SUMMARY. CS380: Introduction to Computer Graphics Track-/Arc-ball Chapter 8. Min H. Kim KAIST School of Computing 18/04/06.

Size: px
Start display at page:

Download "SUMMARY. CS380: Introduction to Computer Graphics Track-/Arc-ball Chapter 8. Min H. Kim KAIST School of Computing 18/04/06."

Transcription

1 8/4/6 CS38: Introduction to Computer Graphics Track-/Arc-ball Chapter 8 Min H. Kim KAIST School of Computing Quaternion SUMMARY 2

2 8/4/6 Unit norm quats. == rotations Squared norm is sum of 4 squares. Any quaternion of the form cos θ 2 cos θ sin θ 2 2 x sin θ = sin θ 2 2 y sin θ 2 z has a unit form Conversely, any such unit norm quaternion can be interpreted (along with its negation as a unique rotation matrix. ω ĉ = ω 2 + x 2 + y 2 + z 2, ĉ =[x, y,z] t ˆk = ω ĉ 3 Operations Quat * quat multiply ω ĉ ω 2 ĉ 2 = (ω ω 2 ĉ ĉ 2 (ω ĉ 2 + ω 2 ĉ + ĉ ĉ 2 Where and are the dot and cross product on 3 dimensional coordinate vectors. Correctly models (rotation matrix * (rotation matrix multiplications Trackball example: M = Matrix4::makeXRotation(-dy * Matrix4::makeYRotation(dx; 4 2

3 8/4/6 3 Unit norm quats Identity rotation example Flip rotation example Unit quaternion multiplication 5 ˆ, ˆ ˆk, ˆk ĉ ĉ 2 = ĉ ĉ 2 ĉ ĉ 2 ˆk ˆk 2 ˆk ˆk 2 = ˆk 2 ˆk Operations scalar * quat multiply NB Quaternions q and q are the same rotation!!! Unit quaternion multiplicative inverse (conjugate 6 cos θ 2 sin θ 2 = cos θ 2 sin θ 2, ˆ = cos θ 2 sin θ 2 cos θ 2 sin θ 2 α ω ĉ = αω αĉ, example - ω ĉ = ω ĉ

4 8/4/6 Rotate a vector by a unit quaternion Perform the following triple quaternion multiplication: cos θ cos θ q 2 = v' 2 cˆʹ sin θ ĉ sin θ 2 v 2 v'= qvq We need inv(q additionally, such that q and v are not orthogonal! If q and v are orthogonal, v =qv. ĉ ĉ 2 (ω ĉ 2 +ω 2 ĉ +ĉ ĉ 2 If we just multiply q with v, qv cannot become a vector (the first element will be non-zero. The additional right multiplication of inverse allows us to get a rotated vector. But we will write this in code as: cvec = quat * cvec ω ω 2 = (ω ω 2 ĉ ĉ 2 7 LERP (Linear Interpolation An even easier hack is to do 4D Linear interpolation (LERP and renormalization a α p p = a +α(b a p = a +α! v (-α p = ( αa +αb! v b cos θ cos θ ( α sin θ + α sin θ 8 4

5 8/4/6 Power-based SLERP Spherical Linear Interpolation α (-α a p α p! v p = a +α(b a! v b q p =! vq = rq q! v = rq cos θ! v = sin θ α v! = α θ = αθ 2 r p = v! α q = ( rq α q cos αθ! 2 v α = sin αθ 2 p = a +α! v p = ( αa +αb 9 Power-based SLERP cn(: ω ĉ In order to select the short interpolation of less than 8 degrees, When we interpolate, before calling the power operator, we first check the sign of the first coordinate, and conditionally negate the quaternion. We call this the conditional negation operator Quaternions q and q are the same rotation!!! Finally, we output: cos θ cos θ cn sin θ sin θ α cos θ sin θ = ω ĉ [ ω, ĉ] [ω,ĉ] 5

