has occurred the IWDT does not start counting again until the refresh register has once again been successfully written to with the correct byte sequence. 6

7 This slide covers some usage notes that users should be aware of when using the IWDT. The first note is that once the IWDT has begun counting, the only way to stop the timer is a reset. Refer to the Reset section of your specific RX group s hardware manual for more information on this topic. The user should also know that when using the IWDT, the MCU cannot transition into Software Standby Mode. Instead the MCU will transition into either sleep mode or all-module clock-stop mode depending on the MCU s configuration. In these modes the IWDT will still be operating and can cause a reset. 7

8 The RX has two watchdog timer units: the watchdog timer and the independent watchdog timer. While the independent watchdog timer only has the option of resetting the MCU when a timeout occurs, the watchdog timer can trigger an interrupt. Using these two together the watchdog timer could be used as a controlled shutdown mechanism while the independent watchdog would still offer the hard reset functionality. With this setup the standard watchdog could be used to detect errors in the user s system that would only be recreated after a hard reset has occurred. 8

9 In summary, in this module we covered: -the block diagram of the RX's independent watchdog timer, -The clock and timeout options available, -How to start and refresh the watchdog, -What happens when the watchdog s counter underflows, -Usage notes about stopping the timer and using the IWDT with low power modes, -And how you could use the watchdog timer along with the independent watchdog timer peripheral -We would like to thank for viewing this course. You may consider viewing the Technical Marketing Overview Course for more information on RX MCUs. 9

10 10

11 Thank You 11

Hello and welcome to this Renesas Interactive course that covers the Watchdog timer found on RX MCUs.

Hello and welcome to this Renesas Interactive course that covers the Watchdog timer found on RX MCUs. Hello and welcome to this Renesas Interactive course that covers the Watchdog timer found on RX MCUs. 1 This course covers specific features of the watchdog timer on RX MCUs. If you need basic information

More information

Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of

Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of this interface, which is widely used for serial communications.

More information

Hello, and welcome to this presentation of the STM32 Random Number Generator. The features of this peripheral, which is widely used to provide random

Hello, and welcome to this presentation of the STM32 Random Number Generator. The features of this peripheral, which is widely used to provide random Hello, and welcome to this presentation of the STM32 Random Number Generator. The features of this peripheral, which is widely used to provide random numbers, will be covered in this presentation. 1 The

More information

Hello, and welcome to this presentation of the STM32 Real- Time Clock. It covers the main features of this peripheral, which is used to provide a

Hello, and welcome to this presentation of the STM32 Real- Time Clock. It covers the main features of this peripheral, which is used to provide a Hello, and welcome to this presentation of the STM32 Real- Time Clock. It covers the main features of this peripheral, which is used to provide a very accurate time base. 1 The RTC peripheral features

More information

Course Introduction. 2009, Renesas Technology America, Inc., All Rights Reserved

Course Introduction. 2009, Renesas Technology America, Inc., All Rights Reserved Course Introduction Purpose This course provides an introduction to the peripheral functions built into R8C Tiny series microcontrollers (MCUs). Objective Learn about the features and operation of the

More information

Hello, and welcome to this presentation of the STM32 Universal Synchronous/Asynchronous Receiver/Transmitter Interface. It covers the main features

Hello, and welcome to this presentation of the STM32 Universal Synchronous/Asynchronous Receiver/Transmitter Interface. It covers the main features Hello, and welcome to this presentation of the STM32 Universal Synchronous/Asynchronous Receiver/Transmitter Interface. It covers the main features of this USART interface, which is widely used for serial

More information

Hello, and welcome to this presentation of the STM32 Reset and Clock Controller.

Hello, and welcome to this presentation of the STM32 Reset and Clock Controller. Hello, and welcome to this presentation of the STM32 Reset and Clock Controller. 1 The RCC controller integrated inside STM32 products manages system and peripheral clocks. STM32F7 devices embed two internal

More information

Thread Monitor Framework Module Guide

Thread Monitor Framework Module Guide Application Note Renesas Synergy Platform Introduction This module guide will enable you to effectively use a module in your own design. Upon completion of this guide, you will be able to add this module

More information

Hello and welcome to this Renesas Interactive module that provides an overview of the RX DMA Controller

Hello and welcome to this Renesas Interactive module that provides an overview of the RX DMA Controller Hello and welcome to this Renesas Interactive module that provides an overview of the RX DMA Controller 1 The purpose of this Renesas Interactive module is to give you a basic understanding of the RX Direct

More information

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used to connect devices such as microcontrollers, sensors,

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

Module Introduction. PURPOSE: The intent of this module is to explain MCU processing of reset and interrupt exception events.

