Solutions Manual Computer Vision A Modern Approach 2nd Edition David A. Forsyth

Size: px
Start display at page:

Download "Solutions Manual Computer Vision A Modern Approach 2nd Edition David A. Forsyth"

Transcription

1 Solutions Manual Computer Vision A Modern Approach 2nd Edition David A. Forsyth Instant download and all chapters Computer Vision A Modern Approach 2nd Edition David A. Forsyth SOLUTIONS MANUAL Contents 2 Light and Shading 1 3 Color 6 4 Linear Filters 11 5 Local Image Features 14 6 Texture 18 9 Segmentation by Clustering Grouping and Model Fitting Tracking Registration Smooth Surfaces andtheir Outlines Learning to Classify Classifying Images 37

2 i

3 C H A P T E R 2 Light and Shading PROBLEMS 2.1. We see a diffuse sphere centered at the origin, with radius one and albedo p, in an orthographic camera, looking down the z-axis. This sphere is illuminated by a distant point light source whose source direction is (0, 0,1). There is no other illumination. Show that the shading field in the camera is p\j 1 x 2 y 2 The surface is {x,y, \J\ T 2 y 1 '). We get two tangent vectors by partial differentiation; they are (1,0, p) and (0,1, q) where p = x/\/l T 2 y 1 and q = y/\j\ T 2 y 1. You can verify that the unit normal is N = 1 + p 2 + q 2 and the shading must be p ((0, 0,1) N, which yields 1 v 7! + p 2 + q What shapes can the shadow of a sphere take if it is cast on a plane and the source is a point source? These are conic sections with one important exception - you only get one half of the hyperbola We have a square area source and a square occluder, both parallel to a plane. The source is the same size as the occluder, and they are vertically above one another with their centers aligned. (a) What is the shape of the umbra? Square. This is rather a special case. You can construct the umbra by constructing all points on the plane that can see no part of the source. This is a square directly below the occluder. (b) What is the shape of the outside boundary of the penumbra? 1

4 This is quite a nasty question. Easiest way to construct the answer is to think about an arbitrary point on the occluder; construct a cone over the source, whose vertex is this point. Now intersect that cone with the plane the resulting square region on the plane consists of all points such that this point on the occluder blocks some point on the source. Finally, take the union of all such regions (i.e. over all points on the occluder); that s the penumbra. The envelope of the boundaries of these regions is the boundary of the penumbra. It s a square We have a square area source and a square occluder, both parallel to a plane. The edge length of the source is now twice that of the occluder, and they are vertically above one another with their centers aligned. (a) What is the shape of the umbra? Depending on the distances between area source, occluder and plane, either there isn t one, or it s square. (b) What is the shape of the outside boundary of the penumbra? same as in previous exercise; This is quite a nasty question. Easiest way to construct the answer is to think about an arbitrary point on the occluder; construct a cone over the source, whose vertex is this point. Now intersect that cone with the plane the resulting square region on the plane consists of all points such that this point on the occluder blocks some point on the source. Finally, take the union of all such regions (i.e. over all points on the occluder); that s the penumbra. The envelope of the boundaries of these regions is the boundary of the penumbra. It s a square We have a square area source and a square occluder, both parallel to a plane. The edge length of the source is now half that of the occluder, and they are vertically above one another with their centers aligned. (a) What is the shape of the umbra? Square (b) What is the shape of the outside boundary of the penumbra? This is quite a nasty question. Easiest way to construct the answer is to think about an arbitrary point on the occluder; construct a cone over the source, whose vertex is this point. Now intersect that cone with the plane the resulting square region on the plane consists of all points such that this point on the occluder blocks some point on the source. Finally, take the union of all such regions (i.e. over all points on the occluder); that s the penumbra. The envelope of the boundaries of these regions is the boundary of the penumbra. It s a square A small sphere casts a shadow on a larger sphere. Describe the possible shadow boundaries that occur. The question is slightly poorly posed, mea culpa, because it doesn t say what the source is. Assume it s a point source. There are two interesting cases: the point source is on the line connecting the two sphere centers; or it s off. If it s on, then the shadow must be a circle. If it s off, it s the intersection of a sphere and a right circular cone Explain why it is difficult to use shadow boundaries to infer shape, particularly if the shadow is cast onto a curved surface.

