Cinematica dei Robot Mobili su Ruote. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Size: px
Start display at page:

Download "Cinematica dei Robot Mobili su Ruote. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo"

Transcription

1 Cinematica dei Robot Mobili su Ruote Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

2 Riferimenti bibliografici Roland SIEGWART, Illah R. NOURBAKHSH Introduction to Autonomous Mobile Robots Capitolo 2.3 «Wheeled Mobile Robots» 2

3 Wheeled Mobile Robots (WMR) 3

4 Wheeled Mobile Robots (WMR) ocomotion the process of causing an robot to move. In order to produce motion, forces must be applied to the robot Motor output, payload Kinematics study of the mathematics of motion without considering the forces that affect the motion. Deals with the geometric relationships that govern the system Deals with the relationship between control parameters and the behavior of a system. Dynamics study of motion in which these forces are modeled Deals with the relationship between force and motions. 4

5 Mobile Robot Kinematics Description of mechanical behavior of the robot for design and control Mobile robots can move unbound with respect to its environment there is no direct way to measure the robot s position Position must be integrated over time eads to inaccuracies of the position (motion) estimate the number 1 challenge in mobile robotics Understanding mobile robot motion starts with understanding wheel constraints placed on the robots mobility 5

6 Wheels Rolling motion ateral slip 6

7 Idealized Rolling Wheel Non-slipping and pure rolling Assumptions 1. The robot is built from rigid mechanisms. 2. No slip occurs in the orthogonal direction of rolling (nonslipping). 3. No translational slip occurs between the wheel and the floor (pure rolling). 4. The robot contains at most one steering lin per wheel. 5. All steering axes are perpendicular to the floor. 7

8 Robot wheel parameters For low velocities, rolling is a reasonable wheel model. This is the model that will be considered in the inematics models of wheeled mobile robots (WMR) Wheel parameters: r = wheel radius v = wheel linear velocity w = wheel angular velocity t = steering velocity 8

9 Wheel Types Fixed wheel Centered orientable wheel Off-centered orientable wheel (Castor wheel) Swedish wheel:omnidirectional property 9

10 Examples of WMR Smooth motion Ris of slipping Some times use roller-ball to mae balance Bi-wheel type robot Caterpillar type robot Exact straight motion Robust to slipping Inexact modeling of turning Free motion Complex structure Weaness of the frame Omnidirectional robot 10

11 Mobile Robot ocomotion Instantaneous center of rotation (ICR) or Instantaneous center of curvature (ICC) A cross point of all axes of the wheels 11

12 Non-holonomic constraint A non-holonomic constraint is a constraint on the feasible velocities of a body So what does that mean? Your robot can move in some directions (forward and bacward), but not others (sideward). The robot can instantly move forward and bacward, but can not move sideward Parallel paring, Series of maneuvers 12

13 Differential Drive Relazione tra le velocità delle ruote (V e V R ) e la velocità del robot (TWIST) V Control input Twist { v : inear velocity of the robot : Angular velocity of the robot R = curvature radius V = R * 13

14 Differential Drive V ( R ) 2 V R ( R ) 2 V 14

15 Differential Drive V Straight motion R = Infinity VR = V Rotational motion R = 0 VR = -V 15

16 Differential Drive V V Twist { Velocità ruote { 16

17 Tricycle Three wheels and odometers on the two rear wheels Steering and power are provided through the front wheel control variables: steering direction α(t) angular velocity of steering wheel w s (t) The ICC must lie on the line that passes through, and is perpendicular to, the fixed rear wheels 17

18 Tricycle inear velocity of steering wheel 18

19 Tricycle Kinematics model in the world frame ---Posture inematics model 19

20 Car Drive (Acerman Steering) 20 R Used in motor vehicles, the inside front wheel is rotated slightly sharper than the outside wheel (reduces tire slippage). Acerman steering provides a fairly accurate dead-reconing solution while supporting traction and ground clearance. Generally the method of choice for outdoor autonomous vehicles. where d = lateral wheel separation l = longitudinal wheel separation i = relative steering angle of inside wheel o = relative steering angle of outside wheel R=distance between ICC to centerline of the vehicle

21 Carrello 21

22 Synchronous Drive In a synchronous drive robot (synchronous drive) each wheel is capable of being driven and steered. 22

23 Synchronous Drive All the wheels turn in unison All of the three wheels point in the same direction and turn at the same rate This is typically achieved through the use of a complex collection of belts that physically lin the wheels together Two independent motors, one rolls all wheels forward, one rotate them for turning The vehicle controls the direction in which the wheels point and the rate at which they roll Because all the wheels remain parallel the synchro drive always rotate about the center of the robot The synchro drive robot has the ability to control the orientation θ of their pose directly. 23