Module Introduction. PURPOSE: The intent of this module is to explain MCU processing of reset and interrupt exception events. Module Introduction PURPOSE: The intent of this module is to explain MCU processing of reset and interrupt exception events. OBJECTIVES: - Describe the difference between resets and interrupts. - Identify

More information

MB ds90455-ds e-corr-x1-00. Fujitsu Microelectronics Europe GmbH

MB ds90455-ds e-corr-x1-00. Fujitsu Microelectronics Europe GmbH Corrections of Hardware Manual MB90455 - ds90455-ds07-13728-3e-corr-x1-00 Fujitsu Microelectronics Europe GmbH Addendum, MB90455 Hardware Manual (DS07-13728-3E) This is the Addendum for the Datasheet DS07-13728-3E

More information

Introduction. PURPOSE: This course explains several important features of the i.mx21 microprocessor.

Introduction. PURPOSE: This course explains several important features of the i.mx21 microprocessor. Introduction PURPOSE: This course explains several important features of the i.mx21 microprocessor. OBJECTIVES: - Describe the features and functions of the ARM926EJ-S TM Core - Explain three processor

More information

The following document contains information on Cypress products.

The following document contains information on Cypress products. The following document contains information on Cypress products. MB90950 Series 16-BIT Microcontroller F 2 MC-16LX Hardware Manual Errata Sheet Original document code: CM44-10148-4E Revision 1.0 February

More information

Lecture 14. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Lecture 14. Ali Karimpour Associate Professor Ferdowsi University of Mashhad Lecture 14 AUTOMATIC CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad Lecture 4 The AVR Microcontroller Introduction to AVR CISC (Complex Instruction Set Computer) Put as

More information

Real Time Embedded Systems. Lecture 1 January 17, 2012

Real Time Embedded Systems.  Lecture 1 January 17, 2012 Low-Power & Reset Real Time Embedded Systems www.atomicrhubarb.com/embedded Lecture 1 January 17, 2012 Topic Section Topic Where in the books Catsoulis chapter/page Simon chapter/page Zilog UM197 (ZNEO

More information

Hello, and welcome to this presentation of the STM32L4 s full-speed on-the-go (OTG) USB device interface. It covers the features of this IP, which is

Hello, and welcome to this presentation of the STM32L4 s full-speed on-the-go (OTG) USB device interface. It covers the features of this IP, which is Hello, and welcome to this presentation of the STM32L4 s full-speed on-the-go (OTG) USB device interface. It covers the features of this IP, which is widely used to connect either a PC or a USB device

More information

SECTION 5 RESETS AND INTERRUPTS

SECTION 5 RESETS AND INTERRUPTS SECTION RESETS AND INTERRUPTS Resets and interrupt operations load the program counter with a vector that points to a new location from which instructions are to be fetched. A reset immediately stops execution

More information

Approximately half the power consumption of earlier Renesas Technology products and multiple functions in a 14-pin package

Approximately half the power consumption of earlier Renesas Technology products and multiple functions in a 14-pin package Renesas Technology to Release R8C/Mx Series of Flash MCUs with Power Consumption Among the Lowest in the Industry and Powerful On-Chip Peripheral Functions Approximately half the power consumption of earlier

More information

Section 10. Watchdog Timer and Power Saving Modes

Section 10. Watchdog Timer and Power Saving Modes Section 10. Watchdog Timer and Power Saving Modes HIGHLIGHTS This section of the manual contains the following topics: 10.1 Introduction... 10-2 10.2 Power Saving Modes... 10-2 10.3 Sleep Mode...10-2 10.4

More information

Hello, and welcome to this presentation of the STM32 general-purpose IO interface. It covers the general-purpose input and output interface and how

Hello, and welcome to this presentation of the STM32 general-purpose IO interface. It covers the general-purpose input and output interface and how Hello, and welcome to this presentation of the STM32 general-purpose IO interface. It covers the general-purpose input and output interface and how it allows connectivity to the environment around the