5 As the previous exercise suggested, quite simple geometries lead to very complex shadows; it becomes hard to tell whether the shadow is complex because it was a simple shadow cone intersected with a complex surface, or because it was a complex shadow cone intersected with a simple surface As in Figure 2.18, a small patch views an infinite plane at unit distance. The patch is sufficiently small that it reflects a trivial quantity of light onto the plane. The plane has radiosity B(x,y) = 1 + sin ax. The patch and the plane are parallel to one another. We move the patch around parallel to the plane, and consider its radiosity at various points. (a) Show that if one translates the patch, its radiosity varies periodically with its position in x. If you translate the patch by (2n/a) units, it s in the same position with respect to the radiosity pattern as it was; and the plane is infinite. (b) Fix the patch s center at (0, 0); determine a closed form expression for the radiosity of the patch at this point as a function of a. You ll need a table of integrals for this (if you don t, you re entitled to feel very pleased with yourself). This is worked out in detail in (Haddon and Forsyth 1997) 2.9. If one looks across a large bay in the daytime, it is often hard to distinguish the mountains on the opposite side; near sunset, they are clearly visible. This phenomenon has to do with scattering of light by air a large volume of air is actually a source. Explain what is happening. We have modeled air as a vacuum and asserted that no energy is lost along a straight line in a vacuum. Use your explanation to give an estimate of the kind of scales over which that model is acceptable. During the day, the sun illuminates the air, so the air between the viewer and the far side of the bay glows (from the light scattered into the viewing direction). This reduces the contrast of the stuff on the other side of the bay the viewer sees a bright light superimposed on so can t distinguish the edges of objects, etc. In the evening, the air does not glow, and so you can see the far side of the bay. Generally, you can think of air as a vacuum on scales up to kilometers; if you re very lucky and the air is very clear, perhaps 100 km Read the book Colour and Light in Nature, by Lynch and Livingstone, pub-

6 PROGRAMMING EXERCISES lished by Cambridge University Press, An area source can be approximated as a grid of point sources. The weakness of this approximation is that the penumbra contains quantization errors, which can be quite offensive to the eye. (a) Explain. As you move along the penumbra, you see an integer number of point sources; at various points, one comes in or out and so there is a visible jump in the intensity. (b) Render this effect for a square source and a single occluder casting a shadow onto an infinite plane. For a fixed geometry, you should find that as the number of point sources goes up, the quantization error goes down. (c) This approximation has the unpleasant property that it is possible to produce arbitrarily large quantization errors with any finite grid by changing the geometry. This is because there are configurations of source and occluder that produce large penumbrae. Use a square source and a single occluder, casting a shadow onto an infinite plane, to explain this effect. The trick to this is to have the plane at an angle, so that the penumbra is stretched out Make a world of black objects and another of white objects (paper, glue, and spraypaint are useful here) and observe the effects of interreflections. Can you come up with a criterion that reliably tells, from an image, which is which? (If you can, publish it; the problem looks easy, but isn t.) Can t help you here; I ve been looking for a good criterion for absolute lightness for years, as the exercise suggests (This exercise requires some knowledge of numerical analysis.) Do the numerical integrals required to reproduce Figure These integrals aren t particularly easy: if one uses coordinates on the infinite plane, the size of the domain is a nuisance; if one converts to coordinates on the view hemisphere of the patch, the frequency of the radiance becomes infinite at the boundary of the hemisphere. The best way to estimate these integrals is using a Monte Carlo method on the hemisphere. You should use importance sampling because the boundary contributes rather less to the integral than the top does. It could help to look at (Haddon and Forsyth 1997) Set up and solve the linear equations for an interreflection solution for the interior of a cube with a small square source in the center of the ceiling Implement a photometric stereo system. (a) How accurate are its measurements (i.e., how well do they compare with known shape information)? Do interreflections affect the accuracy? (b) How repeatable are its measurements (i.e., if you obtain another set of images, perhaps under different illuminants, and recover shape from those, how does the new shape compare with the old)? (c) Compare the minimization approach to reconstruction with the integration approach; which is more accurate or more repeatable and why? Does this

7 difference appear in experiment? (d) One possible way to improve the integration approach is to obtain depths by integrating over many different paths and then average these depths (you need to be a little careful about constants here). Does this improve the accuracy or repeatability of the method?

