An Optimisation Model for Intensity Modulated Radiation Therapy

Size: px
Start display at page:

Download "An Optimisation Model for Intensity Modulated Radiation Therapy"

Transcription

1 An Optimisation Model for Intensity Modulated Radiation Therapy Matthias Ehrgott Department of Engineering Science University of Auckland New Zealand Abstract Intensity modulated radiation therapy (IMRT) can be very effective in the treatment of primary tumours. The challenge in therapy planning is to develop treatment plans that allow effective treatment of the tumour while at the same time limiting the radiation dose to surrounding tissue and organs at risk. We present a mathematical model of inverse planning for IMRT. The task of such a tool is to identify an optimal treatment plan, which consists of the irradiation directions and intensity profiles to achieve a high dose in the target volume (tumour) while at the same time protecting organs at risk from dangerous high doses. To optimise intensity profiles and beam directions we consider underdosing the tumour and overdosing any organ at risk as objectives to be minimised simultaneously. Our model allows the incorporation of optimisation of irradiation directions. This yields a multicriteria integer model of the problem. This model has a (possibly very large) set of efficient solutions, from which a representative subset is calculated and stored in a database. An efficient solution is one in which neither the results for the target volume nor for the organs at risk can be improved without deteriorating the results for another volume of interest. We propose an interactive tool that allows the online selection of a plan through the use of the pre-computed database of efficient solutions. The proposed model and methodology has considerable advantages over existing software packages and we expect it to improve quality of treatment plans while at the same time reducing planning time. We present some results from 2D-prototype software. 1 Introduction Intensity Modulated Radiation Therapy (IMRT) is the state of the art technology for radiotherapy treatment of cancer patients. Radiation is delivered from a linear accelerator that can move around the patient body, which is immobilised on the couch (Figure 1). Modern equipment using multileaf collimators makes very accurate delivery of radiation to the tumour possible while at the same time protecting any organs at risk from radiation. A multileaf collimator uses metal leaves that can move into the radiation field to block out certain areas of radiation across the beam (Figure 2). This technology, however, has made the planning process much more complex than it used to be, and planning systems do not necessarily support the intensity modulation by multileaf collimators.

2 Figure 1: Treatment unit with movements of linac and couch indicated. Figure 2: Multileaf collimators with movement of leaves indicated. When choosing a plan for any individual patient, the radiation therapy planner has to determine beam directions, intensity profiles (i.e. the varying intensity across the beam head made possible by multileaf collimation) with the goals of a high (tumouricidal) dose in the tumour, and low dose in normal tissue and organs at risk. In addition, the chosen intensity profiles have to be realised through a number of reconfigurations of the multileaf collimator (the collimator sequence). In the case of step and shoot collimators, these involve irradiating with a given position of leaves, then stopping and reconfiguring the leaves for a new shot of radiation. Thus the problem of choosing a sequence of leaf-positions to have a short treatment time arises. In this paper we focus on optimisation of directions and intensity profiles. We develop a mathematical model for the treatment planning problem. In clinical practice CT or MRI scans of slices of the body along the body axis are used to create a 3D simulation of the body. On these scans, the tumour and organs at risk (called volumes of interest) are outlined and then displayed three-dimensionally in CT simulation programs. At this stage we therefore have K volumes of interest, where an index 1 represents the tumour, and indices 2,...,K denote organs at risk. Overlaying a grid on the scans, we then discretise the body into M voxels, M = M M K, each voxel uniquely identified as belonging either to a specific volume of interest or normal tissue. The smallest possible grid size is given by the resolution of the CT scans and the thickness of the slices. Radiation is delivered from a linear accelerator (linac) that can move around the patient body. The possibilities of these movements plus the possible movements of the couch on which the patient is fixed during treatment define a set of H directions (i.e. possible linac positions relative to the body) from which radiation can be applied. Finally, looking at a beam from a particular direction, the intensity can be modulated across the beam by blocking parts of it out with the collimator leafs. The width of the leaves and the number of positions they can be in determines the resolution of the intensity profile and results in a discretisation of the beam into N bixels per beam direction.

3 2 A Mathematical Model For any patient, the oncologist specifies a desired (tumouricidal) dose level L 1 as a lower bound to be achieved in the tumour and tolerable dose levels U k as upper bounds not to be exceeded in each organ at risk. Finally the number of directions R to be used for irradiation is specified. A small number of directions tends to shorten treatment times, needing fewer movements of the linac, whereas a higher number tends to improve dose distribution and conformance with the target volume. The mathematical model then uses an intensity vector x = (x 11,...,x HN ) of continuous variables, a vector of binary variables y = (y 1,...,y H ) that determine which (at most R) of the H possible directions are used and a deviation vector T = (T 1,...,T K ) that measures deviation of the delivered dose from the desired dose levels in each volume of interest. With a model of beam behaviour that determines the dose absorbed in voxel i given unit intensity in bixel j, the dose distribution vectors D k = (D k1,...,d kmk ) can be calculated assuming a linear relationship between intensity and absorbed dose. We have used the triple Gaussian pencil beam model of Ulmer and Harder (1995). Here D kl is the dose absorbed by voxel l in volume k. The problem can then be formulated as follows: min (T 1,...,T K ) (1) D 1 = P 1 x (L 1 - T 1 )1 (2) D k = P k x (U k + T k )1, k=2,...,k (3) H h = 1 y h R (4) x hi y h, i=1,...,n, h=1,...,h (5) y h {0,1}, h=1,...,h (6) x hi 0, i=1,...,n, h=1,...,h (7) T k 0, k=1,...,k (8) This multiple objective integer programming problem minimises the worst deviation from the desired dose in any voxel of volumes 1,...,K (1). (2) represents dose distribution calculation in the tumour and requires that dose to be greater than or equal to the desired dose L 1, minus some deviation T 1. Similarly (3) requires dose in any organ at risk to be less than or equal to U k plus some deviation T k. Note that (1) minimises the deviations T 1,...,T k. Here 1 denotes a vector of all ones of appropriate dimension. (4) limits the number of beams to be used to R, (5) ensures that only a selected beam direction can be used to irradiate. (6) to (8) define variables to be binary and nonnegative, respectively. The model is based on an earlier one proposed in Hamacher and Küfer A solution of multicriteria problem is called efficient, if there is no other solution that is at least as good as the current one in all criteria, and better in at least one. In the IMRT context that means a solution (x,y,t) is efficient, if and only if a decrease in deviation from prescribed dose in the tumour can only be achieved at the expense of an increased deviation for at least one organ at risk, or the deviation for one organ at risk can only be decreased if that for another organ at risk or the tumour can be decreased.