6 8/4/6 Sphere-based SLERPing In any dimension n, a trigonometric argument can be used to show that spherical linear interpolation between any two unit vectors in! n, can be calculated as: sin[( α Ω] sin(ω sin[( αω]! v sin(ω + sin[αω]! sin(ω where Ω = cos (! v! v cos θ sin θ + sin[αω] sin(ω v cos θ sin θ (RBT * RBT and inv(rbt The result is a new rigid transform with translation t + r t 2 and rotation r r 2 Use this to code up the * operator. Mind the Cvec3s (the t s and Cvec4s (needed for q*v. i t r i t 2 r 2 = 3D vector i t + r t 2 4D vector r r 2 i t r = i r t r 2 6

7 8/4/6 More code In GLSL, you will still use its matrix data type. The only Matrix4s (that will survive are the projmatrix, the MVM and the NMVM, which get sent to your shaders. Also, when we need to do object scaling, we cannot capture this in an RigTform, so this will also be an Matrix4 used in creating the MVM. To communicate with the vertex shader using 4- by-4 matrices, we need a procedure maketranslation(rigtform and Matrix4 quattomatrix (RigTform to use T * R, which turns quaternions into a 4-by-4 rotation matrix. 3 Chapter 8 BALLS: TRACK AND ARC 4 7

8 8/4/6 Track and arc balls How should we link mouse motion to object rotation Can do better than our current setup Want the feeling of pushing a sphere around (trackball Want path invariance (arcball Reminders: Affine transform: A affine = TL Rigid body transform: A RBT = TR 5 Track and arc balls 6 8

9 8/4/6 Setup We are moving an object with respect to cubeeye a t = w t (O T (E R The user clicks on the screen and drags the mouse. We wish to interpret this user motion as some rotation M that is applied to o t with respect to a t 7 Mental model Imagine a sphere of some chosen radius that is centered at o, the origin of o t. User clicks on the screen at screen pixel s over the sphere in the image We interpret this as the user selecting some 3D point p on the sphere. The user then moves the mouse to other screen pixel over the s sphere, (!p We interpret as a second point p 2 on the sphere 8 9

10 8/4/6 Mental model Define the unit direction vectors v, v 2 : normalize ( p o and normalize ( p 2 o respectively. Define the angle φ = arccos( v v 2 Define the axis k = normalize( v v 2 s (!p 9 Mental model Let s try to formulate the rotation about the axis k can be represented by the quaternion. Where ˆk, ˆv, ˆv 2 are the coordinates 3-vectors representing the vectors k, v, v 2 with respect to the frame a t. s (!p 2

11 8/4/6 Ball rotation using quaternions What we want Derivation Therefore! v 2 = q! v, q =! v 2! v such that q and! v are orthogonal, and q and! v 2 are orthogonal. ˆv 2 ˆv = ˆv ˆv 2 ˆv ˆv = cos(φ 2 sin(φˆk cos θ 2 cos(φ q = sin θ = sin(φˆk. 2 s (!p φ = θ 2, θ =2φ. 2 Ball rotation using quaternions Rotation of 2φ degrees about the axis k can be represented by the quaternion. cos(φ sin(φˆk = ˆv ˆv 2 ˆv ˆv 2 ˆk, ˆv, ˆv 2 Where are the coordinates 3-vectors representing the vectors with respect to the frame. = ˆv 2 ˆv k, v, v 2 a t s (!p 22

12 8/4/6 Ball rotation using quaternions Arcball: M is the rotation of 2φ degrees about the axis k. Trackball: is the rotation of φ degrees about M the axis k. Could be implemented with matrices or quaternions. Arcball is very easy with quaternions s (!p 23 Properties Trackball feels like the user is simply grabbing a physical point on a sphere and dragging it around. But s to, followed by to s 3 is different from moving directly from s to s 3 p will be rotated to p 3, but the results can differ by some twist about the axis o p 3. This path dependence also exists in our simple rotation interface. s (!p Arcball: the object appears to spin twice faster than expected. s 3 (!p