8 C H A P T E R 3 Color PROBLEMS 3.1. Sit down with a friend and a packet of colored papers, and compare the color names that you use. You need a large packet of papers one can very often get collections of colored swatches for paint, or for the Pantone color system very cheaply. The best names to try are basic color names the terms red, pink, orange, yellow, green, blue, purple, brown, white, gray and black, which (with a small number of other terms) have remarkable canonical properties that apply widely across different languages (the papers in Hardin and Maffi (1997) give a good summary of current thought on this issue). You will find it surprisingly easy to disagree on which colors should be called blue and which green, for example. This one is really worth doing. In my experience, quite substantial disagreements appear, and you won t get a sense of this without trying it Derive the equations for transforming from RGB to CIE XYZ and back. This is a linear transformation. It is sufficient to write out the expressions for the elements of the linear transformation you don t have to look up the actual numerical values of the color matching functions. Write R(A) for the R primary, G(A) for the green primary, B(A) for the B primary. A color E(A) has RGB coordinates r,g,b if it matches rr(a) + gg(a) + bb(a). Write 0x(A) for the colormatching function for the X primary, (A) for the colormatching function for the Y primary, and (A) for the colormatching function for the Z primary. Then rr(a) + gg(a) + bb(a) will have X coordinate J(rR(A) + gg(a) + bb(a))0x(a)da. By this reasoning, x f R(A)0x(A)dA f G(A)0x(A)dA f B(A)0x(A)dA r \ y = f R(A)0y(A)dA f G(A)0y(A)dA f B(A)0y(A)dA g z R(A)0z(A)dA / G(A)0z(A)dA / B(A)0z(A)dA b ) and this works the other way round if one swaps R(A) for X(A), etc. and 0x(A) for 0r(A) Linear color spaces are obtained by choosing primaries and then constructing color matching functions for those primaries. Show that there is a linear transformation that takes the coordinates of a color in one linear color space to those in another; the easiest way to do this is to write out the transformation in terms of the color matching functions. Take the result of the previous exercise; now use the primaries of the first color space and the color matching functions of the second. 6

9 3.4. Exercise 3 means that, in setting up a linear color space, it is possible to choose primaries arbitrarily, but there are constraints on the choice of color matching functions. Why? What are these constraints? When you choose colormatching functions, the new ones must be a linear combination of the colormatching functions for any other linear color space. For example, think of RGB and XYZ. The r coordinate of a color matching some E(A) is obtained by forming J 0r(A)E(A)dA; it can also be obtained as a linear combination of the X, Y, and Z coordinates (as above). This is true for any E(A), and so means that 0r(A) is a linear combination of (A), (A), and (A) Two surfaces that have the same color under one light and different colors under another are often referred to as metamers. An optimal color is a spectral reflectance or radiance that has value 0 at some wavelengths and 1 at others. Although optimal colors don t occur in practice, they are a useful device (due to Ostwald) for explaining various effects. (a) Use optimal colors to explain how metamerism occurs. (b) For example, mixing red and green light gets yellow. So if we have one surface albedo that is zero everywhere except in the yellow range, and another that is zero except in green and red, the two surfaces will look the same (yellow) in white light. But now if we obtain a light that is zero in the red range, one surface will look yellow and the other will look green. Given a particular spectral albedo, show that there are an infinite number of metameric spectral albedoes. Assume we have illumination that is uniform over albedo (white). Now this spectral albedo reflects some color of light. Choose three distinct wavelengths (say, the RGB primaries) as primaries, and determine the weights for these primaries to match the reflected light. You can then build an albedo that matches by setting the albedo to these weights at the chosen wavelengths, and zero elsewhere. There is clearly an infinite number, even though for some triples the construction will fail because subtractive matching applies. (c) Use optimal colors to construct an example of surfaces that look different under one light (say, red and green) and the same under another. See the solution to the question before the last. (d) Use optimal colors to construct an example of surfaces that swop apparent color when the light is changed (i.e., surface one looks red and surface two looks green under light one, and surface one looks green and surface two looks red under light two). Apply the strategy of the solution to the question before the last You have to map the gamut for a printer to that of a monitor. There are colors in each gamut that do not appear in the other. Given a monitor color that can t be reproduced exactly, you could choose the printer color that is closest. Why is this a bad idea for reproducing images? Would it work for reproducing business graphics (bar charts, pie charts, and the like, which all consist of many differernt large blocks of a single color)? The closest color might be saturated, so would produce very unpleasant effects on smooth