4 The complete model (1)-(8) is very difficult due to the presence of the binary variables. However, if the irradiation directions are predetermined the binary variables y h are removed and the model reduces to a multiobjective linear programme. Efficient solutions of an MOLP can be found using multicriteria simplex algorithms. We have used ADBASE (Steuer 2000) for this purpose. Figure 3 shows the (deviation values, i.e. objective function values of) efficient solutions of an example problem, a tumour in the nasal cavity with a prescribed dose of 30 Gy, with two organs at risk: left and right eyeball and optical nerves with a prescribed maximal dose of 10 Gy for both. This example will be the running example throughout the paper, see also Figure 8. Figure 3: The set of efficient solutions of (1)-(8) for fixed beam directions. There are infinitely many efficient solutions all representing different treatment plans. However, in practical terms, the deviation values of two points that are close together on the surface shown in Figure 3 are hardly distinguishable. Thus the corresponding treatment plans are hardly distinguishable, too. Therefore, instead of calculating all efficient solutions, or all efficient extreme points that define all efficient solutions, we rather need a representation, that contains distinguishably different efficient solutions that cover the whole efficient set. Such a representation is shown in Figure 4. Note that part of the efficient surface, which corresponded to solutions with a more than 50% overdosing of the right eyeball, has been cut off. Despite being efficient in the mathematical model, such solutions are clinically irrelevant. For the technically minded: this behaviour is due to the underestimation of the Nadir point that is used to evaluate the range of efficient solutions before actually calculating them. An exact computation of the Nadir point is very hard. In this case this inaccuracy produces a positive effect!

5 Figure 4: Representative set of efficient solutions for the example of Figure 3. 3 Some Results In this Section some results are described that we obtained from the model (1)-(8). These concern the use of weights to solve the multicriteria problem and the effect of optimising directions. For the former, we considered given beam directions and then used equal weights for each objective to get a solution that minimises 1/K(T T K ). For our standard problem with five equidistant beams the result is shown in Figure 5. This picture clearly shows a typical behaviour of the weighted sum approach: The optimal solution is found at an extreme point, therefore at the boundary of the efficient set in Figure 3. Consequently the results for some volumes (here tumour and right eye) are perfect, and results for others (left eye) are far from ideal. We compared this with a balanced solution that was obtained from minimising lexmin θ(t), where θ(t) is a nonincreasingly ordered version of the deviation vector T. For details of how this is done see Ehrgott and Burjony (2001). As expected, this solution shows equal deviations for all volumes, and is centrally located in the efficient set. Most existing planning tools use weights of importance.

6 Figure 5: Solution with equal weights, T=(0,1.49,0). Figure 6: Balanced solution, T=(0.95, 0.95, 0.95). We studied the effect of optimisation of beam directions using three beams. The effect of beam directions is most significant with few directions, while increasing the number of beams allows for a better spread of radiation over the beams, to reduce damage to organs at risk while still achieving good tumour control. Figure 7 shows the balanced solution for three equidistant beams. Then the scalarised version of (1)-(8) was solved using equal weights for each volume, i.e. minimising 1/K(T T K ) again, this time including the binary variables for beam direction. Then we solved the balanced problem using the optimal directions found. The solution is shown in Figure 8. The importance of optimisation is obvious: Instead of severely underdosing the tumour as in the left picture, it is now almost completely covered at desired dose level, while results for organs at risk have considerably improved at the same time: we see an 80% reduction in deviation from desired dose foe all three volumes. The picture on the right also shows the counterintuitive features of optimal beam directions: one goes right through the eye, albeit at very low intensity for the central beam, and somewhat higher at the fringe. This beam is needed to cover areas of the tumour that the other two beams cannot. No commercial planning system includes optimisation of beam directions - they all require manual settings.

7 Figure 7: Balanced solution with equidistant beams, T=(5.61, 5.61, 5.61). Figure 8: Balanced solution with optimised beam directions, T=(1.72, 1.72, 1.72). 4 Interaction with the User In this section we want to briefly describe the way the user (the treatment planner or radiotherapist) will work with the optimisation tool. Any radiotherapy planning software needs visualisation tools. CT scans are imported to the planning system, combined into a 3D simulation of the body. Volume contours for the target and organs at risk are outlined and included in the visualisation. The physician then specifies the dose bounds and other relevant parameters for the planning process (these can include dose volume constraints, that more generally than the single dose define which fraction a volume can receive which dose) and inhomogeneity constraints that guarantee a uniform dose distribution in the target volume, which is clinically important. At this stage the data is passed on to the optimisation module, which computes a database of efficient treatment plans. These correspond to the representative subset illustrated in Figure 4. Once this computation is concluded, the balanced solution, and its treatment plan (intensity profiles) are then exported back to the graphical user interface of the planning tool. If the planner finds the proposed solution unsatisfactory, he can specify changes, e.g. improve result for tumour by 0.5 Gy, but allow 0.2 Gy increase for both organs at risk. A plan that most closely matches these requirements can then be chosen from the database and displayed. This process does not require any further calculations and can be performed online. Because the multicriteria formulation makes trade-offs between results for tumour and organs at risk visible and uses that information, this strategy addresses the issue of assessing the quality of plans with different characteristics that is a problem with many commercial planning systems today. A possible sequence of results could be as follows:

8 Starting solution: T=(1.72, 1.72, 1.72) Improve tumour, keep right eye the same: T=(1.39, 1.87, 1.72) Improve tumour, keep right eye the same: T=(1.07, 2.01, 1.72) Improve tumour, keep right eye the same: T=(0.75, 2.15, 1.72) Improve right eye, keep left eye the same: T=(0.77, 2.15, 1.58) Improve right eye, keep left eye the same: T=(0.79, 2.15, 1.44) Improve right eye, keep left eye the same: T=(0.81, 2.15, 1.29) At this stage a satisfactory result may be obtained. Figure 9 illustrates how the optimisation tool is imbedded in an IMRT planning software system. Figure 9: The optimisation tool in a planning system. In the next step the computed intensity profiles for the three beams needs to be passed on to a collimator sequencer, which determines an optimal sequence of collimator configurations that create the desired intensity profile and that minimises setup and treatment time. Again, many existing planning systems do use heuristics for collimator sequencing, but do not necessarily find optimal sequences. 5 Conclusion We have introduced a multicriteria integer programming problem for IMRT treatment planning. Based on this model we have shown how to overcome some of the problems encountered with current optimisation techniques embedded in IMRT planning: the use of priority weights, the lack of beam direction optimisation, and the lack of consideration of trade-offs between overdosing organs at risk and underdosing the tumour. Acknowledgements Thanks go to my students, Rick Johnston and Steve McLean, who implemented the direction optimisation and representation of solutions, and to Frank Lenzen and Thang Nguyen, who implemented the original software at the Institute for Techno- and Wirtschaftsmathematik (ITWM), Kaiserslautern, Germany, under supervision of Dr.

9 K.H. Küfer. Thanks also to Isla Nixon and Lee Dakers of the Physics Section of the Oncology Department at Auckland Hospital for their support and real world feedback. References Ulmer,W. and Harder, D. (1995): A Triple Gaussian Pencil beam Model for Photon beam Treatment Planning, Zeitschrift für Medizinische Physik, 5: Hamacher, H.W. and Küfer, K.H. (2002): Inverse Radiation Therapy Planning a multiple objective optimisation approach, Discrete Applied Mathematics, 118: Steuer, R.E. (2000): ADBASE: A Multiple Objective Linear Programming Solve, Terry College of Business, University of Georgia, Athens, Georgia, USA. Ehrgott, M. and Burjony, M. (2001): Radiation Therapy Planning by Multicriteria Optimisation, Proceedings of the 36 th Annual ORSNZ Conference,

Radiation Therapy Planning by Multicriteria Optimisation

Radiation Therapy Planning by Multicriteria Optimisation Radiation Therapy Planning by Multicriteria Optimisation Matthias Ehrgott, Mena Burjony Deptartment of Engineering Science University of Auckland New Zealand m.ehrgott@auckland.ac.nz Abstract Radiation

More information

Interactive Treatment Planning in Cancer Radiotherapy

Interactive Treatment Planning in Cancer Radiotherapy Interactive Treatment Planning in Cancer Radiotherapy Mohammad Shakourifar Giulio Trigila Pooyan Shirvani Ghomi Abraham Abebe Sarah Couzens Laura Noreña Wenling Shang June 29, 212 1 Introduction Intensity

More information

ICARO Vienna April Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588

ICARO Vienna April Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588 ICARO Vienna April 27-29 2009 Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588 M. Saiful Huq, Ph.D., Professor and Director, Dept. of Radiation

More information

IMRT site-specific procedure: Prostate (CHHiP)

IMRT site-specific procedure: Prostate (CHHiP) IMRT site-specific procedure: Prostate (CHHiP) Scope: To provide site specific instructions for the planning of CHHIP IMRT patients Responsibilities: Radiotherapy Physicists, HPC Registered Therapy Radiographers

More information

Radiation therapy treatment plan optimization

Radiation therapy treatment plan optimization H. Department of Industrial and Operations Engineering The University of Michigan, Ann Arbor, Michigan MOPTA Lehigh University August 18 20, 2010 Outline 1 Introduction Radiation therapy delivery 2 Treatment

More information

Optimization with Multiple Objectives

Optimization with Multiple Objectives Optimization with Multiple Objectives Eva K. Lee, Ph.D. eva.lee@isye.gatech.edu Industrial & Systems Engineering, Georgia Institute of Technology Computational Research & Informatics, Radiation Oncology,

More information

An optimization framework for conformal radiation treatment planning

An optimization framework for conformal radiation treatment planning An optimization framework for conformal radiation treatment planning Jinho Lim Michael C. Ferris Stephen J. Wright David M. Shepard Matthew A. Earl December 2002 Abstract An optimization framework for

More information

Current state of multi-criteria treatment planning

Current state of multi-criteria treatment planning Current state of multi-criteria treatment planning June 11, 2010 Fall River NE AAPM meeting David Craft Massachusetts General Hospital Talk outline - Overview of optimization - Multi-criteria optimization

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT The RayPlan treatment planning system makes proven, innovative RayStation technology accessible to clinics that need a cost-effective and streamlined solution. Fast, efficient and straightforward to use,

More information

Iterative regularization in intensity-modulated radiation therapy optimization. Carlsson, F. and Forsgren, A. Med. Phys. 33 (1), January 2006.