More information

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes

Course Introduction. Purpose: Objectives: Content: 27 pages 4 questions. Learning Time: 20 minutes Course Introduction Purpose: This course provides an overview of the Direct Memory Access Controller and the Interrupt Controller on the SH-2 and SH-2A families of 32-bit RISC microcontrollers, which are

More information

CoE3DJ4 Digital Systems Design. Chapter 5: Serial Port Operation

CoE3DJ4 Digital Systems Design. Chapter 5: Serial Port Operation CoE3DJ4 Digital Systems Design Chapter 5: Serial Port Operation Serial port 8051 includes an on-chip serial port Hardware access to the port is through TXD and RXD (Port 3 bits 1 and 0) Serial port is

More information

AVR Microcontrollers Architecture

AVR Microcontrollers Architecture ก ก There are two fundamental architectures to access memory 1. Von Neumann Architecture 2. Harvard Architecture 2 1 Harvard Architecture The term originated from the Harvard Mark 1 relay-based computer,

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Microcontroller It is essentially a small computer on a chip Like any computer, it has memory,

More information

Renesas 78K/78K0R/RL78 Family In-Circuit Emulation

Renesas 78K/78K0R/RL78 Family In-Circuit Emulation _ Technical Notes V9.12.225 Renesas 78K/78K0R/RL78 Family In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document

More information

Hello, and welcome to this presentation of the STM32L4 USB 2.0 Full Speed interface. It covers the features of this interface, which is widely used

Hello, and welcome to this presentation of the STM32L4 USB 2.0 Full Speed interface. It covers the features of this interface, which is widely used Hello, and welcome to this presentation of the STM32L4 USB 2.0 Full Speed interface. It covers the features of this interface, which is widely used to interface with a PC. 1 This slide explains the scope

More information

F²MC-16FX FAMILY ALL SERIES STANDBY MODES & POWER MANAGEMENT 16-BIT MICROCONTROLLER APPLICATION NOTE. Fujitsu Microelectronics Europe Application Note

F²MC-16FX FAMILY ALL SERIES STANDBY MODES & POWER MANAGEMENT 16-BIT MICROCONTROLLER APPLICATION NOTE. Fujitsu Microelectronics Europe Application Note Fujitsu Microelectronics Europe Application Note MCU-AN-300226-E-V15 F²MC-16FX FAMILY 16-BIT MICROCONTROLLER ALL SERIES STANDBY MODES & POWER MANAGEMENT APPLICATION NOTE Revision History Revision History

More information

Timers and Counters. LISHA/UFSC Prof. Dr. Antônio Augusto Fröhlich Fauze Valério Polpeta Lucas Francisco Wanner.

Timers and Counters. LISHA/UFSC Prof. Dr. Antônio Augusto Fröhlich Fauze Valério Polpeta Lucas Francisco Wanner. Timers and Counters LISHA/UFSC Prof. Dr. Antônio Augusto Fröhlich Fauze Valério Polpeta Lucas Francisco Wanner http://www.lisha.ufsc.br/~guto March 2009 March 2009 http://www.lisha.ufsc.br/ 103 Timers

More information

Power Profiles V2 Framework Module Guide

Power Profiles V2 Framework Module Guide Application Note Renesas Synergy Platform R11AN0317EU0100 Rev.1.00 Introduction This module guide will enable you to effectively use a module in your own design. Upon completion of this guide you will

More information

Product Update. Errata to Z8 Encore! 8K Series Silicon. Z8 Encore! 8K Series Silicon with Date Codes 0402 and Later

Product Update. Errata to Z8 Encore! 8K Series Silicon. Z8 Encore! 8K Series Silicon with Date Codes 0402 and Later Product Update Errata to Z8 Encore! 8K Series Silicon Z8 Encore! 8K Series Silicon with Date Codes 0402 and Later The errata listed in Table 1 are found in the Z8 Encore! 8K Series devices with date codes

More information

Microprocessors & Interfacing

Microprocessors & Interfacing Lecture Overview Microprocessors & Interfacing Interrupts (I) Lecturer : Dr. Annie Guo Introduction to Interrupts Interrupt system specifications Multiple sources of interrupts Interrupt priorities Interrupts