10 color gradients. Business graphics use saturated colors anyhow, and don t use color gradients Volume color is a phenomenon associated with translucent materials that are colored the most attractive example is a glass of wine. The coloring comes from different absorption coefficients at different wavelengths. Explain (a) why a small glass of sufficiently deeply colored red wine (a good Cahors or Gigondas) looks black (b) why a big glass of lightly colored red wine also looks black. Experimental work is optional. (a) it absorbs all the light; absorption is exponential in distance. (b) Again, absorption is exponential in distance, so if the distance is long enough, all light will be absorbed Read the book Colour: Art and Science, by Lamb and Bourriau, Cambridge University Press, In section 3.5.3, we described the gamut as a possible cue to illuminant color. Write G for the convex hull of the gamut of the given image, W for the convex hull of the gamut of an image of many different surfaces under white light, and Me for the map that takes an image seen under illuminant e to an image seen under white light. (a) Show the only illuminants we need to consider are those such that Me(G) W. Because any other map produces a color we would not see under white light. (b) Show that, for the case of finite dimensional linear models, Me depends linearly on e. (c) This is a typographic error. In fact, the map from white light to the image under e depends linearly on e. Show that, for the case of finite dimensional linear models, the set of Me such that Me(G) W is convex. Write S for the set of Me such that Me(G) W. The maps are linear and the image is convex; so if M S and N S, (tm + (1 t ) N ) S for 0 < t < 1. This means S is convex. (d) How would you represent this set? There are a variety of ways to do this. The usual thing is to note that the maps are diagonal, so the convex set is three dimensional, and then use an octtree to get an approximate representation. Other methods are described in (Forsyth 1990). PROGRAMMING EXERCISES Spectra for illuminants and for surfaces are available on the web (try http: //www. it. lut. fi/ip/research/color/database/database.html). Fit a finite-dimensional linear model to a set of illuminants and surface reflectances using principal components analysis, render the resulting models, and compare your rendering with an exact rendering. Where do you get the most significant errors? Why? The most significant errors tend to be under fluourescent light sources, which are hard to model well with finite dimensional linear models.

11 3.11. Print a colored image on a color inkjet printer using different papers and compare the result. It is particularly informative to (a) ensure that the driver knows what paper the printer will be printing on, and compare the variations in colors (which are ideally imperceptible), and (b) deceive the driver about what paper it is printing on (i.e., print on plain paper and tell the driver it is printing on photographic paper). Can you explain the variations you see? Why is photographic paper glossy? It s glossy because that means it reflects more light in the view direction if you hold it right; in turn, as long as it isn t too specular, it looks like a bright diffuse surface, and you get better contrast in prints Fitting a finite-dimensional linear model to illuminants and reflectances separately is somewhat ill-advised because there is no guarantee that the interactions will be represented well (they re not accounted for in the fitting error). It turns out that one can obtain g^ by a fitting process that sidesteps the use of basis functions. Implement this procedure (which is described in detail in Marimont and Wandell (1992)), and compare the results with those obtained from the previous assignment Build a color constancy algorithm that uses the assumption that the spatial average of reflectance is constant. Use finite-dimensional linear models. You can get values of gj from your solution to the previous exercise We ignore color interreflections in our surface color model. Do an experiment to get some idea of the size of color shifts possible from color interreflections (which are astonishingly big). Humans seldom interpret color interreflections as surface color. Speculate as to why this might be the case, using the discussion of the lightness algorithm as a guide Build a specularity finder along the lines described in Section Build a shadow remover along the lines described in Section (this is much easier than it sounds, and the results are usually rather good).

Colour Reading: Chapter 6. Black body radiators

Colour Reading: Chapter 6. Black body radiators Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours

More information

Starting this chapter

Starting this chapter Computer Vision 5. Source, Shadow, Shading Department of Computer Engineering Jin-Ho Choi 05, April, 2012. 1/40 Starting this chapter The basic radiometric properties of various light sources Develop models

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

Sources, shadows and shading

Sources, shadows and shading Sources, shadows and shading But how bright (or what colour) are objects? One more definition: Exitance of a source is the internally generated power radiated per unit area on the radiating surface similar

More information

Global Illumination. Frank Dellaert Some slides by Jim Rehg, Philip Dutre

Global Illumination. Frank Dellaert Some slides by Jim Rehg, Philip Dutre Global Illumination Frank Dellaert Some slides by Jim Rehg, Philip Dutre Color and Radiometry What is color? What is Color? A perceptual attribute of objects and scenes constructed by the visual system

More information

Lecture 1 Image Formation.

