Current Research at AASS Learning Systems Lab

Size: px
Start display at page:

Download "Current Research at AASS Learning Systems Lab"

Transcription

1 Current Research at AASS Learning Systems Lab Achim Lilienthal, Tom Duckett, Henrik Andreasson, Grzegorz Cielniak, Li Jun, Martin Magnusson, Martin Persson, Alexander Skoglund, Christoffer Wahlgren Örebro University

2 Contents 1) Robotic Platform A. Robotic Map Learning 2) SLAM (Tom Duckett with Udo Frese) 3) Semi-Autonomous Mapping (Martin Persson) 4) 3D Mapping (Martin Magnusson) 5) Topological Mapping (Christoffer Wahlgren) 6) Dynamic Mapping (with Peter Biber) 7) Acquiring Realistic 3D Models of Buildings (with Peter Biber)

3 1 Robotic Platform PeopleBot 2D Laserscanner Omnicam Thermal Camera Monocular Camera Gripper

4 1 Robotic Platform

5 1 Robotic Platform

6 Contents 1) Robotic Platform A. Robotic Map Learning 2) SLAM (Tom Duckett with Udo Frese) 3) Semi-Autonomous Mapping (Martin Persson) 4) 3D Mapping (Martin Magnusson) 5) Topological Mapping (Christoffer Wahlgren) 6) Dynamic Mapping (with Peter Biber) 7) Acquiring Realistic 3D Models of Buildings (with Peter Biber)

7

8 Contents 1) Robotic Platform A. Robotic Map Learning 2) SLAM (Tom Duckett with Udo Frese) 3) Semi-Autonomous Mapping (Martin Persson) 4) 3D Mapping (Martin Magnusson) 5) Topological Mapping (Christoffer Wahlgren) 6) Dynamic Mapping (with Peter Biber) 7) Acquiring Realistic 3D Models of Buildings (with Peter Biber)

9 4 3D Mapping 3D Scan Registration (Martin Magnusson)

10 4 3D Mapping 3D Scan Registration Autonomous Mining Vehicles Project Partners Atlas Copco Rock Drills Optab Optronikinnovation AB Robotdalen

11 4 3D Mapping Experimental Setup 40 cm 7 m

12 4 3D Mapping 3D-ICP pair corresponding (= closest) points Calculate the transformation that minimises the total distance between corresponding points repeat

13 4 3D Mapping 3D-NDT point cloud probability function minimise total distance repeat

14 Contents 1) Robotic Platform A. Robotic Map Learning 2) SLAM (Tom Duckett with Udo Frese) 3) Semi-Autonomous Mapping (Martin Persson) 4) 3D Mapping (Martin Magnusson) 5) Topological Mapping (Christoffer Wahlgren) 6) Dynamic Mapping (with Peter Biber) 7) Acquiring Realistic 3D Models of Buildings (with Peter Biber)

15 5 Topological Map Building from Omnivision Appearance-based Approach (Omnicam)

16 5 Topological Map Building from Omnivision matching local features (SIFT) grey level image find interest points (corners or patterns) calculate gradient direction and magnitude (32x32 window) histogram of directions and magnitudes (16x8 bins) keypoint descriptor (vector of length 128)

17 5 Topological Map Building from Omnivision Feature Matching (relative match criterion)

18 5 Topological Map Building from Omnivision Results

19 Contents 1) Robotic Platform A. Robotic Map Learning 2) SLAM (Tom Duckett with Udo Frese) 3) Semi-Autonomous Mapping (Martin Persson) 4) 3D Mapping (Martin Magnusson) 5) Topological Mapping (Christoffer Wahlgren) 6) Dynamic Mapping (with Peter Biber) 7) Acquiring Realistic 3D Models of Buildings

20 6 Dynamic Mapping Remaining Challenges for Mapping and Localisation long-term operation moving people, temporary objects, rearranged furniture large and dynamic environments living together with people Consequences for M&L Algorithms coping with dynamic environments continuous and lifelong learning

21 6 Dynamic Mapping Simple Learn Once Map only one entry: distance is d d d d dynamic map should represent both distances t