Iterative regularization in intensity-modulated radiation therapy optimization. Carlsson, F. and Forsgren, A. Med. Phys. 33 (1), January 2006. Iterative regularization in intensity-modulated radiation therapy optimization Carlsson, F. and Forsgren, A. Med. Phys. 33 (1), January 2006. 2 / 15 Plan 1 2 3 4 3 / 15 to paper The purpose of the paper

More information

Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes

Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes 4OR-Q J Oper Res (2017) 15:331 357 DOI 10.1007/s10288-016-0336-9 RESEARCH PAPER Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective

More information

PCRT 3D. Scalable Architecture System. User-Friendly. Traceable. Continuos Development

PCRT 3D. Scalable Architecture System. User-Friendly. Traceable. Continuos Development PCRT 3D The PCRT3D is a versatile 3D radiation treatment planning system featuring the most accurate algorithm calculations, the latest techniques in virtual simulation and the most advanced radiotherapy

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT 3 ADVANCING CANCER TREATMENT SUPPORTING CLINICS WORLDWIDE RaySearch is advancing cancer treatment through pioneering software. We believe software has un limited potential, and that it is now the driving

More information

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them Dose Distributions George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To familiarize the resident with dose distributions and the factors that affect them

More information

An experimental investigation on the effect of beam angle optimization on the reduction of beam numbers in IMRT of head and neck tumors

An experimental investigation on the effect of beam angle optimization on the reduction of beam numbers in IMRT of head and neck tumors JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 13, NUMBER 4, 2012 An experimental investigation on the effect of beam angle optimization on the reduction of beam numbers in IMRT of head and neck tumors

More information

Data. ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy

Data. ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy Data ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy The ModuLeaf Mini Multileaf

More information

Use of Monte Carlo modelling in radiotherapy linac design. David Roberts, PhD Senior Physicist Elekta

Use of Monte Carlo modelling in radiotherapy linac design. David Roberts, PhD Senior Physicist Elekta Use of Monte Carlo modelling in radiotherapy linac design David Roberts, PhD Senior Physicist Elekta Contents Overview of Elekta What we do Where we use Monte Carlo Codes and resources Example : Agility

More information

7/29/2017. Making Better IMRT Plans Using a New Direct Aperture Optimization Approach. Aim of Radiotherapy Research. Aim of Radiotherapy Research

7/29/2017. Making Better IMRT Plans Using a New Direct Aperture Optimization Approach. Aim of Radiotherapy Research. Aim of Radiotherapy Research Making Better IMRT Plans Using a New Direct Aperture Optimization Approach Dan Nguyen, Ph.D. Division of Medical Physics and Engineering Department of Radiation Oncology UT Southwestern AAPM Annual Meeting

More information

OPTIMIZATION MODELS FOR RADIATION THERAPY: TREATMENT PLANNING AND PATIENT SCHEDULING

OPTIMIZATION MODELS FOR RADIATION THERAPY: TREATMENT PLANNING AND PATIENT SCHEDULING OPTIMIZATION MODELS FOR RADIATION THERAPY: TREATMENT PLANNING AND PATIENT SCHEDULING By CHUNHUA MEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2007W1 SEMESTER 2 EXAMINATION 2014-2015 MEDICAL PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two questions

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

OPTIMIZATION METHODS IN INTENSITY MODULATED RADIATION THERAPY TREATMENT PLANNING

OPTIMIZATION METHODS IN INTENSITY MODULATED RADIATION THERAPY TREATMENT PLANNING OPTIMIZATION METHODS IN INTENSITY MODULATED RADIATION THERAPY TREATMENT PLANNING By DIONNE M. ALEMAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Treatment Planning Optimization for VMAT, Tomotherapy and Cyberknife

Treatment Planning Optimization for VMAT, Tomotherapy and Cyberknife Treatment Planning Optimization for VMAT, Tomotherapy and Cyberknife Kerem Akartunalı Department of Management Science Strathclyde Business School Joint work with: Vicky Mak-Hau and Thu Tran 14 July 2015

More information

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System A Fully-Automated Intensity-Modulated Radiation Therapy Planning System Shabbir Ahmed, Ozan Gozbasi, Martin Savelsbergh Georgia Institute of Technology Ian Crocker, Tim Fox, Eduard Schreibmann Emory University

More information

Computational modelling and analysis: IOP Medical Physics Group

Computational modelling and analysis: IOP Medical Physics Group Computational modelling and analysis: IOP Medical Physics Group Using Bespoke Matlab Software for the Collection and Processing of Dynalog Files from the Varian Millennium 120 MLC system following delivery

More information

Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra

Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra Humberto Rocha Joana Matos Dias On the Optimization of Radiation Therapy Planning

More information

ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD. Moe Siddiqui, April 08, 2017

ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD. Moe Siddiqui, April 08, 2017 ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD Moe Siddiqui, April 08, 2017 Agenda Background IRCU 50 - Disclaimer - Uncertainties Robust optimization Use Cases Lung Robust 4D

More information

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System A Fully-Automated Intensity-Modulated Radiation Therapy Planning System Shabbir Ahmed, Ozan Gozbasi, Martin Savelsbergh Georgia Institute of Technology Tim Fox, Ian Crocker, Eduard Schreibmann Emory University

More information

LINEAR PROGRAMMING FORMULATIONS AND ALGORITHMS FOR RADIOTHERAPY TREATMENT PLANNING

LINEAR PROGRAMMING FORMULATIONS AND ALGORITHMS FOR RADIOTHERAPY TREATMENT PLANNING LINEAR PROGRAMMING FORMULATIONS AND ALGORITHMS FOR RADIOTHERAPY TREATMENT PLANNING ARINBJÖRN ÓLAFSSON AND STEPHEN J. WRIGHT Abstract. Optimization has become an important tool in treatment planning for