Lecture 1 Image Formation. Lecture 1 Image Formation peimt@bit.edu.cn 1 Part 3 Color 2 Color v The light coming out of sources or reflected from surfaces has more or less energy at different wavelengths v The visual system responds

More information

Digital Image Processing. Introduction

Digital Image Processing. Introduction Digital Image Processing Introduction Digital Image Definition An image can be defined as a twodimensional function f(x,y) x,y: Spatial coordinate F: the amplitude of any pair of coordinate x,y, which

More information

Color. Reading: Optional reading: Chapter 6, Forsyth & Ponce. Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this.

Color. Reading: Optional reading: Chapter 6, Forsyth & Ponce. Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this. Today Color Reading: Chapter 6, Forsyth & Ponce Optional reading: Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this. Feb. 17, 2005 MIT 6.869 Prof. Freeman Why does

More information

Why does a visual system need color? Color. Why does a visual system need color? (an incomplete list ) Lecture outline. Reading: Optional reading:

Why does a visual system need color? Color. Why does a visual system need color? (an incomplete list ) Lecture outline. Reading: Optional reading: Today Color Why does a visual system need color? Reading: Chapter 6, Optional reading: Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this. Feb. 17, 2005 MIT 6.869 Prof.

More information

CS130 : Computer Graphics Lecture 8: Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Lecture 8: Lighting and Shading. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Lecture 8: Lighting and Shading Tamar Shinar Computer Science & Engineering UC Riverside Why we need shading Suppose we build a model of a sphere using many polygons and color

More information

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11

Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Midterm Exam CS 184: Foundations of Computer Graphics page 1 of 11 Student Name: Class Account Username: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your

More information

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows are what we normally see in the real world. If you are near a bare halogen bulb, a stage spotlight, or other

More information

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted. CS 184: Foundations of Computer Graphics page 1 of 10 Student Name: Class Account Username: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Lecture 15: Shading-I. CITS3003 Graphics & Animation

Lecture 15: Shading-I. CITS3003 Graphics & Animation Lecture 15: Shading-I CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Learn that with appropriate shading so objects appear as threedimensional

More information

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Local Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Local Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Graphics Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism

More information

Lighting. Figure 10.1

Lighting. Figure 10.1 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look flat and thus fail to show the

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

Virtual Reality for Human Computer Interaction

Virtual Reality for Human Computer Interaction Virtual Reality for Human Computer Interaction Appearance: Lighting Representation of Light and Color Do we need to represent all I! to represent a color C(I)? No we can approximate using a three-color

More information

6. Illumination, Lighting

6. Illumination, Lighting Jorg s Graphics Lecture Notes 6. Illumination, Lighting 1 6. Illumination, Lighting No ray tracing in OpenGL! ray tracing: direct paths COP interreflection: soft shadows, color bleeding. umbra, penumbra,

More information

Introduction to color science

Introduction to color science Introduction to color science Trichromacy Spectral matching functions CIE XYZ color system xy-chromaticity diagram Color gamut Color temperature Color balancing algorithms Digital Image Processing: Bernd

More information

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray Photometric stereo Radiance Pixels measure radiance This pixel Measures radiance along this ray Where do the rays come from? Rays from the light source reflect off a surface and reach camera Reflection:

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture #6: Colors Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework project #3 due this Friday, October 18

More information

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics

I have a meeting with Peter Lee and Bob Cosgrove on Wednesday to discuss the future of the cluster. Computer Graphics Announcements Assignment 4 will be out later today Problem Set 3 is due today or tomorrow by 9am in my mail box (4 th floor NSH) How are the machines working out? I have a meeting with Peter Lee and Bob

More information

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted. CS 184: Foundations of Computer Graphics page 1 of 12 Student Name: Student ID: Instructions: Read them carefully! The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is

More information

Midterm Exam! CS 184: Foundations of Computer Graphics! page 1 of 13!

Midterm Exam! CS 184: Foundations of Computer Graphics! page 1 of 13! Midterm Exam! CS 184: Foundations of Computer Graphics! page 1 of 13! Student Name:!! Class Account Username:! Instructions: Read them carefully!! The exam begins at 1:10pm and ends at 2:30pm. You must

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Light & Perception Announcements Quiz on Tuesday Project 3 code due Monday, April 17, by 11:59pm artifact due Wednesday, April 19, by 11:59pm Can we determine shape

More information

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15.