22 6 Dynamic Mapping Suggested Solution: Dynamic Map sample-based representation interpretation by robust statistics (median, MAD) updating the dynamic map by replacing samples mean sample lifetime λ maintain map at several time-scales (5 scales) Stability Plasticity λ λ λ λ λ

23 6 Dynamic Mapping Stability Plasticity Oct 25 Oct 26 Oct 29

24 Contents 1) Robotic Platform A. Robotic Map Learning 2) SLAM (Tom Duckett with Udo Frese) 3) Semi-Autonomous Mapping (Martin Persson) 4) 3D Mapping (Martin Magnusson) 5) Topological Mapping (Christoffer Wahlgren) 6) Dynamic Mapping (with Peter Biber) 7) Acquiring Realistic 3D Models of Buildings

25 7 Acquiring Realistic 3D Models of Buildings Joint work with Peter Biber 2D map from laser scans 3D model from 2D laser map texture added by multi-resolution blending

26 7 Acquiring Realistic 3D Models of Buildings

27 7 Acquiring Realistic 3D Models of Buildings

28 Contents B. Learning Control 8) Reinforcement Learning for Time-Optimal Control (with Tomás Martinéz-Marín) 9) Task-Non-Specific Learning of New Skills 10) Teaching by Demonstration (Alexander Skoglund) C. Recognition Systems for Autonomous Robots 11) Vision-Based Recognition of Places (Henrik Andreasson) 12) Detection and Tracking of Multiple Persons (Grzegorz Cielniak) D. Mobile Robot Olfaction

29 8 RL for Time-Optimal Control Visual Servoing and RL (with Tomás Martinéz-Marín) full screen full screen

30 Contents B. Learning Control 8) Reinforcement Learning for Time-Optimal Control (with Tomás Martinéz-Marín) 9) Task-Non-Specific Learning of New Skills (Li Jun) 10) Teaching by Demonstration (Alexander Skoglund) C. Recognition Systems for Autonomous Robots 11) Vision-Based Recognition of Places 12) Detection and Tracking of Multiple Persons (Grzegorz Cielniak) D. Mobile Robot Olfaction

31 12 Person Detection and Tracking Multiperson Tracking full screen

32 12 Person Detection and Tracking Ellipse Model State x ( i) t = ( p, v) = ( x, y, w, h, d, v Dynamic model: random walk x, v y, v w, v h ) full screen full screen

33 12 Person Detection and Tracking Tracking and Following Persons Combined with Face Tracking full screen

34 Current Research at AASS Learning Systems Lab Tom Duckett, Achim Lilienthal Thank you! Örebro University

35 Current Research at AASS Learning Systems Lab Örebro University

AASS, Örebro University

AASS, Örebro University Henrik Andreasson, Abdelbaki Bouguerra, Marcello Mobile Cirillo, Robotics Dimitar Dimitrov, and Olfaction Dimiter Driankov, Lab, Martin Magnusson, Federico Pecora, and Achim J. Lilienthal AASS, Örebro

More information

Has Something Changed Here? Autonomous Difference Detection for Security Patrol Robots

Has Something Changed Here? Autonomous Difference Detection for Security Patrol Robots Has Something Changed Here? Autonomous Difference Detection for Security Patrol Robots Henrik Andreasson, Martin Magnusson and Achim Lilienthal Centre of Applied Autonomous Sensor Systems, Dept. of Technology,

More information

Vision Aided 3D Laser Scanner Based Registration

Vision Aided 3D Laser Scanner Based Registration 1 Vision Aided 3D Laser Scanner Based Registration Henrik Andreasson Achim Lilienthal Centre of Applied Autonomous Sensor Systems, Dept. of Technology, Örebro University, Sweden Abstract This paper describes

More information

Automatic Appearance-Based Loop Detection from Three-Dimensional Laser Data Using the Normal Distributions Transform

Automatic Appearance-Based Loop Detection from Three-Dimensional Laser Data Using the Normal Distributions Transform Automatic Appearance-Based Loop Detection from Three-Dimensional Laser Data Using the Normal Distributions Transform Martin Magnusson and Henrik Andreasson Center for Applied Autonomous Sensor Systems

More information

Mobile Robotics contact: and Olfaction Lab,

Mobile Robotics contact: and Olfaction Lab, Prof. Achim J. Lilienthal Mobile Robotics contact: and Olfaction Lab, www.aass.oru.se/~lilien AASS, Örebro achim.lilienthal@oru.se University 1 Prof. Achim J. Lilienthal Mobile Robotics contact: and Olfaction