More information

Dynalog data tool for IMRT plan verification

Dynalog data tool for IMRT plan verification Dynalog data tool for IMRT plan verification Poster No.: R-0051 Congress: 2014 CSM Type: Scientific Exhibit Authors: V. Sashin; FOOTSCRAY/AU Keywords: Computer applications, Radiation physics, Experimental,

More information

Tomotherapy Physics. Machine Twinning and Quality Assurance. Emilie Soisson, MS

Tomotherapy Physics. Machine Twinning and Quality Assurance. Emilie Soisson, MS Tomotherapy Physics Machine Twinning and Quality Assurance Emilie Soisson, MS Tomotherapy at UW- Madison Treating for nearly 5 years Up to ~45 patients a day on 2 tomo units Units twinned to facilitate

More information

New Technology in Radiation Oncology. James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC

New Technology in Radiation Oncology. James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC New Technology in Radiation Oncology James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC Technology s s everywhere From the imaging chain To the planning system To the linac To QA..it..it

More information

Assesing multileaf collimator effect on the build-up region using Monte Carlo method

Assesing multileaf collimator effect on the build-up region using Monte Carlo method Pol J Med Phys Eng. 2008;14(3):163-182. PL ISSN 1425-4689 doi: 10.2478/v10013-008-0014-0 website: http://www.pjmpe.waw.pl M. Zarza Moreno 1, 2, N. Teixeira 3, 4, A. P. Jesus 1, 2, G. Mora 1 Assesing multileaf

More information

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF Page 1 Quality Assurance of IMRT Delivery Systems - Siemens Lynn J. Verhey, Ph.D. Professor and Vice-Chair UCSF Dept. of Radiation Oncology AAPM 22 Annual Meeting, Montreal Acknowledgments Ping Xia, Ph.D.,

More information

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Krista Chytyk MSc student Supervisor: Dr. Boyd McCurdy Introduction The objective of cancer radiotherapy

More information

URGENT IMPORTANT FIELD SAFETY NOTIFICATION

URGENT IMPORTANT FIELD SAFETY NOTIFICATION Subject: Product: Incorrect Rotation of the Collimator or Couch ERGO Scope: Sites affected will be those: 1. Running ERGO version 1.7.3 and higher and, 2. Using a Multileaf Collimator (MLC) device for

More information

State-of-the-Art IGRT

State-of-the-Art IGRT in partnership with State-of-the-Art IGRT Exploring the Potential of High-Precision Dose Delivery and Real-Time Knowledge of the Target Volume Location Antje-Christin Knopf IOP Medical Physics Group Scientific

More information

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy Chenyang Xu 1, Siemens Corporate Research, Inc., Princeton, NJ, USA Xiaolei Huang,

More information

Initial Clinical Experience with 3D Surface Image Guidance

Initial Clinical Experience with 3D Surface Image Guidance Initial Clinical Experience with 3D Surface Image Guidance Amanda Havnen-Smith, Ph.D. Minneapolis Radiation Oncology Ridges Radiation Therapy Center Burnsville, MN April 20 th, 2012 Non-funded research

More information

Minimizing Setup and Beam-On Times in Radiation Therapy

Minimizing Setup and Beam-On Times in Radiation Therapy Minimizing Setup and Beam-On Times in Radiation Therapy Nikhil Bansal 1, Don Coppersmith 2, and Baruch Schieber 1 1 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, {nikhil,sbar}@us.ibm.com

More information

Comparing Beam Selection Strategies in Radiotherapy Treatment Design: The Influence of Dose Point Resolution

Comparing Beam Selection Strategies in Radiotherapy Treatment Design: The Influence of Dose Point Resolution Comparing Beam Selection Strategies in Radiotherapy Treatment Design: The Influence of Dose Point Resolution Ryan Acosta a Matthias Ehrgott b, Allen Holder c Daniel Nevin d Josh Reese e November 3, 25

More information

Dose Calculation and Optimization Algorithms: A Clinical Perspective

Dose Calculation and Optimization Algorithms: A Clinical Perspective Dose Calculation and Optimization Algorithms: A Clinical Perspective Daryl P. Nazareth, PhD Roswell Park Cancer Institute, Buffalo, NY T. Rock Mackie, PhD University of Wisconsin-Madison David Shepard,

More information

Operations Research and Optimization: A Primer

Operations Research and Optimization: A Primer Operations Research and Optimization: A Primer Ron Rardin, PhD NSF Program Director, Operations Research and Service Enterprise Engineering also Professor of Industrial Engineering, Purdue University Introduction

More information

A NEW APPROACH IN THE DETERMINATION OF PATIENT S REFERENCE POINT IN CONFORMAL EXTERNAL RADIOTHERAPY

A NEW APPROACH IN THE DETERMINATION OF PATIENT S REFERENCE POINT IN CONFORMAL EXTERNAL RADIOTHERAPY A NEW APPROACH IN THE DETERMINATION OF PATIENT S REFERENCE POINT IN CONFORMAL EXTERNAL RADIOTHERAPY Kordatzakis Antonios, Pragmatefteli Maria, Baltas Dimos, Koutsouris Dimitrios 4 Biomedical Engineering

More information

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC GPU applications in Cancer Radiation Therapy at UCSD Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC Conventional Radiotherapy SIMULATION: Construciton, Dij Days PLANNING:

More information

IAEA-TECDOC-1583 Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques

IAEA-TECDOC-1583 Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques IAEA-TECDOC-1583 Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques Report of the Coordinated Research Project (CRP) on Development of Procedures

More information

Advanced Targeting Using Image Deformation. Justin Keister, MS DABR Aurora Health Care Kenosha, WI

Advanced Targeting Using Image Deformation. Justin Keister, MS DABR Aurora Health Care Kenosha, WI Advanced Targeting Using Image Deformation Justin Keister, MS DABR Aurora Health Care Kenosha, WI History of Targeting The advance of IMRT and CT simulation has changed how targets are identified in radiation