24 Omidirectional 24 Swedish Wheel

25 Odometry for Differential Drive Rovers

26 Differential Drive V Straight motion R = Infinity VR = V Rotational motion R = 0 VR = -V 26

27 Basic Motion Control Velocity Profile : Radius of rotation : ength of path : Angle of rotation

28 Differential Drive: odometria y dd 1 2 r R t t dt y θ x x r t t t 1 t r t t cos t 2 R R dt dt dd x 28 y 1 t r t t sin t 2 R dt

29 Differential Drive: odometria Esempio : velocità costanti R R t t t r t R t r t x R R R sin 2 t r t y R R R cos 2 29

30 Differential Drive: odometria D DR R r r t t t t 1 1 Distanze percorse dalle due ruote nell intervallo di tempo t t -1 r 2 DR DR D D Raggio di curvatura del robot nell intervallo di tempo t t -1 x y x y 1 DR D r sin 1 1 r cos 1 1 sin cos Posizione del robot all istante t 30

31 Effector Noise: Odometry, Dead Reconing Odometry and dead reconing: Position update is based on proprioceptive sensors Odometry: wheel sensors only Dead reconing: also heading sensors The movement of the robot, sensed with wheel encoders and/or heading sensors is integrated to the position. Pros: Straight forward, easy Cons: Errors are integrated -> unbound Using additional heading sensors (e.g. gyroscope) might help to reduce the cumulated errors, but the main problems remain the same. 31

32 Imprecisione dell odometria Nr. posizionamenti = 35 ; Dati di scostamento : Media = 11 gradi ; Deviazione standard = 5.47 gradi 32

33 Odometry: Error sources deterministic (systematic) non-deterministic (non-systematic) deterministic errors can be eliminated by proper calibration of the system. non-deterministic errors have to be described by error models and will always leading to uncertain position estimate. Major Error Sources: imited resolution during integration (time increments, measurement resolution ) Misalignment of the wheels (deterministic) Unequal wheel diameter (deterministic) Variation in the contact point of the wheel Unequal floor contact (slipping, not planar ) 33

34 Odometry: Classification of Integration Errors Range error: integrated path length (distance) of the robots movement sum of the wheel movements Turn error: similar to range error, but for turns difference of the wheel motions Drift error: difference in the error of the wheels leads to an error in the robots angular orientation Over long periods of time, turn and drift errors far outweigh range errors! Consider moving forward on a straight line along the x axis. The error in the y- position introduced by a move of d meters will have a component of dsind, which can be quite large as the angular error D grows. 34

35 Differential Drive: odometria D DR R r r t t t 1 t 1 r 2 DR DR D D x y x y 1 DR D r sin 1 1 r cos 1 1 sin cos Posizione del robot all istante t 35

36 Odometry: Growth of Pose uncertainty for Straight ine Movement Note: Errors perpendicular to the direction of movement are growing much faster! 36

37 Odometry: Growth of Pose uncertainty for Movement on a Circle Note: Errors ellipse does not remain perpendicular to the direction of movement! 37

38 Riduzione degli errori non sistematici Utilizzo di ruote ausiliarie non motrici 38

Localization, Where am I?

Localization, Where am I? 5.1 Localization, Where am I?? position Position Update (Estimation?) Encoder Prediction of Position (e.g. odometry) YES matched observations Map data base predicted position Matching Odometry, Dead Reckoning

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta CMPUT 412 Motion Control Wheeled robots Csaba Szepesvári University of Alberta 1 Motion Control (wheeled robots) Requirements Kinematic/dynamic model of the robot Model of the interaction between the wheel

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

Mobile Robot Kinematics

Mobile Robot Kinematics Mobile Robot Kinematics Dr. Kurtuluş Erinç Akdoğan kurtuluserinc@cankaya.edu.tr INTRODUCTION Kinematics is the most basic study of how mechanical systems behave required to design to control Manipulator

More information

Lecture 1 Wheeled Mobile Robots (WMRs)

Lecture 1 Wheeled Mobile Robots (WMRs) Lecture 1 Wheeled Mobile Robots (WMRs) Course Chair: Prof. M. De Cecco Teaching: A. Cesarini Mechatronics Department, University of Trento Email: andrea.cesarini@unitn.it http://www.miro.ing.unitn.it/

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Mobile Robotics. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano tel:

Mobile Robotics. Marcello Restelli. Dipartimento di Elettronica e Informazione Politecnico di Milano   tel: Marcello Restelli Dipartimento di Elettronica e Informazione Politecnico di Milano email: restelli@elet.polimi.it tel: 02-2399-3470 Mobile Robotics Robotica for Computer Engineering students A.A. 2006/2007

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3

Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Unit 2: Locomotion Kinematics of Wheeled Robots: Part 3 Computer Science 4766/6778 Department of Computer Science Memorial University of Newfoundland January 28, 2014 COMP 4766/6778 (MUN) Kinematics of

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

Encoder applications. I Most common use case: Combination with motors

Encoder applications. I Most common use case: Combination with motors 3.5 Rotation / Motion - Encoder applications 64-424 Intelligent Robotics Encoder applications I Most common use case: Combination with motors I Used to measure relative rotation angle, rotational direction

More information

EE565:Mobile Robotics Lecture 2

EE565:Mobile Robotics Lecture 2 EE565:Mobile Robotics Lecture 2 Welcome Dr. Ing. Ahmad Kamal Nasir Organization Lab Course Lab grading policy (40%) Attendance = 10 % In-Lab tasks = 30 % Lab assignment + viva = 60 % Make a group Either

More information

Fundamental problems in mobile robotics

Fundamental problems in mobile robotics ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Kinematics Fundamental problems in mobile robotics Locomotion: how the robot moves in the environment Perception: how

More information

CHAPTER 3 MATHEMATICAL MODEL

CHAPTER 3 MATHEMATICAL MODEL 38 CHAPTER 3 MATHEMATICAL MODEL 3.1 KINEMATIC MODEL 3.1.1 Introduction The kinematic model of a mobile robot, represented by a set of equations, allows estimation of the robot s evolution on its trajectory,

More information

BEST2015 Autonomous Mobile Robots Lecture 2: Mobile Robot Kinematics and Control

BEST2015 Autonomous Mobile Robots Lecture 2: Mobile Robot Kinematics and Control BEST2015 Autonomous Mobile Robots Lecture 2: Mobile Robot Kinematics and Control Renaud Ronsse renaud.ronsse@uclouvain.be École polytechnique de Louvain, UCLouvain July 2015 1 Introduction Mobile robot

More information

Mobile Robots Locomotion

Mobile Robots Locomotion Mobile Robots Locomotion Institute for Software Technology 1 Course Outline 1. Introduction to Mobile Robots 2. Locomotion 3. Sensors 4. Localization 5. Environment Modelling 6. Reactive Navigation 2 Today

More information

1 Differential Drive Kinematics

1 Differential Drive Kinematics CS W4733 NOTES - Differential Drive Robots Note: these notes were compiled from Dudek and Jenkin, Computational Principles of Mobile Robotics. 1 Differential Drive Kinematics Many mobile robots use a drive

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Ph.D. Antonio Marin-Hernandez Artificial Intelligence Department Universidad Veracruzana Sebastian Camacho # 5 Xalapa, Veracruz Robotics Action and Perception LAAS-CNRS 7, av du

More information

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 4 Dynamics Part 2 4.3 Constrained Kinematics and Dynamics 1 Outline 4.3 Constrained Kinematics and Dynamics 4.3.1 Constraints of Disallowed Direction 4.3.2 Constraints of Rolling without Slipping

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Kinematics, Kinematics Chains CS 685

Kinematics, Kinematics Chains CS 685 Kinematics, Kinematics Chains CS 685 Previously Representation of rigid body motion Two different interpretations - as transformations between different coord. frames - as operators acting on a rigid body

More information

DEAD RECKONING FOR MOBILE ROBOTS USING TWO OPTICAL MICE

DEAD RECKONING FOR MOBILE ROBOTS USING TWO OPTICAL MICE DEAD RECKONING FOR MOBILE ROBOTS USING TWO OPTICAL MICE Andrea Bonarini Matteo Matteucci Marcello Restelli Department of Electronics and Information Politecnico di Milano Piazza Leonardo da Vinci, I-20133,

More information

Exam in DD2426 Robotics and Autonomous Systems

Exam in DD2426 Robotics and Autonomous Systems Exam in DD2426 Robotics and Autonomous Systems Lecturer: Patric Jensfelt KTH, March 16, 2010, 9-12 No aids are allowed on the exam, i.e. no notes, no books, no calculators, etc. You need a minimum of 20