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15. Reading Watt, Chapter 15. Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, pp. 69-97, 1995. 2. Color 1 2 The radiant energy spectrum We can think of light as waves,

More information

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface. Lighting and Photometric Stereo CSE252A Lecture 7 Announcement Read Chapter 2 of Forsyth & Ponce Might find section 12.1.3 of Forsyth & Ponce useful. HW Problem Emitted radiance in direction f r for incident

More information

CPSC GLOBAL ILLUMINATION

CPSC GLOBAL ILLUMINATION CPSC 314 21 GLOBAL ILLUMINATION Textbook: 20 UGRAD.CS.UBC.CA/~CS314 Mikhail Bessmeltsev ILLUMINATION MODELS/ALGORITHMS Local illumination - Fast Ignore real physics, approximate the look Interaction of

More information

Texture. Texture Mapping. Texture Mapping. CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture

Texture. Texture Mapping. Texture Mapping. CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture Texture CS 475 / CS 675 Computer Graphics Add surface detail Paste a photograph over a surface to provide detail. Texture can change surface colour or modulate surface colour. Lecture 11 : Texture http://en.wikipedia.org/wiki/uv_mapping

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 20: Light, reflectance and photometric stereo Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties

More information

CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture

CS 475 / CS 675 Computer Graphics. Lecture 11 : Texture CS 475 / CS 675 Computer Graphics Lecture 11 : Texture Texture Add surface detail Paste a photograph over a surface to provide detail. Texture can change surface colour or modulate surface colour. http://en.wikipedia.org/wiki/uv_mapping

More information

Announcements. Written Assignment 2 is out see the web page. Computer Graphics

Announcements. Written Assignment 2 is out see the web page. Computer Graphics Announcements Written Assignment 2 is out see the web page 1 Texture and other Mappings Shadows Texture Mapping Bump Mapping Displacement Mapping Environment Mapping Watt Chapter 8 COMPUTER GRAPHICS 15-462

More information

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology lecture 23 (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 0) hue - which ''? saturation - how pure? luminance (value) - intensity What is light? What is? Light consists of electromagnetic

More information

Global Rendering. Ingela Nyström 1. Effects needed for realism. The Rendering Equation. Local vs global rendering. Light-material interaction

Global Rendering. Ingela Nyström 1. Effects needed for realism. The Rendering Equation. Local vs global rendering. Light-material interaction Effects needed for realism Global Rendering Computer Graphics 1, Fall 2005 Lecture 7 4th ed.: Ch 6.10, 12.1-12.5 Shadows Reflections (Mirrors) Transparency Interreflections Detail (Textures etc.) Complex

More information

Textures and UV Mapping in Blender

Textures and UV Mapping in Blender Textures and UV Mapping in Blender Categories : Uncategorised Date : 21st November 2017 1 / 25 (See below for an introduction to UV maps and unwrapping) Jim s Notes regarding Blender objects, the UV Editor

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity

Today. Anti-aliasing Surface Parametrization Soft Shadows Global Illumination. Exercise 2. Path Tracing Radiosity Today Anti-aliasing Surface Parametrization Soft Shadows Global Illumination Path Tracing Radiosity Exercise 2 Sampling Ray Casting is a form of discrete sampling. Rendered Image: Sampling of the ground

More information

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

More information

Announcements. Written Assignment 2 out (due March 8) Computer Graphics

Announcements. Written Assignment 2 out (due March 8) Computer Graphics Announcements Written Assignment 2 out (due March 8) 1 Advanced Ray Tracing (Recursive) Ray Tracing Antialiasing Motion Blur Distribution Ray Tracing Ray Tracing and Radiosity Assumptions Simple shading

More information

Shadows in the graphics pipeline

Shadows in the graphics pipeline Shadows in the graphics pipeline Steve Marschner Cornell University CS 569 Spring 2008, 19 February There are a number of visual cues that help let the viewer know about the 3D relationships between objects

More information

Transforming Objects and Components

Transforming Objects and Components 4 Transforming Objects and Components Arrow selection Lasso selection Paint selection Move Rotate Scale Universal Manipulator Soft Modification Show Manipulator Last tool used Figure 4.1 Maya s manipulation