More information

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1

Interrupts (I) Lecturer: Sri Notes by Annie Guo. Week8 1 Interrupts (I) Lecturer: Sri Notes by Annie Guo Week8 1 Lecture overview Introduction to Interrupts Interrupt system specifications Multiple Sources of Interrupts Interrupt Priorities Interrupts in AVR

More information

Embedded Programming with ARM Cortex-M3 Basic Experiments 1

Embedded Programming with ARM Cortex-M3 Basic Experiments 1 Embedded Programming with ARM Cortex-M3 Basic Experiments 1 Alan Xiao, Ph.D Handheld Scientific, Inc. qiwei@handheldsci.com Today s Topics Basics (with the Discovery board): 1. General Input/Output (GPIO)

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be

Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be Hello, and welcome to this presentation of the STM32L4 power controller. The STM32L4 s power management functions and all power modes will also be covered in this presentation. 1 Please note that this

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Internal Architecture Eng. Anis Nazer First Semester 2017-2018 Review Computer system basic components? CPU? Memory? I/O? buses? Instruction? Program? Instruction set? CISC,

More information

Chapter 2. Overview of Architecture and Microcontroller-Resources

Chapter 2. Overview of Architecture and Microcontroller-Resources Chapter 2 Overview of Architecture and Microcontroller-Resources Lesson 4 Timers, Real Time Clock Interrupts and Watchdog Timer 2 Microcontroller-resources Port P1 Port P0 Port P2 PWM Timers Internal Program

More information

Hello, and welcome to this presentation of the STM32 Flash memory interface. It covers all the new features of the STM32F7 Flash memory.

Hello, and welcome to this presentation of the STM32 Flash memory interface. It covers all the new features of the STM32F7 Flash memory. Hello, and welcome to this presentation of the STM32 Flash memory interface. It covers all the new features of the STM32F7 Flash memory. 1 STM32F7 microcontrollers embed up to 2 Mbytes of Flash memory.

More information

IWDT HAL Module Guide

IWDT HAL Module Guide Application Note Renesas Synergy Platform R11AN0214EU0101 Rev.1.01 Introduction This module guide will enable you to effectively use a module in your own design. Upon completion of this guide, you will

More information

8051 Peripherals. On-Chip Memory Timers Serial Port Interrupts. Computer Engineering Timers

8051 Peripherals. On-Chip Memory Timers Serial Port Interrupts. Computer Engineering Timers 8051 Peripherals On-Chip Memory Timers Serial Port Interrupts Computer Engineering 2 2-1 8051 Timers 8051 Timers The 8051 has 2 internal 16-bit timers named Timer 0 and Timer 1 Each timer is a 16-bit counter

More information

Clock and Fuses. Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar

Clock and Fuses. Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar Clock and Fuses Prof. Prabhat Ranjan Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar Reference WHY YOU NEED A CLOCK SOURCE - COLIN O FLYNN avrfreaks.net http://en.wikibooks.org/wiki/atmel_avr

More information

Engineer-to-Engineer Note

Engineer-to-Engineer Note Engineer-to-Engineer Note EE-388 Technical notes on using Analog Devices products and development tools Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or e-mail

More information

ARDUINO MEGA INTRODUCTION

ARDUINO MEGA INTRODUCTION ARDUINO MEGA INTRODUCTION The Arduino MEGA 2560 is designed for projects that require more I/O llines, more sketch memory and more RAM. With 54 digital I/O pins, 16 analog inputs so it is suitable for

More information

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1

M68HC08 Microcontroller The MC68HC908GP32. General Description. MCU Block Diagram CPU08 1 M68HC08 Microcontroller The MC68HC908GP32 Babak Kia Adjunct Professor Boston University College of Engineering Email: bkia -at- bu.edu ENG SC757 - Advanced Microprocessor Design General Description The

More information

Appendix A Programming the watchdog timer

Appendix A Programming the watchdog timer Appendix A Programming the watchdog timer A.1 Programming the Watchdog Timer The PCA-6006-B1's watchdog timer can be used to monitor system software operation and take corrective action if the software

More information

8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.

8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,

More information

AM18X5. 1. Introduction. 2. System Power Control Applications. Application Note. AM18X5 Family System Power Management

AM18X5. 1. Introduction. 2. System Power Control Applications. Application Note. AM18X5 Family System Power Management Application Note Family System Power Management 1. Introduction In addition to fundamentally low power RTC operation, the Ambiq includes the capability to effectively manage the power of other devices

More information

Hello, and welcome to this presentation of the STM32F7 System Configuration Controller.