More information

CS283: Robotics Fall 2016: Sensors

CS283: Robotics Fall 2016: Sensors CS283: Robotics Fall 2016: Sensors Sören Schwertfeger / 师泽仁 ShanghaiTech University Robotics ShanghaiTech University - SIST - 23.09.2016 2 REVIEW TRANSFORMS Robotics ShanghaiTech University - SIST - 23.09.2016

More information

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Motion Planning 2D. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Motion Planning 2D Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Tratto dai corsi: CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm Prof. J.C. Latombe Stanford

More information

Introduction to Autonomous Mobile Robots

Introduction to Autonomous Mobile Robots Introduction to Autonomous Mobile Robots second edition Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza The MIT Press Cambridge, Massachusetts London, England Contents Acknowledgments xiii

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Robot Henrik I Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se 27th April 2005 Outline 1 duction 2 Kinematic and Constraints 3 Mobile Robot 4 Mobile Robot 5 Beyond Basic 6 Kinematic 7

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

Introduction to Mobile Robotics Probabilistic Motion Models

Introduction to Mobile Robotics Probabilistic Motion Models Introduction to Mobile Robotics Probabilistic Motion Models Wolfram Burgard, Michael Ruhnke, Bastian Steder 1 Robot Motion Robot motion is inherently uncertain. How can we model this uncertainty? Dynamic

More information

Kinematics of Wheeled Robots

Kinematics of Wheeled Robots CSE 390/MEAM 40 Kinematics of Wheeled Robots Professor Vijay Kumar Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania September 16, 006 1 Introduction In this chapter,

More information

Robotics and Autonomous Systems

Robotics and Autonomous Systems Robotics and Autonomous Systems Lecture 6: Perception/Odometry Terry Payne Department of Computer Science University of Liverpool 1 / 47 Today We ll talk about perception and motor control. 2 / 47 Perception

More information

Robotics and Autonomous Systems

Robotics and Autonomous Systems Robotics and Autonomous Systems Lecture 6: Perception/Odometry Simon Parsons Department of Computer Science University of Liverpool 1 / 47 Today We ll talk about perception and motor control. 2 / 47 Perception

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

Practical Robotics (PRAC)

Practical Robotics (PRAC) Practical Robotics (PRAC) A Mobile Robot Navigation System (1) - Sensor and Kinematic Modelling Nick Pears University of York, Department of Computer Science December 17, 2014 nep (UoY CS) PRAC Practical

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Olivier Aycard Associate Professor University of Grenoble Laboratoire d Informatique de Grenoble http://membres-liglab.imag.fr/aycard olivier. 1/22 What is a robot? Robot

More information

ROBOTICS AND AUTONOMOUS SYSTEMS

ROBOTICS AND AUTONOMOUS SYSTEMS ROBOTICS AND AUTONOMOUS SYSTEMS Simon Parsons Department of Computer Science University of Liverpool LECTURE 6 PERCEPTION/ODOMETRY comp329-2013-parsons-lect06 2/43 Today We ll talk about perception and

More information

MOBILE ROBOTIC SYSTEM FOR GROUND-TESTING OF MULTI-SPACECRAFT PROXIMITY OPERATIONS

MOBILE ROBOTIC SYSTEM FOR GROUND-TESTING OF MULTI-SPACECRAFT PROXIMITY OPERATIONS MOBILE ROBOTIC SYSTEM FOR GROUND-TESTING OF MULTI-SPACECRAFT PROXIMITY OPERATIONS INTRODUCTION James Doebbler, Jeremy Davis, John Valasek, John Junkins Texas A&M University, College Station, TX 77843 Ground

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators Chapter Intelligent Behaviour Modelling and Control for Mobile Manipulators Ayssam Elkady, Mohammed Mohammed, Eslam Gebriel, and Tarek Sobh Abstract In the last several years, mobile manipulators have

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Olivier Aycard Associate Professor University of Grenoble Laboratoire d Informatique de Grenoble http://membres-liglab.imag.fr/aycard 1/29 Some examples of mobile robots

More information

Improving autonomous orchard vehicle trajectory tracking performance via slippage compensation

Improving autonomous orchard vehicle trajectory tracking performance via slippage compensation Improving autonomous orchard vehicle trajectory tracking performance via slippage compensation Dr. Gokhan BAYAR Mechanical Engineering Department of Bulent Ecevit University Zonguldak, Turkey This study

More information

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang

Localization, Mapping and Exploration with Multiple Robots. Dr. Daisy Tang Localization, Mapping and Exploration with Multiple Robots Dr. Daisy Tang Two Presentations A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping, by Thrun, Burgard

More information

Robotics. Lecture 5: Monte Carlo Localisation. See course website for up to date information.