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 21: Light, reflectance and photometric stereo Announcements Final projects Midterm reports due November 24 (next Tuesday) by 11:59pm (upload to CMS) State the

More information

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. 11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives

More information

Ligh%ng and Reflectance

Ligh%ng and Reflectance Ligh%ng and Reflectance 2 3 4 Ligh%ng Ligh%ng can have a big effect on how an object looks. Modeling the effect of ligh%ng can be used for: Recogni%on par%cularly face recogni%on Shape reconstruc%on Mo%on

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

Lecture #13. Point (pixel) transformations. Neighborhood processing. Color segmentation

Lecture #13. Point (pixel) transformations. Neighborhood processing. Color segmentation Lecture #13 Point (pixel) transformations Color modification Color slicing Device independent color Color balancing Neighborhood processing Smoothing Sharpening Color segmentation Color Transformations

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

A simple problem that has a solution that is far deeper than expected!

A simple problem that has a solution that is far deeper than expected! The Water, Gas, Electricity Problem A simple problem that has a solution that is far deeper than expected! Consider the diagram below of three houses and three utilities: water, gas, and electricity. Each

More information

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z Announcements Introduction to Computer Vision CSE 152 Lecture 5 Assignment 1 has been posted. See links on web page for reading Irfanview: http://www.irfanview.com/ is a good windows utility for manipulating

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40

Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Homework 4 Computer Vision CS 4731, Fall 2011 Due Date: Nov. 15, 2011 Total Points: 40 Note 1: Both the analytical problems and the programming assignments are due at the beginning of class on Nov 15,

More information

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007

Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Problem Set 4 Part 1 CMSC 427 Distributed: Thursday, November 1, 2007 Due: Tuesday, November 20, 2007 Programming For this assignment you will write a simple ray tracer. It will be written in C++ without

More information

Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

More information

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22)

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module Number 01 Lecture Number 02 Application

More information

Lecture 24: More on Reflectance CAP 5415

Lecture 24: More on Reflectance CAP 5415 Lecture 24: More on Reflectance CAP 5415 Recovering Shape We ve talked about photometric stereo, where we assumed that a surface was diffuse Could calculate surface normals and albedo What if the surface

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

Color. Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand

Color. Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand Color Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand Why does a visual system need color? http://www.hobbylinc.com/gr/pll/pll5019.jpg Why does a visual system need color? (an

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves

MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves MA 323 Geometric Modelling Course Notes: Day 21 Three Dimensional Bezier Curves, Projections and Rational Bezier Curves David L. Finn Over the next few days, we will be looking at extensions of Bezier

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 19 Mar 26 th, 2019 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

COMP 558 lecture 16 Nov. 8, 2010

COMP 558 lecture 16 Nov. 8, 2010 Shading The term shading typically refers to variations in irradiance along a smooth Lambertian surface. Recall that if a surface point is illuminated by parallel light source from direction l, then the

More information

The exam begins at 5:10pm and ends at 8:00pm. You must turn your exam in when time is announced or risk not having it accepted.

The exam begins at 5:10pm and ends at 8:00pm. You must turn your exam in when time is announced or risk not having it accepted. CS 184: Foundations of Computer Graphics page 1 of 11 Student Name: Student ID: Instructions: Read them carefully! The exam begins at 5:10pm and ends at 8:00pm. You must turn your exam in when time is

More information

How to print a Hypercube

How to print a Hypercube How to print a Hypercube Henry Segerman One of the things that mathematics is about, perhaps the thing that mathematics is about, is trying to make things easier to understand. John von Neumann once said

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb?

4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? 1. Match the physical quantities (first column) with the units (second column). 4. A bulb has a luminous flux of 2400 lm. What is the luminous intensity of the bulb? (π=3.) Luminous flux A. candela Radiant

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 4 Digital Image Fundamentals - II ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Angel Ch. 11] 1 Global Illumination

More information

Photometric Stereo.