13 8/4/6 Arcball is Path independent If we compose two arcball rotations, corresponding to motion from p to p 2 followed by motion from p to p 2, we get 3 ˆv 2 ˆv 3 ˆv ˆv 2 ˆv 2 ˆv 3 ˆv ˆv 2 Read right to left, global in the unchanging a t frame ˆv 3 ˆv 2 ˆv 2 ˆv = ˆv 3 ˆv = ˆv ˆv 3 ˆv ˆv 3 which is exactly what we would have gotten had we moved directly from to. p p 3 25 Implementation Trackball and Arcball can be directly implemented using either 4-by-4 matrices or quaternions to represent the transformation M. We will use quaternions, since we already have them. The resulting quaternion depends only on vector ˆv So origin of frame is irrelevant We can work in eye coordinates instead of cubeeye. 26 3

14 8/4/6 Getting eye coordinates One slightly tricky part is computing the coordinates of the point on the sphere corresponding to a selected pixel This is geometric ray tracing (this is essentially raytracing, which we will cover later Hack: work in window coordinates X-axis is the horizontal axis of the screen, the y-axis is the vertical axis of the screen, and the z-axis is coming out of the screen. s (!p Think of the sphere s center as simply sitting on the screen. 27 Getting eye coordinates Given the (x,y window coordinates of click, the z coordinate on the sphere can be solved using (x c x 2 + (y c y 2 + (z 2 = r 2 z = r 2 (x c x 2 (y c y 2 [c x,c y,] t are the window coordinates of the center of the sphere r is the radius of the sphere measured in pixels if outside of the sphere, then clamp to its boundary All we need is normalized ˆv, so just normalized such vectors s (!p 28 4

15 8/4/6 Calculation Need the center of the sphere So we give you code that transforms eye coordinates to screen coordinates Cvec2 getscreenspacecoord(const Cvec3& p, const Matrix4& projection, double frustnear, double frustfovy, int screenwidth, int screenheight We draw the ball using object coordinates, so we need to calculate its size in eye/object coordinates So we provide you with double getscreentoeyescale(double z, double frustfovy, int screenheight In the ball drawer, you right multiply a scale matrix to the MVM 29 Translation NB the distance after perspective projection should be different from the distance in the object coordinates. In translation, we interpret mouse displacement (measured in pixels to object displacement. May as well use the same screentoeyescale factor so the object moves with the mouse Once the object is moved, or we change the eye we need to recalculate the scale Wait for click up. 3 5

CS354 Computer Graphics Rotations and Quaternions

CS354 Computer Graphics Rotations and Quaternions Slide Credit: Don Fussell CS354 Computer Graphics Rotations and Quaternions Qixing Huang April 4th 2018 Orientation Position and Orientation The position of an object can be represented as a translation

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Animation Curves and Splines 2

Animation Curves and Splines 2 Animation Curves and Splines 2 Animation Homework Set up Thursday a simple avatar E.g. cube/sphere (or square/circle if 2D) Specify some key frames (positions/orientations) Associate Animation a time with

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

Orientation & Quaternions

Orientation & Quaternions Orientation & Quaternions Orientation Position and Orientation The position of an object can be represented as a translation of the object from the origin The orientation of an object can be represented

More information

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation CS38: Introduction to Computer Graphics Projection Chapter Min H. Kim KAIST School of Computing Smooth Interpolation SUMMARY 2 Cubic Bezier Spline To evaluate the function c(t) at any value of t, we perform

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

Rotations (and other transformations) Rotation as rotation matrix. Storage. Apply to vector matrix vector multiply (15 flops)

Rotations (and other transformations) Rotation as rotation matrix. Storage. Apply to vector matrix vector multiply (15 flops) Cornell University CS 569: Interactive Computer Graphics Rotations (and other transformations) Lecture 4 2008 Steve Marschner 1 Rotation as rotation matrix 9 floats orthogonal and unit length columns and