Robotics. Lecture 5: Monte Carlo Localisation. See course website  for up to date information. Robotics Lecture 5: Monte Carlo Localisation See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review:

More information

Chapter 4: Kinematics of Rigid Bodies

Chapter 4: Kinematics of Rigid Bodies Chapter 4: Kinematics of Rigid Bodies Advanced Dynamics Lecturer: Hossein Nejat Fall 2016 A rigid body is defined to be a collection of particles whose distance of separation is invariant. In this circumstance,

More information

Omni-Directional Mobility Using Active Split Offset Castors

Omni-Directional Mobility Using Active Split Offset Castors Haoyong Yu Matthew Spenko Steven Dubowsky Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 e-mail: dubowsky@mit.edu Omni-Directional Mobility Using Active

More information

Sensor Modalities. Sensor modality: Different modalities:

Sensor Modalities. Sensor modality: Different modalities: Sensor Modalities Sensor modality: Sensors which measure same form of energy and process it in similar ways Modality refers to the raw input used by the sensors Different modalities: Sound Pressure Temperature

More information

Motion Models (cont) 1 3/15/2018

Motion Models (cont) 1 3/15/2018 Motion Models (cont) 1 3/15/018 Computing the Density to compute,, and use the appropriate probability density function; i.e., for zeromean Gaussian noise: 3/15/018 Sampling from the Velocity Motion Model

More information

DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER. Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda**

DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER. Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda** DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda** * Department of Mechanical Engineering Technical University of Catalonia (UPC)

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

Lecture «Robot Dynamics»: Multi-body Kinematics

Lecture «Robot Dynamics»: Multi-body Kinematics Lecture «Robot Dynamics»: Multi-body Kinematics 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping (SLAM) RSS Lecture 16 April 8, 2013 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 SLAM Problem Statement Inputs: No external coordinate reference Time series of

More information

Project 1 : Dead Reckoning and Tracking

Project 1 : Dead Reckoning and Tracking CS3630 Spring 2012 Project 1 : Dead Reckoning and Tracking Group : Wayward Sons Sameer Ansari, David Bernal, Tommy Kazenstein 2/8/2012 Wayward Sons CS3630 Spring 12 Project 1 Page 2 of 12 CS 3630 (Spring

More information

Final Exam Practice Fall Semester, 2012

Final Exam Practice Fall Semester, 2012 COS 495 - Autonomous Robot Navigation Final Exam Practice Fall Semester, 2012 Duration: Total Marks: 70 Closed Book 2 hours Start Time: End Time: By signing this exam, I agree to the honor code Name: Signature:

More information

EE565:Mobile Robotics Lecture 3

EE565:Mobile Robotics Lecture 3 EE565:Mobile Robotics Lecture 3 Welcome Dr. Ahmad Kamal Nasir Today s Objectives Motion Models Velocity based model (Dead-Reckoning) Odometry based model (Wheel Encoders) Sensor Models Beam model of range

More information

Kinematic Modelling of Tracked Vehicles by Experimental Identification

Kinematic Modelling of Tracked Vehicles by Experimental Identification Kinematic Modelling of Tracked Vehicles by Experimental Identification J.L. Martínez, A. Mandow, J. Morales, A. García-Cerezo and S. Pedraza Dpto. Ingeniería de Sistemas y Automática. Universidad de Málaga

More information

DETC THREE-DIMENSIONAL KINEMATIC ANALYSIS OF THE ACTUATED SPOKE WHEEL ROBOT. September 10-13, 2006, Philadelphia, Pennsylvania, USA

DETC THREE-DIMENSIONAL KINEMATIC ANALYSIS OF THE ACTUATED SPOKE WHEEL ROBOT. September 10-13, 2006, Philadelphia, Pennsylvania, USA Proceedings Proceedings of IDETC/CIE of IDETC 06 2006 ASME 2006 ASME International International Design Design Engineering Engineering Technical Technical Conferences Conferences & September Computers

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

S-SHAPED ONE TRAIL PARALLEL PARKING OF A CAR-LIKE MOBILE ROBOT

S-SHAPED ONE TRAIL PARALLEL PARKING OF A CAR-LIKE MOBILE ROBOT S-SHAPED ONE TRAIL PARALLEL PARKING OF A CAR-LIKE MOBILE ROBOT 1 SOE YU MAUNG MAUNG, 2 NU NU WIN, 3 MYINT HTAY 1,2,3 Mechatronic Engineering Department, Mandalay Technological University, The Republic