More information

Mathematical Optimization in Radiotherapy Treatment Planning

Mathematical Optimization in Radiotherapy Treatment Planning 1 / 35 Mathematical Optimization in Radiotherapy Treatment Planning Ehsan Salari Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School HST S14 May 13, 2013 2 / 35 Outline

More information

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience DVH Estimates Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience Karen Chin Snyder, MS, DABR AAMD Region V Meeting October 4, 2014 Disclosures The Department of Radiation Oncology

More information

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT)

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) 2009-05-08 Caroline Olsson, M.Sc. Topics History of radiotherapy Developments that has led to IMRT The IMRT process How

More information

CHAPTER 9 INFLUENCE OF SMOOTHING ALGORITHMS IN MONTE CARLO DOSE CALCULATIONS OF CYBERKNIFE TREATMENT PLANS: A LUNG PHANTOM STUDY

CHAPTER 9 INFLUENCE OF SMOOTHING ALGORITHMS IN MONTE CARLO DOSE CALCULATIONS OF CYBERKNIFE TREATMENT PLANS: A LUNG PHANTOM STUDY 148 CHAPTER 9 INFLUENCE OF SMOOTHING ALGORITHMS IN MONTE CARLO DOSE CALCULATIONS OF CYBERKNIFE TREATMENT PLANS: A LUNG PHANTOM STUDY 9.1 INTRODUCTION 9.1.1 Dose Calculation Algorithms Dose calculation

More information

Betatron Core Slow Extraction at CNAO

Betatron Core Slow Extraction at CNAO Betatron Core Slow Extraction at CNAO Dr. Luciano Falbo CNAO Machine CNAO is the only Italian facility for cancer treatment with protons (60-250 MeV) and carbon ions (120-400 MeV/u). The first patient

More information

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE QA SOFTWARE FAST, PRECISE Software for accurate and independent verification of monitor units, dose, and overall validity of standard, IMRT, VMAT, SRS and brachytherapy plans no film, no phantoms, no linac

More information

Radiotherapy Plan Competition TomoTherapy Planning System. Dmytro Synchuk. Ukrainian Center of TomoTherapy, Kirovograd, Ukraine

Radiotherapy Plan Competition TomoTherapy Planning System. Dmytro Synchuk. Ukrainian Center of TomoTherapy, Kirovograd, Ukraine Radiotherapy Plan Competition 2016 TomoTherapy Planning System Dmytro Synchuk Ukrainian Center of TomoTherapy, Kirovograd, Ukraine Beam Geometry 6MV fan beam 3 jaw options 1.0, 2.5 and 5 cm 64 leaves binary

More information

Monaco VMAT. The Next Generation in IMRT/VMAT Planning. Paulo Mathias Customer Support TPS Application

Monaco VMAT. The Next Generation in IMRT/VMAT Planning. Paulo Mathias Customer Support TPS Application Monaco VMAT The Next Generation in IMRT/VMAT Planning Paulo Mathias Customer Support TPS Application 11.05.2011 Background What is Monaco? Advanced IMRT/VMAT treatment planning system from Elekta Software

More information

Disclosure. Outline. Acknowledgments. Ping Xia, Ph.D., Page 1. LINAC and MLC QA for IMRT. Received research support from Siemens Medical Solutions

Disclosure. Outline. Acknowledgments. Ping Xia, Ph.D., Page 1. LINAC and MLC QA for IMRT. Received research support from Siemens Medical Solutions LINAC and MLC QA for IMRT Ping Xia, Ph.D., Department of Radiation Oncology Disclosure Received research support from Siemens Medical Solutions University of California San Francisco Therapy Series (SAM)

More information

A Genetic Algorithm approach to Full Beam Configuration Inverse Planning in Coplanar Radiotherapy

A Genetic Algorithm approach to Full Beam Configuration Inverse Planning in Coplanar Radiotherapy A Genetic Algorithm approach to Full Beam Configuration Inverse Planning in Coplanar Radiotherapy Vitoantonio Bevilacqua Giuseppe Mastronardi Giuseppe Piscopo bevilacqua@poliba.it mastrona@poliba.it giuseppe.piscopo@katamail.com

More information

Using a research real-time control interface to go beyond dynamic MLC tracking

Using a research real-time control interface to go beyond dynamic MLC tracking in partnership with Using a research real-time control interface to go beyond dynamic MLC tracking Dr. Simeon Nill Joint Department of Physics at The Institute of Cancer Research and the Royal Marsden

More information

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram

TomoTherapy Related Projects. An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram TomoTherapy Related Projects An image guidance alternative on Tomo Low dose MVCT reconstruction Patient Quality Assurance using Sinogram Development of A Novel Image Guidance Alternative for Patient Localization

More information

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

Volumetric Modulated Arc Therapy - Clinical Implementation. Outline. Acknowledgement. History of VMAT. IMAT Basics of IMAT

Volumetric Modulated Arc Therapy - Clinical Implementation. Outline. Acknowledgement. History of VMAT. IMAT Basics of IMAT Volumetric Modulated Arc Therapy - Clinical Implementation Daliang Cao, PhD, DABR Swedish Cancer Institute, Seattle, WA Acknowledgement David M. Shepard, Ph.D. Muhammad K. N. Afghan, Ph.D. Fan Chen, Ph.D.