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

Lab 2A Finding Position and Interpolation with Quaternions

Lab 2A Finding Position and Interpolation with Quaternions Lab 2A Finding Position and Interpolation with Quaternions In this Lab we will learn how to use the RVIZ Robot Simulator, Python Programming Interpreter and ROS tf library to study Quaternion math. There

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Homework #1. Displays, Alpha Compositing, Image Processing, Affine Transformations, Hierarchical Modeling

Homework #1. Displays, Alpha Compositing, Image Processing, Affine Transformations, Hierarchical Modeling Computer Graphics Instructor: Brian Curless CSE 457 Spring 2014 Homework #1 Displays, Alpha Compositing, Image Processing, Affine Transformations, Hierarchical Modeling Assigned: Saturday, April th Due:

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

Animation and Quaternions

Animation and Quaternions Animation and Quaternions Partially based on slides by Justin Solomon: http://graphics.stanford.edu/courses/cs148-1-summer/assets/lecture_slides/lecture14_animation_techniques.pdf 1 Luxo Jr. Pixar 1986

More information

Advanced Computer Graphics Transformations. Matthias Teschner

Advanced Computer Graphics Transformations. Matthias Teschner Advanced Computer Graphics Transformations Matthias Teschner Motivation Transformations are used To convert between arbitrary spaces, e.g. world space and other spaces, such as object space, camera space

More information

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 32 Cornell CS4620 Fall 2015 1 What is animation? Modeling = specifying shape using all the tools we ve seen: hierarchies, meshes, curved surfaces Animation = specifying shape

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

2D Object Definition (1/3)

2D Object Definition (1/3) 2D Object Definition (1/3) Lines and Polylines Lines drawn between ordered points to create more complex forms called polylines Same first and last point make closed polyline or polygon Can intersect itself

More information

IMAGE-BASED RENDERING AND ANIMATION

IMAGE-BASED RENDERING AND ANIMATION DH2323 DGI17 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION IMAGE-BASED RENDERING AND ANIMATION Christopher Peters CST, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

More information

Transformations. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Transformations. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Transformations CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science 1 Objectives Introduce standard transformations - Rotation - Translation - Scaling - Shear Derive

More information

object (say a cube) will be made up of triangles, each with three vertices, each with known object coordinates.

object (say a cube) will be made up of triangles, each with three vertices, each with known object coordinates. hello world 3d: basic approach object (say a cube) will be made up of triangles, each with three vertices, each with known object coordinates. object coordinates of vertices will be put in an OpenGL buffer

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

Fundamentals of Computer Animation

Fundamentals of Computer Animation Fundamentals of Computer Animation Quaternions as Orientations () page 1 Multiplying Quaternions q1 = (w1, x1, y1, z1); q = (w, x, y, z); q1 * q = ( w1.w - v1.v, w1.v + w.v1 + v1 X v) where v1 = (x1, y1,

More information

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems EECE 478 Linear Algebra and 3D Geometry Learning Objectives Linear algebra in 3D Define scalars, points, vectors, lines, planes Manipulate to test geometric properties Coordinate systems Use homogeneous

More information

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing

Interactive Computer Graphics. Hearn & Baker, chapter D transforms Hearn & Baker, chapter 5. Aliasing and Anti-Aliasing Interactive Computer Graphics Aliasing and Anti-Aliasing Hearn & Baker, chapter 4-7 D transforms Hearn & Baker, chapter 5 Aliasing and Anti-Aliasing Problem: jaggies Also known as aliasing. It results

More information

GEOMETRIC TRANSFORMATIONS AND VIEWING

GEOMETRIC TRANSFORMATIONS AND VIEWING GEOMETRIC TRANSFORMATIONS AND VIEWING 2D and 3D 1/44 2D TRANSFORMATIONS HOMOGENIZED Transformation Scaling Rotation Translation Matrix s x s y cosθ sinθ sinθ cosθ 1 dx 1 dy These 3 transformations are

More information

Objectives. transformation. General Transformations. Affine Transformations. Notation. Pipeline Implementation. Introduce standard transformations