More information

FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE ELECTIVE IN ROBOTICS. Quadrotor. Motion Planning Algorithms. Academic Year

FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE ELECTIVE IN ROBOTICS. Quadrotor. Motion Planning Algorithms. Academic Year FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE ELECTIVE IN ROBOTICS Quadrotor Motion Planning Algorithms Prof. Marilena Vendittelli Prof. Jean-Paul Laumond Jacopo Capolicchio Riccardo Spica Academic Year 2010-2011

More information

This was written by a designer of inertial guidance machines, & is correct. **********************************************************************

This was written by a designer of inertial guidance machines, & is correct. ********************************************************************** EXPLANATORY NOTES ON THE SIMPLE INERTIAL NAVIGATION MACHINE How does the missile know where it is at all times? It knows this because it knows where it isn't. By subtracting where it is from where it isn't

More information

Autonomous Mobile Robots Using Real Time Kinematic Signal Correction and Global Positioning System Control

Autonomous Mobile Robots Using Real Time Kinematic Signal Correction and Global Positioning System Control Paper 087, IT 304 Autonomous Mobile Robots Using Real Time Kinematic Signal Correction and Global Positioning System Control Thongchai Phairoh, Keith Williamson Virginia State University tphairoh@vsu.edu

More information

Simultaneous Localization

Simultaneous Localization Simultaneous Localization and Mapping (SLAM) RSS Technical Lecture 16 April 9, 2012 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 Navigation Overview Where am I? Where am I going? Localization Assumed

More information

Motion Planning: Probabilistic Roadmaps. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Motion Planning: Probabilistic Roadmaps. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Motion Planning: Probabilistic Roadmaps Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Tratto dalla lezione: Basic Motion Planning for a Point Robot CS 326A: Motion Planning ai.stanford.edu/~latombe/cs326/2007/index.htm

More information

An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation

An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation Daniel Cody Salmon David M. Bevly Auburn University GPS and Vehicle Dynamics Laboratory 1 Introduction Motivation

More information

A Simplified Vehicle and Driver Model for Vehicle Systems Development

A Simplified Vehicle and Driver Model for Vehicle Systems Development A Simplified Vehicle and Driver Model for Vehicle Systems Development Martin Bayliss Cranfield University School of Engineering Bedfordshire MK43 0AL UK Abstract For the purposes of vehicle systems controller

More information

Simulation and mathematical modeling of Automatic Control of Wheeled Mobile Robots

Simulation and mathematical modeling of Automatic Control of Wheeled Mobile Robots Simulation and mathematical modeling of Automatic Control of Wheeled Mobile Robots Six-months practical training report Submitted in partial fulfillment of the requirement for the award of the degree of

More information

A General Framework for Mobile Robot Pose Tracking and Multi Sensors Self-Calibration

A General Framework for Mobile Robot Pose Tracking and Multi Sensors Self-Calibration A General Framework for Mobile Robot Pose Tracking and Multi Sensors Self-Calibration Davide Cucci, Matteo Matteucci {cucci, matteucci}@elet.polimi.it Dipartimento di Elettronica, Informazione e Bioingegneria,

More information

Straight Line motion with rigid sets

Straight Line motion with rigid sets Straight ine motion with rigid sets arxiv:40.4743v [math.mg] 9 Jan 04 Robert Connelly and uis Montejano January 7, 08 Abstract If one is given a rigid triangle in the plane or space, we show that the only

More information

CS283: Robotics Fall 2017: Kinematics

CS283: Robotics Fall 2017: Kinematics CS283: Robotics Fall 2017: Kinematics Andre Rosendo ShanghaiTech University Robotics ShanghaiTech University - SIST - 25.09.2016 2 Messages Publisher does not know about subscribers Subscribers do not

More information

Omnidirectional Drive Systems Kinematics and Control

Omnidirectional Drive Systems Kinematics and Control Omnidirectional Drive Systems Kinematics and Control Presented by: Andy Baker President, AndyMark, Inc., FRC 45 Ian Mackenzie Master s Student, Univ. of Waterloo, FRC 1114 2008 FIRST Robotics Conference

More information

CS283: Robotics Fall 2016: Kinematics

CS283: Robotics Fall 2016: Kinematics CS283: Robotics Fall 2016: Kinematics Sören Schwertfeger / 师泽仁 ShanghaiTech University Robotics ShanghaiTech University - SIST - 21.09.2016 2 Messages Publisher does not know about subscribers Subscribers