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 7, January 2014

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 7, January 2014 Mathematical and Geometrical Formulation/Analysis for Beam Divergence Limit Angle in Radiotherapy Wedges F Casesnoves MSc (Physics) MD Computational Bioengineering Researcher SIAM (Society for Industrial

More information

Position accuracy analysis of the stereotactic reference defined by the CBCT on Leksell Gamma Knife Icon

Position accuracy analysis of the stereotactic reference defined by the CBCT on Leksell Gamma Knife Icon Position accuracy analysis of the stereotactic reference defined by the CBCT on Leksell Gamma Knife Icon WHITE PAPER Introduction An image guidance system based on Cone Beam CT (CBCT) is included in Leksell

More information

Using Pinnacle 16 Deformable Image registration in a re-treat scenario

Using Pinnacle 16 Deformable Image registration in a re-treat scenario Introduction Using Pinnacle 16 Deformable Image registration in a re-treat scenario This short Hands On exercise will introduce how the Deformable Image Registration (DIR) tools in Pinnacle can be used

More information

Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy

Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy Two Effective Heuristics for Beam Angle Optimization in Radiation Therapy Hamed Yarmand, David Craft Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School, Boston,

More information

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to

More information

Radiology. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

Radiology. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Overview Introduction Overview Introduction Tecniques of imaging in Overview Introduction Tecniques of imaging

More information

Monaco Concepts and IMRT / VMAT Planning LTAMON0003 / 3.0

Monaco Concepts and IMRT / VMAT Planning LTAMON0003 / 3.0 and IMRT / VMAT Planning LTAMON0003 / 3.0 and Planning Objectives By the end of this presentation you can: Describe the cost functions in Monaco and recognize their application in building a successful

More information

Mixed-Integer Programming Techniques for Decomposing IMRT Fluence Maps Using Rectangular Apertures

Mixed-Integer Programming Techniques for Decomposing IMRT Fluence Maps Using Rectangular Apertures Mixed-Integer Programming Techniques for Decomposing IMRT Fluence Maps Using Rectangular Apertures Z. Caner Taşkın J. Cole Smith H. Edwin Romeijn March 31, 2008 Abstract We consider a matrix decomposition

More information

A Dual Variant of. Benson s Outer Approximation Algorithm. for Multiple Objective Linear Programs

A Dual Variant of. Benson s Outer Approximation Algorithm. for Multiple Objective Linear Programs A Dual Variant of Benson s Outer Approximation Algorithm for Multiple Objective Linear Programs Matthias Ehrgott 1, Andreas Löhne 2 und Lizhen Shao 3 1,3 University of Auckland, New Zealand 2 Martin-Luther-Universität

More information

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT)

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) 2008-05-08 Caroline Olsson, M.Sc. Topics Short history of radiotherapy Developments that has led to IMRT The IMRT process

More information

The MSKCC Approach to IMRT. Outline

The MSKCC Approach to IMRT. Outline The MSKCC Approach to IMRT Spiridon V. Spirou, PhD Department of Medical Physics Memorial Sloan-Kettering Cancer Center New York, NY Outline Optimization Field splitting Delivery Independent verification

More information

Applied Optimization: Application to Intensity-Modulated Radiation Therapy (IMRT)

Applied Optimization: Application to Intensity-Modulated Radiation Therapy (IMRT) Applied Optimization: Application to Intensity-Modulated Radiation Therapy (IMRT) 2010-05-04 Caroline Olsson, M.Sc. caroline.olsson@vgregion.se Topics History of radiotherapy Developments that has led

More information

Operations Research Methods for Optimization in Radiation Oncology

Operations Research Methods for Optimization in Radiation Oncology Journal of Radiation Oncology Informatics Operations Research Methods for Optimization in Radiation Oncology Review Article Matthias Ehrgott 1, Allen Holder 2 1 Department of Management Science, Lancaster

More information

Volume Interaction Techniques in the Virtual Simulation of Radiotherapy Treatment Planning

Volume Interaction Techniques in the Virtual Simulation of Radiotherapy Treatment Planning Volume Interaction Techniques in the Virtual Simulation of Radiotherapy Treatment Planning Wenli Cai, Grigorios Karangelis, and Georgios Sakas Fraunhofer Institute for Computer Graphics Rundeturmstrasse

More information

Radiosurgery Treatment Planning via Nonlinear Programming

Radiosurgery Treatment Planning via Nonlinear Programming Radiosurgery Treatment Planning via Nonlinear Programming Michael C. Ferris Jinho Lim David M. Shepard January 2001 Abstract The Gamma Knife is a highly specialized treatment unit that provides an advanced

More information

MR-guided radiotherapy: Vision, status and research at the UMC Utrecht. Dipl. Ing. Dr. Markus Glitzner

MR-guided radiotherapy: Vision, status and research at the UMC Utrecht. Dipl. Ing. Dr. Markus Glitzner MR-guided radiotherapy: Vision, status and research at the UMC Utrecht Dipl. Ing. Dr. Markus Glitzner About myself Training Medizintechnik TU Graz PhD UMC Utrecht Clinical work Software implementation

More information

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code American Journal of Biomedical Engineering 216, 6(4): 124-131 DOI: 1.5923/j.ajbe.21664.3 Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code Ankit Kajaria 1,*, Neeraj Sharma

More information

EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION FOR INTENSITY MODULATED RADIATION THERAPY

EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION FOR INTENSITY MODULATED RADIATION THERAPY MULTIPLE CRITERIA DECISION MAKING Vol. 10 2015 Ignacy Kaliszewski * Janusz Miroforidis ** EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION FOR INTENSITY MODULATED RADIATION THERAPY Abstract As cancer diseases

More information

Available online at ScienceDirect. Procedia Computer Science 100 (2016 )

Available online at  ScienceDirect. Procedia Computer Science 100 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 00 (206 ) 644 65 Conference on ENTERprise Information Systems / International Conference on Project MANagement / Conference

More information

Bicriteria approach to the optimal location of surveillance cameras *

Bicriteria approach to the optimal location of surveillance cameras * Bicriteria approach to the optimal location of surveillance cameras * Aleksandra Groß and Horst W. Hamacher TU Kaiserslautern, Fachbereich Mathematik, Paul-Ehrlich-Straße 14, 67663 Kaiserslautern Emails:

More information

Dose Calculations: Where and How to Calculate Dose. Allen Holder Trinity University.