Objectives. transformation. General Transformations. Affine Transformations. Notation. Pipeline Implementation. Introduce standard transformations Objectives Transformations CS Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Introduce standard transformations - Rotation - Translation - Scaling - Shear Derive homogeneous

More information

CS 380 Introduction to Computer Graphics

CS 380 Introduction to Computer Graphics CS 380 Introduction to Computer Graphics LAB (6) 2018.04.30 Tasks Keyframes Linear Interpolation Playing the Animation 2 Keyframe Animation 3 Animation A sequence of frames To depict motion and shape change

More information

Quaternions and Exponentials

Quaternions and Exponentials Quaternions and Exponentials Michael Kazhdan (601.457/657) HB A.6 FvDFH 21.1.3 Announcements OpenGL review II: Today at 9:00pm, Malone 228 This week's graphics reading seminar: Today 2:00-3:00pm, my office

More information

Image warping , , Computational Photography Fall 2017, Lecture 10

Image warping , , Computational Photography Fall 2017, Lecture 10 Image warping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 10 Course announcements Second make-up lecture on Friday, October 6 th, noon-1:30

More information

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS

MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS MATHEMATICS FOR ENGINEERING TUTORIAL 5 COORDINATE SYSTEMS This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

2D transformations: An introduction to the maths behind computer graphics

2D transformations: An introduction to the maths behind computer graphics 2D transformations: An introduction to the maths behind computer graphics Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University,

More information

2D and 3D Coordinate Systems and Transformations

2D and 3D Coordinate Systems and Transformations Graphics & Visualization Chapter 3 2D and 3D Coordinate Systems and Transformations Graphics & Visualization: Principles & Algorithms Introduction In computer graphics is often necessary to change: the

More information

CMSC 425: Lecture 6 Affine Transformations and Rotations

CMSC 425: Lecture 6 Affine Transformations and Rotations CMSC 45: Lecture 6 Affine Transformations and Rotations Affine Transformations: So far we have been stepping through the basic elements of geometric programming. We have discussed points, vectors, and

More information

Jorg s Graphics Lecture Notes Coordinate Spaces 1

Jorg s Graphics Lecture Notes Coordinate Spaces 1 Jorg s Graphics Lecture Notes Coordinate Spaces Coordinate Spaces Computer Graphics: Objects are rendered in the Euclidean Plane. However, the computational space is better viewed as one of Affine Space

More information

Rotations in 3D Graphics and the Gimbal Lock

Rotations in 3D Graphics and the Gimbal Lock Rotations in 3D Graphics and the Gimbal Lock Valentin Koch Autodesk Inc. January 27, 2016 Valentin Koch (ADSK) IEEE Okanagan January 27, 2016 1 / 37 Presentation Road Map 1 Introduction 2 Rotation Matrices

More information

CS 475 / CS 675 Computer Graphics. Lecture 16 : Interpolation for Animation

CS 475 / CS 675 Computer Graphics. Lecture 16 : Interpolation for Animation CS 475 / CS 675 Computer Graphics Lecture 16 : Interpolation for Keyframing Selected (key) frames are specified. Interpolation of intermediate frames. Simple and popular approach. May give incorrect (inconsistent)

More information

Computer Graphics. Chapter 5 Geometric Transformations. Somsak Walairacht, Computer Engineering, KMITL

Computer Graphics. Chapter 5 Geometric Transformations. Somsak Walairacht, Computer Engineering, KMITL Chapter 5 Geometric Transformations Somsak Walairacht, Computer Engineering, KMITL 1 Outline Basic Two-Dimensional Geometric Transformations Matrix Representations and Homogeneous Coordinates Inverse Transformations

More information

Mathematics 308 Geometry. Chapter 9. Drawing three dimensional objects

Mathematics 308 Geometry. Chapter 9. Drawing three dimensional objects Mathematics 308 Geometry Chapter 9. Drawing three dimensional objects In this chapter we will see how to draw three dimensional objects with PostScript. The task will be made easier by a package of routines