More information

Holonomic Omni-Directional Vehicle with New Omni-Wheel Mechanism

Holonomic Omni-Directional Vehicle with New Omni-Wheel Mechanism Proceedings of the 2001 EEE nternational Conference on Robotics 8 Automation Seoul, Korea. May 21-26, 2001 Holonomic Omni-Directional Vehicle with New Omni-Wheel Mechanism Riichiro DAMOTO, Wendy CHENG

More information

INDOOR AND OUTDOOR LOCALIZATION OF A MOBILE ROBOT FUSING SENSOR DATA. A Thesis Presented. Md Maruf Ibne Hasan

INDOOR AND OUTDOOR LOCALIZATION OF A MOBILE ROBOT FUSING SENSOR DATA. A Thesis Presented. Md Maruf Ibne Hasan INDOOR AND OUTDOOR LOCALIZATION OF A MOBILE ROBOT FUSING SENSOR DATA A Thesis Presented By Md Maruf Ibne Hasan to The Department of Electrical and Computer Engineering in partial fulfillment of the requirements

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

Evaluating the Performance of a Vehicle Pose Measurement System

Evaluating the Performance of a Vehicle Pose Measurement System Evaluating the Performance of a Vehicle Pose Measurement System Harry Scott Sandor Szabo National Institute of Standards and Technology Abstract A method is presented for evaluating the performance of

More information

Non-holonomic Planning

Non-holonomic Planning Non-holonomic Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We have learned about RRTs. q new q init q near q rand But the standard

More information

Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based on a Laser Scanner Sensor

Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based on a Laser Scanner Sensor Sensors 2015, 15, 9681-9702; doi:10.3390/s150509681 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based on

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) 3 Motion Control (wheeled robot) Requirement for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> peed control,

More information

DYNAMIC TRIANGULATION FOR MOBILE ROBOT LOCALIZATION USING AN ANGULAR STATE KALMAN FILTER. Josep Maria Font, Joaquim A. Batlle

DYNAMIC TRIANGULATION FOR MOBILE ROBOT LOCALIZATION USING AN ANGULAR STATE KALMAN FILTER. Josep Maria Font, Joaquim A. Batlle DYNAMIC TRIANGULATION FOR MOBILE ROBOT LOCALIZATION USING AN ANGULAR STATE KALMAN FILTER Josep Maria Font, Joaquim A. Batlle Department of Mechanical Engineering Technical University of Catalonia (UPC)

More information

Experimental Evaluation of an Encoder Trailer for Dead-reckoning in Tracked Mobile Robots

Experimental Evaluation of an Encoder Trailer for Dead-reckoning in Tracked Mobile Robots Experimental Evaluation of an Encoder Trailer for Dead-reckoning in Tracked Mobile Robots Zhejun Fan* Johann Borenstein* David Wehe** Yoram Koren* *Department of Mechanical Engineering and Applied Mechanics

More information

Modeling of Wheeled Mobile Robots using Dextrous Manipulation Kinematics

Modeling of Wheeled Mobile Robots using Dextrous Manipulation Kinematics Modeling of Wheeled Mobile Robots using Dextrous Manipulation Kinematics Joseph Auchter, Carl Moore, Ashitava Ghosal Abstract This document introduces a new kinematic simulation of a wheeled mobile robot

More information

Construction and Calibration of a Low-Cost 3D Laser Scanner with 360º Field of View for Mobile Robots

Construction and Calibration of a Low-Cost 3D Laser Scanner with 360º Field of View for Mobile Robots Construction and Calibration of a Low-Cost 3D Laser Scanner with 360º Field of View for Mobile Robots Jorge L. Martínez, Jesús Morales, Antonio, J. Reina, Anthony Mandow, Alejandro Pequeño-Boter*, and

More information

5 Mobile Robot Localization

5 Mobile Robot Localization 5 Mobile Robot Localization 159 5 Mobile Robot Localization 5.1 Introduction? Fig 5.1 Where am I? Navigation is one of the most challenging competencies required of a mobile robot. Success in navigation

More information

Experimental Verification of Stability Region of Balancing a Single-wheel Robot: an Inverted Stick Model Approach

Experimental Verification of Stability Region of Balancing a Single-wheel Robot: an Inverted Stick Model Approach IECON-Yokohama November 9-, Experimental Verification of Stability Region of Balancing a Single-wheel Robot: an Inverted Stick Model Approach S. D. Lee Department of Mechatronics Engineering Chungnam National

More information

ODOMETRY CORRECTION OF A MOBILE ROBOT USING A RANGE-FINDING LASER. A Thesis Presented to the Graduate School of Clemson University