Hello, and welcome to this presentation of the STM32F7 System Configuration Controller. Hello, and welcome to this presentation of the STM32F7 System Configuration Controller. 1 STM32F7 microcontrollers feature a set of configuration registers. The System Configuration Controller gives access

More information

Table of Contents List of Figures... 2 List of Tables Introduction Main features Function description On-chip Flash memo

Table of Contents List of Figures... 2 List of Tables Introduction Main features Function description On-chip Flash memo GigaDevice Semiconductor Inc. GD32F103xx ARM 32-bit Cortex -M3 MCU Application Note AN002 Table of Contents List of Figures... 2 List of Tables... 3 1 Introduction... 4 2 Main features... 4 3 Function

More information

General Purpose Programmable Peripheral Devices. Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar

General Purpose Programmable Peripheral Devices. Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Chapter 15 General Purpose Programmable Peripheral Devices by Rahul Patel, Assistant Professor, EC Dept., Sankalchand Patel College of Engg.,Visnagar Microprocessor & Interfacing (140701) Rahul Patel 1

More information

Code Generator Tool. User s Manual. User's Manual: RX API Reference. Target Device RX Family

Code Generator Tool. User s Manual. User's Manual: RX API Reference. Target Device RX Family User s Manual Code Generator Tool Target Device RX Family User's Manual: RX PI Reference ll information contained in these materials, including products and product specifications, represents information

More information

Application Note. Introduction. AN2255/D Rev. 0, 2/2002. MSCAN Low-Power Applications

Application Note. Introduction. AN2255/D Rev. 0, 2/2002. MSCAN Low-Power Applications Application Note Rev. 0, 2/2002 MSCAN Low-Power Applications by S. Robb 8/16-bit MCU Division Freescale, East Kilbride Introduction The Freescale Scalable Controller Area Network (MSCAN) is the specific

More information

Remote Keyless Entry In a Body Controller Unit Application

Remote Keyless Entry In a Body Controller Unit Application 38 Petr Cholasta Remote Keyless Entry In a Body Controller Unit Application Many of us know this situation. When we leave the car, with a single click of a remote control we lock and secure it until we

More information

Tutorial Introduction

Tutorial Introduction Tutorial Introduction PURPOSE: - To explain MCU processing of reset and and interrupt events OBJECTIVES: - Describe the differences between resets and interrupts. - Identify different sources of resets

More information

Section 9. Watchdog Timer (WDT)

Section 9. Watchdog Timer (WDT) Section 9. Watchdog Timer (WDT) HIGHLIGHTS This section of the manual contains the following major topics: 9.1 Introduction... 9-2 9.2 WDT Operation... 9-2 9.3 Register Maps...9-5 9.4 Design Tips... 9-6

More information

M16C/Tiny Series APPLICATION NOTE. Operation of Timer A. (2-Phase Pulse Signal Process in Event Counter Mode, Multiply-by-4 Mode) 1.

M16C/Tiny Series APPLICATION NOTE. Operation of Timer A. (2-Phase Pulse Signal Process in Event Counter Mode, Multiply-by-4 Mode) 1. APPLICATION NOTE 1. Abstract In processing 2-phase pulse signals in event counter mode, choose functions from those listed in Table 1. Operations of the selected items are described below. Figure 1 shows

More information

8254 is a programmable interval timer. Which is widely used in clock driven digital circuits. with out timer there will not be proper synchronization

8254 is a programmable interval timer. Which is widely used in clock driven digital circuits. with out timer there will not be proper synchronization 8254 is a programmable interval timer. Which is widely used in clock driven digital circuits. with out timer there will not be proper synchronization between two devices. So it is very useful chip. The

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Computing Layers Chapter 3 Digital Logic Structures Original slides from Gregory Byrd, North Carolina State University Modified slides by C. Wilcox, S. Rajopadhye Colorado State University Computing Layers Problems Algorithms

More information

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS. 3.Give any two differences between microprocessor and micro controller. UNIT V -8051 MICRO CONTROLLER PROGRAMMING & APPLICATIONS TWO MARKS 1. What is micro controller? Micro controller is a microprocessor with limited number of RAM, ROM, I/O ports and timer on a single chip