More information

Intra-Logistics with Integrated Automatic Deployment: Safe and Scalable Fleets in Shared Spaces

Intra-Logistics with Integrated Automatic Deployment: Safe and Scalable Fleets in Shared Spaces Intra-Logistics with Integrated Automatic Deployment: Safe and Scalable Fleets in Shared Spaces H2020-ICT-2016-2017 Grant agreement no: 732737 DELIVERABLE 1.2 Precise localisation and mapping in dynamic

More information

Normal Distribution Transform with Point Projection for 3D Point Cloud Registration

Normal Distribution Transform with Point Projection for 3D Point Cloud Registration Normal Distribution Transform with Point Projection for 3D Point Cloud Registration Mouna Attia Université de Tunis El Manar Faculté des Sciences de Tunis Labotory: URAPOP 2092, Tunis, Tunisie Email: mounaattia.info@gmail.com

More information

Evaluation of 3D Registration Reliability and Speed A Comparison of ICP and NDT

Evaluation of 3D Registration Reliability and Speed A Comparison of ICP and NDT Evaluation of 3D Registration Reliability and Speed A Comparison of ICP and NDT Martin Magnusson, Andreas Nüchter, Christopher Lörken, Achim J. Lilienthal, and Joachim Hertzberg Abstract To advance robotic

More information

3D Scan Matching for Mobile Robots with Application to Mine Mapping

3D Scan Matching for Mobile Robots with Application to Mine Mapping Licentiate Thesis 3D Scan Matching for Mobile Robots with Application to Mine Mapping Martin Magnusson Technology Studies from the Department of Technology at Örebro University 17 örebro 2006 3D Scan

More information

Mini-SLAM: Minimalistic Visual SLAM in Large-Scale Environments Based on a New Interpretation of Image Similarity

Mini-SLAM: Minimalistic Visual SLAM in Large-Scale Environments Based on a New Interpretation of Image Similarity Mini-SLAM: Minimalistic Visual SLAM in Large-Scale Environments Based on a New Interpretation of Image Similarity Henrik Andreasson, Tom Duckett and Achim Lilienthal Applied Autonomous Sensor Systems Örebro

More information

3D Modelling for Underground Mining Vehicles

3D Modelling for Underground Mining Vehicles 3D Modelling for Underground Mining Vehicles Martin Magnusson Rolf Elsrud Lars-Erik Skagerlund Tom Duckett Örebro University Atlas Copco Rock Drills Optab Örebro University martin.magnusson@tech.oru.se

More information

Learning to Close the Loop from 3D Point Clouds

Learning to Close the Loop from 3D Point Clouds Learning to Close the Loop from 3D Point Clouds Karl Granström and Thomas B. Schön Div. of Automatic Control, Dept. of Electrical Engineering Linköping University, Sweden {karl, schon}@isy.liu.se Abstract

More information

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping (SLAM) RSS Lecture 16 April 8, 2013 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 SLAM Problem Statement Inputs: No external coordinate reference Time series of

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T1227, Mo, 11-12 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 1 4. Admin Course Plan Rafael C.

More information

Multi Channel Generalized-ICP

Multi Channel Generalized-ICP Multi Channel Generalized-ICP James Servos and Steven L. Waslander University of Waterloo, Waterloo, ON, Canada, N2L 3G1 Abstract Current state of the art scan registration algorithms which use only positional

More information

Linköping University Post Print. Learning to Close the Loop from 3D Point Clouds

Linköping University Post Print. Learning to Close the Loop from 3D Point Clouds Linköping University Post Print Learning to Close the Loop from 3D Point Clouds Karl Granström and Thomas Schön N.B.: When citing this work, cite the original article. 2 IEEE. Personal use of this material

More information

Preprint.