ODOMETRY CORRECTION OF A MOBILE ROBOT USING A RANGE-FINDING LASER. A Thesis Presented to the Graduate School of Clemson University ODOMETRY CORRECTION OF A MOBILE ROBOT USING A RANGE-FINDING LASER A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science

More information

Approximating Kinematics for Tracked Mobile Robots

Approximating Kinematics for Tracked Mobile Robots J. L. Martínez A. Mandow J. Morales S. Pedraza A. García-Cerezo Dept. Ingeniería de Sistemas y Automática Universidad de Málaga Plaza El Ejido s/n, 29013-Málaga, Spain jlmartinez@uma.es Approximating Kinematics

More information

Robotics Project. Final Report. Computer Science University of Minnesota. December 17, 2007

Robotics Project. Final Report. Computer Science University of Minnesota. December 17, 2007 Robotics Project Final Report Computer Science 5551 University of Minnesota December 17, 2007 Peter Bailey, Matt Beckler, Thomas Bishop, and John Saxton Abstract: A solution of the parallel-parking problem

More information

Software Driver for Differential Drive Rovers. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Software Driver for Differential Drive Rovers. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Software Driver for Differential Drive Rovers Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Robot BART Motors with Encoders SONAR sensors Radio module Line color sensor 2 UNIBG

More information

Precise indoor localization of multiple mobile robots with adaptive sensor fusion using odometry and vision data

Precise indoor localization of multiple mobile robots with adaptive sensor fusion using odometry and vision data Preprints of the 9th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 4-9, 04 Precise indoor localization of multiple mobile robots with adaptive sensor

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Testing the Possibilities of Using IMUs with Different Types of Movements

Testing the Possibilities of Using IMUs with Different Types of Movements 137 Testing the Possibilities of Using IMUs with Different Types of Movements Kajánek, P. and Kopáčik A. Slovak University of Technology, Faculty of Civil Engineering, Radlinského 11, 81368 Bratislava,

More information

Absolute Scale in Structure from Motion from a Single Vehicle Mounted Camera by Exploiting Nonholonomic Constraints

Absolute Scale in Structure from Motion from a Single Vehicle Mounted Camera by Exploiting Nonholonomic Constraints Absolute Scale in Structure from Motion from a Single Vehicle Mounted Camera by Exploiting Nonholonomic Constraints Davide Scaramuzza 1, Friedrich Fraundorfer 2, Marc Pollefeys 2, Roland Siegwart 1 1 Autonomous

More information

Odometry and Calibration Methods for Multi-Castor Vehicles

Odometry and Calibration Methods for Multi-Castor Vehicles 008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 9-3, 008 Odometry and Calibration Methods for Multi-Castor Vehicles James Doebbler, Jeremy J Davis, John L Junkins, and

More information

On Differential Drive Robot Odometry with Application to Path Planning

On Differential Drive Robot Odometry with Application to Path Planning Proceedings of the European Control Conference 2007 Kos, Greece, July 2-5, 2007 On ifferential rive Robot Odometry with Application to Path Planning Evangelos Papadopoulos and Michael Misailidis Abstract

More information

Structure from Motion. Prof. Marco Marcon

Structure from Motion. Prof. Marco Marcon Structure from Motion Prof. Marco Marcon Summing-up 2 Stereo is the most powerful clue for determining the structure of a scene Another important clue is the relative motion between the scene and (mono)

More information

Nonholonomic motion planning for car-like robots

Nonholonomic motion planning for car-like robots Nonholonomic motion planning for car-like robots A. Sánchez L. 2, J. Abraham Arenas B. 1, and René Zapata. 2 1 Computer Science Dept., BUAP Puebla, Pue., México {aarenas}@cs.buap.mx 2 LIRMM, UMR5506 CNRS,

More information

Odometry Correction for Humanoid Robots Using Optical Sensors

Odometry Correction for Humanoid Robots Using Optical Sensors Odometry Correction for Humanoid Robots Using Optical Sensors Stefan Czarnetzki, Maximilian Hegele, and Sören Kerner Robotics Research Institute Section Information Technology TU Dortmund University 44221

More information

Torque Distribution and Slip Minimization in an Omnidirectional Mobile Base

Torque Distribution and Slip Minimization in an Omnidirectional Mobile Base Torque Distribution and Slip Minimization in an Omnidirectional Mobile Base Yuan Ping Li, Denny Oetomo, Marcelo H. Ang Jr.* National University of Singapore 1 ent Ridge Crescent, Singapore 1196 *mpeangh@nus.edu.sg

More information