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation

Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation November 11, 2013 Matthew Smith mrs126@uclive.ac.nz Department of Computer Science and Software Engineering University

More information

(Refer Slide Time: 00:04:20)

(Refer Slide Time: 00:04:20) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 8 Three Dimensional Graphics Welcome back all of you to the lectures in Computer

More information

Transformations: 2D Transforms

Transformations: 2D Transforms 1. Translation Transformations: 2D Transforms Relocation of point WRT frame Given P = (x, y), translation T (dx, dy) Then P (x, y ) = T (dx, dy) P, where x = x + dx, y = y + dy Using matrix representation

More information

3D Modelling: Animation Fundamentals & Unit Quaternions

3D Modelling: Animation Fundamentals & Unit Quaternions 3D Modelling: Animation Fundamentals & Unit Quaternions CITS3003 Graphics & Animation Thanks to both Richard McKenna and Marco Gillies for permission to use their slides as a base. Static objects are boring

More information

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University 2D Image Transforms 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Extract features from an image what do we do next? Feature matching (object recognition, 3D reconstruction, augmented

More information

we now have a good understanding of 3d representations, rigid body transforms, camera projections, and the fixed function steps in graphics

we now have a good understanding of 3d representations, rigid body transforms, camera projections, and the fixed function steps in graphics big picture goals we now have a good understanding of 3d representations, rigid body transforms, camera projections, and the fixed function steps in graphics now we are going to add higher level structure

More information

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space Basic Elements Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions We want a minimum set

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Lecture 5 2D Transformation

Lecture 5 2D Transformation Lecture 5 2D Transformation What is a transformation? In computer graphics an object can be transformed according to position, orientation and size. Exactly what it says - an operation that transforms

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations

CS 445 / 645 Introduction to Computer Graphics. Lecture 21 Representing Rotations CS 445 / 645 Introduction to Computer Graphics Lecture 21 Representing Rotations Parameterizing Rotations Straightforward in 2D A scalar, θ, represents rotation in plane More complicated in 3D Three scalars

More information

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides Rigging / Skinning based on Taku Komura, Jehee Lee and Charles B.Own's slides Skeletal Animation Victoria 2 CSE 872 Dr. Charles B. Owen Advanced Computer Graphics Skinning http://www.youtube.com/watch?

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

Last week. Machiraju/Zhang/Möller/Fuhrmann

Last week. Machiraju/Zhang/Möller/Fuhrmann Last week Machiraju/Zhang/Möller/Fuhrmann 1 Geometry basics Scalar, point, and vector Vector space and affine space Basic point and vector operations Sided-ness test Lines, planes, and triangles Linear

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1 Transformations 1-1 Transformations are used within the entire viewing pipeline: Projection from world to view coordinate system View modifications: Panning Zooming Rotation 1-2 Transformations can also

More information

Today. Parity. General Polygons? Non-Zero Winding Rule. Winding Numbers. CS559 Lecture 11 Polygons, Transformations

Today. Parity. General Polygons? Non-Zero Winding Rule. Winding Numbers. CS559 Lecture 11 Polygons, Transformations CS559 Lecture Polygons, Transformations These are course notes (not used as slides) Written by Mike Gleicher, Oct. 005 With some slides adapted from the notes of Stephen Chenney Final version (after class)

More information

Vector Algebra Transformations. Lecture 4

Vector Algebra Transformations. Lecture 4 Vector Algebra Transformations Lecture 4 Cornell CS4620 Fall 2008 Lecture 4 2008 Steve Marschner 1 Geometry A part of mathematics concerned with questions of size, shape, and relative positions of figures

More information

Transformation Algebra

Transformation Algebra Transformation Algebra R. J. Renka Department of Computer Science & Engineering University of North Texas 0/07/205 Linear Transformations A point with Cartesian coordinates (x, y, z) is taken to be a column