More information

Section 8. Reset HIGHLIGHTS. Reset. This section of the manual contains the following major topics:

Section 8. Reset HIGHLIGHTS. Reset. This section of the manual contains the following major topics: Section 8. HIGHLIGHTS This section of the manual contains the following major topics: 8.1 Introduction... 8-2 8.2 Control Registers...8-3 8.3 System...8-6 8.4 Using the RCON Status Bits... 8-11 8.5 Device

More information

8. Power Management and Sleep Modes

8. Power Management and Sleep Modes 8. Power Management and Sleep Modes 8.1 Features Power management for adjusting power consumption and functions Five sleep modes Idle Power down Power save Standby Extended standby Power reduction register

More information

Section 28. WDT and SLEEP Mode

Section 28. WDT and SLEEP Mode Section 28. WDT and SLEEP Mode HIGHLIGHTS This section of the manual contains the following major topics: 28 28.1 Introduction... 28-2 28.2 Control Register... 28-3 28.3 Watchdog Timer (WDT) Operation...

More information

XMEGA Series Of AVR Processor. Presented by: Manisha Biyani ( ) Shashank Bolia (

XMEGA Series Of AVR Processor. Presented by: Manisha Biyani ( ) Shashank Bolia ( XMEGA Series Of AVR Processor Presented by: Manisha Biyani (200601217) Shashank Bolia (200601200 Existing Microcontrollers Problems with 8/16 bit microcontrollers: Old and inefficient architecture. Most

More information

[MG2420] MCU Module Datasheet. (No. ADS0705) V1.0

[MG2420] MCU Module Datasheet. (No. ADS0705) V1.0 [MG2420] MCU Module Datasheet (No. ADS0705) V1.0 REVISION HISTORY Version Date Description VER.1.0 2013.10.22 First version release. V1.0 Page:2/17 CONTENTS 1. INTRODUCTION... 4 1.1. DEFINITIONS... 4 2.

More information

VORAGO VA108x0 I 2 C programming application note

VORAGO VA108x0 I 2 C programming application note AN1208 VORAGO VA108x0 I 2 C programming application note MARCH 14, 2017 Version 1.1 VA10800/VA10820 Abstract There are hundreds of peripheral devices utilizing the I 2 C protocol. Most of these require

More information

Section 9. Watchdog Timer (WDT) and Power-Saving Modes

Section 9. Watchdog Timer (WDT) and Power-Saving Modes Section 9. Watchdog Timer (WDT) and Power-Saving Modes HIGHLIGHTS This section of the manual contains the following topics: 9.1 Introduction... 9-2 9.2 Power-Saving Modes... 9-2 9.3 Watchdog Timer (WDT)...

More information

UDP1G-IP reference design manual

UDP1G-IP reference design manual UDP1G-IP reference design manual Rev1.1 14-Aug-18 1 Introduction Comparing to TCP, UDP provides a procedure to send messages with a minimum of protocol mechanism, but the data cannot guarantee to arrive

More information

_ V Intel 8085 Family In-Circuit Emulation. Contents. Technical Notes

_ V Intel 8085 Family In-Circuit Emulation. Contents. Technical Notes _ V9.12. 225 Technical Notes Intel 8085 Family In-Circuit Emulation This document is intended to be used together with the CPU reference manual provided by the silicon vendor. This document assumes knowledge

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Stefan Kowalewski, 4. November 25 Introduction to Embedded Systems Part 2: Microcontrollers. Basics 2. Structure/elements 3. Digital I/O 4. Interrupts 5. Timers/Counters Introduction to Embedded Systems

More information

SEIKO EPSON CORPORATION

SEIKO EPSON CORPORATION CMOS 16-bit Application Specific Controller 16-bit RISC CPU Core S1C17 (Max. 33 MHz operation) 128K-Byte Flash ROM 16K-Byte RAM (IVRAM are shared by CPU and LCDC) DSP function (Multiply, Multiply and Accumulation,

More information

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform.

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform. Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform www.sierraradio.net www.hamstack.com Topics Introduction Hardware options Software development HamStack project

More information

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP2

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP2 REJ10J1644-0100 E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP2 Renesas Microcomputer Development Environment System M16C Family / R8C/Tiny Series Notes on Connecting the R8C/10, R8C/11,

More information

1. Attempt any three of the following: 15

1. Attempt any three of the following: 15 (2½ hours) Total Marks: 75 N. B.: (1) All questions are compulsory. (2) Make suitable assumptions wherever necessary and state the assumptions made. (3) Answers to the same question must be written together.