Dose Calculations: Where and How to Calculate Dose. Allen Holder Trinity University. Dose Calculations: Where and How to Calculate Dose Trinity University www.trinity.edu/aholder R. Acosta, W. Brick, A. Hanna, D. Lara, G. McQuilen, D. Nevin, P. Uhlig and B. Slater Dose Calculations - Why

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

Foundations of Computing

Foundations of Computing Foundations of Computing Darmstadt University of Technology Dept. Computer Science Winter Term 2005 / 2006 Copyright c 2004 by Matthias Müller-Hannemann and Karsten Weihe All rights reserved http://www.algo.informatik.tu-darmstadt.de/

More information

Scatter Correction Methods in Dimensional CT

Scatter Correction Methods in Dimensional CT Scatter Correction Methods in Dimensional CT Matthias Baer 1,2, Michael Hammer 3, Michael Knaup 1, Ingomar Schmidt 3, Ralf Christoph 3, Marc Kachelrieß 2 1 Institute of Medical Physics, Friedrich-Alexander-University

More information

K-Means Clustering Using Localized Histogram Analysis

K-Means Clustering Using Localized Histogram Analysis K-Means Clustering Using Localized Histogram Analysis Michael Bryson University of South Carolina, Department of Computer Science Columbia, SC brysonm@cse.sc.edu Abstract. The first step required for many

More information

2 ATTILA FAZEKAS The tracking model of the robot car The schematic picture of the robot car can be seen on Fig.1. Figure 1. The main controlling task

2 ATTILA FAZEKAS The tracking model of the robot car The schematic picture of the robot car can be seen on Fig.1. Figure 1. The main controlling task NEW OPTICAL TRACKING METHODS FOR ROBOT CARS Attila Fazekas Debrecen Abstract. In this paper new methods are proposed for intelligent optical tracking of robot cars the important tools of CIM (Computer

More information

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling

EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling EPSRC Centre for Doctoral Training in Industrially Focused Mathematical Modelling More Accurate Optical Measurements of the Cornea Raquel González Fariña Contents 1. Introduction... 2 Background... 2 2.

More information

Integrated proton-photon treatment planning

Integrated proton-photon treatment planning Pinnacle 3 Proton Planning Integrated proton-photon treatment planning Philips Pinnacle 3 Proton Planning specifications Pinnacle 3 Proton Planning is designed to simplify treatment planning for proton

More information

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays Sotiri Stathakis Outline Why IMRT/VMAT QA AAPM TG218 UPDATE Tolerance Limits and Methodologies for IMRT Verification QA Common sources

More information

arxiv: v1 [physics.med-ph] 22 Dec 2011

arxiv: v1 [physics.med-ph] 22 Dec 2011 Including Robustness in Multi-criteria Optimization for Intensity Modulated Proton Therapy arxiv:2.5362v [physics.med-ph] 22 Dec 20 Wei Chen, Jan Unkelbach, Alexei Trofimov, Thomas Madden, Hanne Kooy,

More information

Comparison of Scatter Correction Methods for CBCT. Author(s): Suri, Roland E.; Virshup, Gary; Kaissl, Wolfgang; Zurkirchen, Luis

Comparison of Scatter Correction Methods for CBCT. Author(s): Suri, Roland E.; Virshup, Gary; Kaissl, Wolfgang; Zurkirchen, Luis Research Collection Working Paper Comparison of Scatter Correction Methods for CBCT Author(s): Suri, Roland E.; Virshup, Gary; Kaissl, Wolfgang; Zurkirchen, Luis Publication Date: 2010 Permanent Link:

More information

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D.

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D. Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment Huijun Xu, Ph.D. Acknowledgement and Disclosure Dr. Jeffrey Siebers Dr. DJ

More information

Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra

Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra Instituto de Engenharia de Sistemas e Computadores de Coimbra Institute of Systems Engineering and Computers INESC - Coimbra Humberto Rocha Brígida da Costa Ferreira Joana Matos Dias Maria do Carmo Lopes

More information

Photon beam dose distributions in 2D

Photon beam dose distributions in 2D Photon beam dose distributions in 2D Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2014 Acknowledgments! Narayan Sahoo PhD! Richard G Lane (Late) PhD 1 Overview! Evaluation

More information

High Throughput Computing and Sampling Issues for Optimization in Radiotherapy

High Throughput Computing and Sampling Issues for Optimization in Radiotherapy High Throughput Computing and Sampling Issues for Optimization in Radiotherapy Michael C. Ferris, University of Wisconsin Alexander Meeraus, GAMS Development Corporation Optimization Days, Montreal, May

More information

Comparison of absorbed dose distribution 10 MV photon beam on water phantom using Monte Carlo method and Analytical Anisotropic Algorithm

Comparison of absorbed dose distribution 10 MV photon beam on water phantom using Monte Carlo method and Analytical Anisotropic Algorithm Journal of Physics: Conference Series PAPER OPEN ACCESS Comparison of absorbed dose distribution 1 MV photon beam on water phantom using Monte Carlo method and Analytical Anisotropic Algorithm To cite

More information

FAST, precise. qa software

FAST, precise. qa software qa software FAST, precise Software for accurate and independent verification of monitor units, dose, and overall validity of standard, IMRT, rotational or brachytherapy plans no film, no phantoms, no linac

More information

Real-time monitoring of linac performance using RT plans and logfiles

Real-time monitoring of linac performance using RT plans and logfiles Real-time monitoring of linac performance using RT plans and logfiles NCCAAPM Wisconsin Dells 7 April 2017 Mark Wiesmeyer, PhD, DABR Technical Product Manager Technical talk with insights and results based

More information