More information

Transformations Week 9, Lecture 18

Transformations Week 9, Lecture 18 CS 536 Computer Graphics Transformations Week 9, Lecture 18 2D Transformations David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 3 2D Affine Transformations

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Graphics Pipeline 2D Geometric Transformations

Graphics Pipeline 2D Geometric Transformations Graphics Pipeline 2D Geometric Transformations CS 4620 Lecture 8 1 Plane projection in drawing Albrecht Dürer 2 Plane projection in drawing source unknown 3 Rasterizing triangles Summary 1 evaluation of

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

PetShop (BYU Students, SIGGRAPH 2006)

PetShop (BYU Students, SIGGRAPH 2006) Now Playing: PetShop (BYU Students, SIGGRAPH 2006) My Mathematical Mind Spoon From Gimme Fiction Released May 10, 2005 Geometric Objects in Computer Graphics Rick Skarbez, Instructor COMP 575 August 30,

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Quaternions and Dual Coupled Orthogonal Rotations in Four-Space

Quaternions and Dual Coupled Orthogonal Rotations in Four-Space Quaternions and Dual Coupled Orthogonal Rotations in Four-Space Kurt Nalty January 8, 204 Abstract Quaternion multiplication causes tensor stretching) and versor turning) operations. Multiplying by unit

More information

Lecture 21: Shading. put your trust in my shadow. Judges 9:15

Lecture 21: Shading. put your trust in my shadow. Judges 9:15 Lecture 21: Shading put your trust in my shadow. Judges 9:15 1. Polygonal Models Polygonal models are one of the most common representations for geometry in Computer Graphics. Polygonal models are popular

More information

Animation. Animation

Animation. Animation CS475m - Computer Graphics Lecture 5 : Interpolation for Selected (key) frames are specified. Interpolation of intermediate frames. Simple and popular approach. May give incorrect (inconsistent) results.

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Structural Manipulation November 22, 2017 Rapid Structural Analysis Methods Emergence of large structural databases which do not allow manual (visual) analysis and require efficient 3-D search

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

Students are not expected to work formally with properties of dilations until high school.

Students are not expected to work formally with properties of dilations until high school. Domain: Geometry (G) Cluster: Understand congruence and similarity using physical models, transparencies, or geometry software. Standard: 8.G.1. Verify experimentally the properties of rotations, reflections,

More information

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1 Foundations of Computer Graphics Homogeneous Coordinates Start doing HW 1 To Do Specifics of HW 1 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full

More information

3D Game Engine Programming. Understanding Quaternions. Helping you build your dream game engine. Posted on June 25, 2012 by Jeremiah van Oosten

3D Game Engine Programming. Understanding Quaternions. Helping you build your dream game engine. Posted on June 25, 2012 by Jeremiah van Oosten 3D Game Engine Programming Helping you build your dream game engine. Understanding Quaternions Posted on June 25, 2012 by Jeremiah van Oosten Understanding Quaternions In this article I will attempt to

More information

Lecture 4: Transforms. Computer Graphics CMU /15-662, Fall 2016

Lecture 4: Transforms. Computer Graphics CMU /15-662, Fall 2016 Lecture 4: Transforms Computer Graphics CMU 15-462/15-662, Fall 2016 Brief recap from last class How to draw a triangle - Why focus on triangles, and not quads, pentagons, etc? - What was specific to triangles

More information

Vector Calculus: Understanding the Cross Product

Vector Calculus: Understanding the Cross Product University of Babylon College of Engineering Mechanical Engineering Dept. Subject : Mathematics III Class : 2 nd year - first semester Date: / 10 / 2016 2016 \ 2017 Vector Calculus: Understanding the Cross

More information

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x

+ i a y )( cosφ + isinφ) ( ) + i( a x. cosφ a y. = a x Rotation Matrices and Rotated Coordinate Systems Robert Bernecky April, 2018 Rotated Coordinate Systems is a confusing topic, and there is no one standard or approach 1. The following provides a simplified