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas

Interrupts. EE4380 Fall 2001 Class 9. Pari vallal Kannan. Center for Integrated Circuits and Systems University of Texas at Dallas 8051 - Interrupts EE4380 Fall 2001 Class 9 Pari vallal Kannan Center for Integrated Circuits and Systems University of Texas at Dallas Polling Vs Interrupts Polling: MCU monitors all served devices continuously,

More information

EXPERIMENT NO.1. A Microcontroller is a complete computer system built on a single chip.

EXPERIMENT NO.1. A Microcontroller is a complete computer system built on a single chip. EXPERIMENT NO.1 AIM: Study of 8051 Microcontroller TOOLS: 8051 kit THEORY: Salient Features of 8051 A Microcontroller is a complete computer system built on a single chip. It contains all components like

More information

The 8051 microcontroller has two 16-bit timers/counters called T0 and T1.

The 8051 microcontroller has two 16-bit timers/counters called T0 and T1. Counters and Timers: The 8051 microcontroller has two 16-bit timers/counters called T0 and T1. As their names suggest, timer counts internal clock pulse i.e. machine cycle to provide delay. Counter counts

More information

MICROPROCESSOR BASED SYSTEM DESIGN

MICROPROCESSOR BASED SYSTEM DESIGN MICROPROCESSOR BASED SYSTEM DESIGN Lecture 5 Xmega 128 B1: Architecture MUHAMMAD AMIR YOUSAF VON NEUMAN ARCHITECTURE CPU Memory Execution unit ALU Registers Both data and instructions at the same system

More information

Bare Metal Application Design, Interrupts & Timers

Bare Metal Application Design, Interrupts & Timers Topics 1) How does hardware notify software of an event? Bare Metal Application Design, Interrupts & Timers 2) What architectural design is used for bare metal? 3) How can we get accurate timing? 4) How

More information

XMC Class-B library software. September 2016

XMC Class-B library software. September 2016 XMC Class-B library software September 2016 Agenda 1 Overview for boot mode index in XMC1000 2 Key feature: built-in safety features in peripheral 3 Key feature: VDE certified software library 4 System

More information

History and Basic Processor Architecture

History and Basic Processor Architecture History and Basic Processor Architecture History of Computers Module 1 Section 1 What Is a Computer? An electronic machine, operating under the control of instructions stored in its own memory, that can

More information

RX Family, RL78 Family

RX Family, RL78 Family Introduction APPLICATION NOTE This application note explains the method of controlling R1EV24xxx, R1EX24xxx, and HN58X24xxx series I 2 C serial EEPROM, manufactured by Renesas Electronics, by using a Renesas

More information

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP9

E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP9 REJ10J1646-0100 E8a Emulator Additional Document for User's Manual R0E00008AKCE00EP9 Renesas Microcomputer Development Environment System M16C Family / R8C/Tiny Series Notes on Connecting the R8C/18, R8C/19,

More information

Chapter x96 Family Microcontrollers

Chapter x96 Family Microcontrollers Chapter 14 80x96 Family Microcontrollers Port P0 Reset Osc PTS AMUX S/H ADC IR ID Interrupt Control HSO HSI T1 Baud Execution unit PC WDT SI PSW AD0-AD8 T2 P3 PWM SP P4 T2CAP IO and internal devices SFRs

More information

Introducing The MCS 251 Microcontroller -- 8XC251SB

Introducing The MCS 251 Microcontroller -- 8XC251SB E AP- 708 APPLICATION NOTE Introducing The MCS 251 Microcontroller -- 8XC251SB YONG-YAP SOH TECHNICAL MARKETING EIGHT-BIT MICROCONTROLLERS February 1995 Order Number: 272670-001 Intel Corporation makes

More information

RX610, RX62N, RX621 Group

RX610, RX62N, RX621 Group APPLICATION NOTE REU05B0146-0130 Rev.1.30 Introduction The purpose of this document is to help answer common questions and point out subtleties of the MCU that might be missed unless the hardware manual

More information

S1C63 Manual errata. Dec/6/2010 errata_c63406/408_2. ITEM: Diagram of Pad Layout. (Error) S1C Chip thickness:400um Pad. opening:100um.