Photometric Stereo. Photometric Stereo Photometric Stereo v.s.. Structure from Shading [1] Photometric stereo is a technique in computer vision for estimating the surface normals of objects by observing that object under

More information

Visual cues to 3D geometry. Light Reflection and Advanced Shading. Shading. Recognizing materials. size (perspective) occlusion shading

Visual cues to 3D geometry. Light Reflection and Advanced Shading. Shading. Recognizing materials. size (perspective) occlusion shading Visual cues to 3D geometry Light Reflection and Advanced Shading size (perspective) occlusion shading CS 4620 Lecture 17 1 2 Shading Recognizing materials Variation in observed color across an object strongly

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

More information

Perspective and vanishing points

Perspective and vanishing points Last lecture when I discussed defocus blur and disparities, I said very little about neural computation. Instead I discussed how blur and disparity are related to each other and to depth in particular,

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein. Lecture 23: Photometric Stereo

CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein. Lecture 23: Photometric Stereo CS4670/5760: Computer Vision Kavita Bala Scott Wehrwein Lecture 23: Photometric Stereo Announcements PA3 Artifact due tonight PA3 Demos Thursday Signups close at 4:30 today No lecture on Friday Last Time:

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

MITOCW MIT6_172_F10_lec18_300k-mp4

MITOCW MIT6_172_F10_lec18_300k-mp4 MITOCW MIT6_172_F10_lec18_300k-mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

More information

What is color? What do we mean by: Color of an object Color of a light Subjective color impression. Are all these notions the same?

What is color? What do we mean by: Color of an object Color of a light Subjective color impression. Are all these notions the same? What is color? What do we mean by: Color of an object Color of a light Subjective color impression. Are all these notions the same? Wavelengths of light striking the eye are not sufficient or necessary

More information

Global Illumination The Game of Light Transport. Jian Huang

Global Illumination The Game of Light Transport. Jian Huang Global Illumination The Game of Light Transport Jian Huang Looking Back Ray-tracing and radiosity both computes global illumination Is there a more general methodology? It s a game of light transport.

More information

Understanding Visual Performance A Pacific Energy Center Factsheet

Understanding Visual Performance A Pacific Energy Center Factsheet Understanding Visual Performance A Pacific Energy Center Factsheet Factors Affecting Visual Performance Our ability to perform a visual task depends on how well our eyes perceive the details of the task.

More information

General Principles of 3D Image Analysis

General Principles of 3D Image Analysis General Principles of 3D Image Analysis high-level interpretations objects scene elements Extraction of 3D information from an image (sequence) is important for - vision in general (= scene reconstruction)

More information

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project

Lighting. To do. Course Outline. This Lecture. Continue to work on ray programming assignment Start thinking about final project To do Continue to work on ray programming assignment Start thinking about final project Lighting Course Outline 3D Graphics Pipeline Modeling (Creating 3D Geometry) Mesh; modeling; sampling; Interaction

More information

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] 1 Global Illumination

More information

Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer

Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer Johannes Hanika, Weta Digital 1 Motivation Weta Digital is a VFX house we care about matching plate a lot

More information

Scale Rate by Object Size: Only available when the current Emitter Type is Surface, Curve, or Volume. If you turn on this attribute, the

Scale Rate by Object Size: Only available when the current Emitter Type is Surface, Curve, or Volume. If you turn on this attribute, the Basic Emitter Attributes Emitter Name: The name helps you identify the emitter object in the Outliner. If you don t enter a name, the emitter object receives a default name such as emitter1. Solver: (For

More information

COMP environment mapping Mar. 12, r = 2n(n v) v

COMP environment mapping Mar. 12, r = 2n(n v) v Rendering mirror surfaces The next texture mapping method assumes we have a mirror surface, or at least a reflectance function that contains a mirror component. Examples might be a car window or hood,

More information

Shading. Brian Curless CSE 557 Autumn 2017

Shading. Brian Curless CSE 557 Autumn 2017 Shading Brian Curless CSE 557 Autumn 2017 1 Reading Optional: Angel and Shreiner: chapter 5. Marschner and Shirley: chapter 10, chapter 17. Further reading: OpenGL red book, chapter 5. 2 Basic 3D graphics

More information

Volume Illumination and Segmentation

Volume Illumination and Segmentation Volume Illumination and Segmentation Computer Animation and Visualisation Lecture 13 Institute for Perception, Action & Behaviour School of Informatics Overview Volume illumination Segmentation Volume

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

A Simple Vision System

A Simple Vision System Chapter 1 A Simple Vision System 1.1 Introduction In 1966, Seymour Papert wrote a proposal for building a vision system as a summer project [4]. The abstract of the proposal starts stating a simple goal:

More information

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface Photometric stereo Illumination Cones and Uncalibrated Photometric Stereo Single viewpoint, multiple images under different lighting. 1. Arbitrary known BRDF, known lighting 2. Lambertian BRDF, known lighting

More information