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry Transforms (part II) Christopher Dyken and Martin Reimers 21.09.2011 Page 1 Transforms (part II) Real Time Rendering book: Transforms (Chapter 4) The Red

More information

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 Computer graphics Assignment 5 1 Overview Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 In this assignment you will implement the camera and several primitive objects for a ray tracer. We

More information

Reading. Hierarchical Modeling. Symbols and instances. Required: Angel, sections , 9.8. Optional:

Reading. Hierarchical Modeling. Symbols and instances. Required: Angel, sections , 9.8. Optional: Reading Required: Angel, sections 9.1 9.6, 9.8 Optional: Hierarchical Modeling OpenGL rogramming Guide, the Red Book, chapter 3 cse457-07-hierarchical 1 cse457-07-hierarchical 2 Symbols and instances Most

More information

Chapter 5. Transforming Shapes

Chapter 5. Transforming Shapes Chapter 5 Transforming Shapes It is difficult to walk through daily life without being able to see geometric transformations in your surroundings. Notice how the leaves of plants, for example, are almost

More information

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Handed out: 001 Nov. 30th Due on: 001 Dec. 10th Problem 1: (a (b Interior

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

Early Fundamentals of Coordinate Changes and Rotation Matrices for 3D Computer Vision

Early Fundamentals of Coordinate Changes and Rotation Matrices for 3D Computer Vision Early Fundamentals of Coordinate Changes and Rotation Matrices for 3D Computer Vision Ricardo Fabbri Benjamin B. Kimia Brown University, Division of Engineering, Providence RI 02912, USA Based the first

More information

Part II: OUTLINE. Visualizing Quaternions. Part II: Visualizing Quaternion Geometry. The Spherical Projection Trick: Visualizing unit vectors.

Part II: OUTLINE. Visualizing Quaternions. Part II: Visualizing Quaternion Geometry. The Spherical Projection Trick: Visualizing unit vectors. Visualizing Quaternions Part II: Visualizing Quaternion Geometry Andrew J. Hanson Indiana University Part II: OUTLINE The Spherical Projection Trick: Visualizing unit vectors. Quaternion Frames Quaternion

More information

a a= a a =a a 1 =1 Division turned out to be equivalent to multiplication: a b= a b =a 1 b

a a= a a =a a 1 =1 Division turned out to be equivalent to multiplication: a b= a b =a 1 b MATH 245 Extra Effort ( points) My assistant read through my first draft, got half a page in, and skipped to the end. So I will save you the flipping. Here is the assignment. Do just one of them. All the

More information

Coordinate transformations. 5554: Packet 8 1

Coordinate transformations. 5554: Packet 8 1 Coordinate transformations 5554: Packet 8 1 Overview Rigid transformations are the simplest Translation, rotation Preserve sizes and angles Affine transformation is the most general linear case Homogeneous

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

Game Engineering: 2D

Game Engineering: 2D Game Engineering: 2D CS420-2010F-07 Objects in 2D David Galles Department of Computer Science University of San Francisco 07-0: Representing Polygons We want to represent a simple polygon Triangle, rectangle,

More information

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Transformation Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Project

More information

CS 4620 Midterm 1. Tuesday 22 October minutes

CS 4620 Midterm 1. Tuesday 22 October minutes CS 4620 Midterm 1 Tuesday 22 October 2013 90 minutes Problem 1: Transformations (20 pts) Consider the affine transformation on R 3 defined in homogeneous coordinates by the matrix: 1 M = 1 0 0 2 0 1 0

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

Visualizing Quaternions

Visualizing Quaternions Visualizing Quaternions Andrew J. Hanson Computer Science Department Indiana University Siggraph 1 Tutorial 1 GRAND PLAN I: Fundamentals of Quaternions II: Visualizing Quaternion Geometry III: Quaternion

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Computer Animation II

Computer Animation II Computer Animation II Orientation interpolation Dynamics Some slides courtesy of Leonard McMillan and Jovan Popovic Lecture 13 6.837 Fall 2002 Interpolation Review from Thursday Splines Articulated bodies

More information