S1C63 Manual errata. Dec/6/2010 errata_c63406/408_2. ITEM: Diagram of Pad Layout. (Error) S1C Chip thickness:400um Pad. opening:100um. Dec/6/2010 errata_c63406/408_2 S1C63 Manual errata ITEM: Diagram of Pad Layout Object manuals Document Items Pages codes S1C63406/408 Technical Manual MF1545-01a 9.1 Diagram of Pad Layout 131 (Error) S1C63408

More information

CMS-8GP32. A Motorola MC68HC908GP32 Microcontroller Board. xiom anufacturing

CMS-8GP32. A Motorola MC68HC908GP32 Microcontroller Board. xiom anufacturing CMS-8GP32 A Motorola MC68HC908GP32 Microcontroller Board xiom anufacturing 2000 717 Lingco Dr., Suite 209 Richardson, TX 75081 (972) 994-9676 FAX (972) 994-9170 email: Gary@axman.com web: http://www.axman.com

More information

Using the HT16K33 in DVD Player Panel Applications

Using the HT16K33 in DVD Player Panel Applications Using the HT16K33 in DVD Player Panel Applications D/N:AN0363E Introduction The HT16K33 is a memory mapping and multi-function LED controller driver. The maximum display capacity in the device is 128 dots

More information

MB90560/5 - hm90560-cm e-corr-x1-05. Fujitsu Microelectronics Europe GmbH. Addendum, MB90560/5 Hardware Manual (CM E)

MB90560/5 - hm90560-cm e-corr-x1-05. Fujitsu Microelectronics Europe GmbH. Addendum, MB90560/5 Hardware Manual (CM E) Corrections of Hardware Manual MB90560/5 - hm90560-cm44-10107-4e-corr-x1-05 Fujitsu Microelectronics Europe GmbH Addendum, MB90560/5 Hardware Manual (CM42-10107-4E) This is the Addendum for the Hardware

More information

Capacitive Touch Based User Interfaces and Hardware-based Solutions

Capacitive Touch Based User Interfaces and Hardware-based Solutions Capacitive Touch Based User Interfaces and Hardware-based Solutions Renesas Electronics America Inc. Renesas Technology & Solution Portfolio 2 Microcontroller and Microprocessor Line-up 2010 2013 32-bit

More information

Watchdog Timer. The Basics. The watchdog timer operates independent of the CPU, peripheral subsystems, and even the clock of the MCU.

Watchdog Timer. The Basics. The watchdog timer operates independent of the CPU, peripheral subsystems, and even the clock of the MCU. Watchdog Timer The Basics The watchdog timer watches over the operation of the system. This may include preventing runaway code or in our C example, a lost communications link. The watchdog timer operates

More information

A 24-hour clock (which is updated at 1-minute intervals) is created by using the 32K timer.

A 24-hour clock (which is updated at 1-minute intervals) is created by using the 32K timer. APPLICATION TE H8SX Family (Updated at -Minute Intervals) Introduction A 24-hour clock (which is updated at -minute intervals) is created by using the 32K timer. Target Device H8SX/668R Preface Although

More information

RX Family APPLICATION NOTE. Simple I 2 C Module Using Firmware Integration Technology. Introduction. Target Device.

RX Family APPLICATION NOTE. Simple I 2 C Module Using Firmware Integration Technology. Introduction. Target Device. APPLICATION NOTE RX Family R01AN1691EJ0220 Rev. 2.20 Introduction This application note describes the simple I 2 C module using firmware integration technology (FIT) for communications between devices

More information

MEMORY, OPERATING MODES, AND INTERRUPTS

MEMORY, OPERATING MODES, AND INTERRUPTS SECTION 3, OPERATING MODES, AND INTERRUPTS MOTOROLA 3-1 Paragraph Number SECTION CONTENTS Section Page Number 3.1 INTRODUCTION................................ 3-3 3.2 DSP56003/005 OPERATING MODE REGISTER

More information

Microprocessor Architecture. mywbut.com 1

Microprocessor Architecture. mywbut.com 1 Microprocessor Architecture mywbut.com 1 Microprocessor Architecture The microprocessor can be programmed to perform functions on given data by writing specific instructions into its memory. The microprocessor

More information