Preprint. http://www.diva-portal.org Preprint This is the submitted version of a paper presented at IEEE international conference on robotics and automation, ICRA 2008, Pasadena, CA, USA, 19-23 May 2008. Citation

More information

Simultaneous Localization

Simultaneous Localization Simultaneous Localization and Mapping (SLAM) RSS Technical Lecture 16 April 9, 2012 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 Navigation Overview Where am I? Where am I going? Localization Assumed

More information

Comparative Evaluation of Range Sensor Accuracy in Indoor Environments

Comparative Evaluation of Range Sensor Accuracy in Indoor Environments Comparative Evaluation of Range Sensor Accuracy in Indoor Environments Todor Stoyanov, Athanasia Louloudi, Henrik Andreasson and Achim J. Lilienthal Center of Applied Autonomous Sensor Systems (AASS),

More information

Collecting outdoor datasets for benchmarking vision based robot localization

Collecting outdoor datasets for benchmarking vision based robot localization Collecting outdoor datasets for benchmarking vision based robot localization Emanuele Frontoni*, Andrea Ascani, Adriano Mancini, Primo Zingaretti Department of Ingegneria Infromatica, Gestionale e dell

More information

Using RGB Information to Improve NDT Distribution Generation and Registration Convergence

Using RGB Information to Improve NDT Distribution Generation and Registration Convergence Using RGB Information to Improve NDT Distribution Generation and Registration Convergence James Servos and Steven L. Waslander University of Waterloo, Waterloo, ON, Canada, N2L 3G1 Abstract Unmanned vehicles

More information

Eppur si muove ( And yet it moves )

Eppur si muove ( And yet it moves ) Eppur si muove ( And yet it moves ) - Galileo Galilei University of Texas at Arlington Tracking of Image Features CSE 4392-5369 Vision-based Robot Sensing, Localization and Control Dr. Gian Luca Mariottini,

More information

Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera

Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera 52. Internationales Wissenschaftliches Kolloquium Technische Universität Ilmenau 10. - 13. September 2007 M. Schenderlein / K. Debes / A. Koenig / H.-M. Gross Appearance-based Visual Localisation in Outdoor

More information

Automatic Generation of Indoor VR-Models by a Mobile Robot with a Laser Range Finder and a Color Camera

Automatic Generation of Indoor VR-Models by a Mobile Robot with a Laser Range Finder and a Color Camera Automatic Generation of Indoor VR-Models by a Mobile Robot with a Laser Range Finder and a Color Camera Christian Weiss and Andreas Zell Universität Tübingen, Wilhelm-Schickard-Institut für Informatik,

More information

Fast 3D Mapping in Highly Dynamic Environments using Normal Distributions Transform Occupancy Maps

Fast 3D Mapping in Highly Dynamic Environments using Normal Distributions Transform Occupancy Maps Fast 3D Mapping in Highly Dynamic Environments using Normal Distributions Transform Occupancy Maps Jari Saarinen, Todor Stoyanov, Henrik Andreasson and Achim J. Lilienthal Abstract Autonomous vehicles

More information

3D Point Cloud Processing

3D Point Cloud Processing 3D Point Cloud Processing The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

Image Matching. AKA: Image registration, the correspondence problem, Tracking,

Image Matching. AKA: Image registration, the correspondence problem, Tracking, Image Matching AKA: Image registration, the correspondence problem, Tracking, What Corresponds to What? Daisy? Daisy From: www.amphian.com Relevant for Analysis of Image Pairs (or more) Also Relevant for

More information

Removing Moving Objects from Point Cloud Scenes

Removing Moving Objects from Point Cloud Scenes Removing Moving Objects from Point Cloud Scenes Krystof Litomisky and Bir Bhanu University of California, Riverside krystof@litomisky.com, bhanu@ee.ucr.edu Abstract. Three-dimensional simultaneous localization

More information

6D SLAM with Kurt3D. Andreas Nüchter, Kai Lingemann, Joachim Hertzberg

6D SLAM with Kurt3D. Andreas Nüchter, Kai Lingemann, Joachim Hertzberg 6D SLAM with Kurt3D Andreas Nüchter, Kai Lingemann, Joachim Hertzberg University of Osnabrück, Institute of Computer Science Knowledge Based Systems Research Group Albrechtstr. 28, D-4969 Osnabrück, Germany

More information

ME132 February 3, 2011

ME132 February 3, 2011 ME132 February 3, 2011 Outline: - active sensors - introduction to lab setup (Player/Stage) - lab assignment - brief overview of OpenCV ME132 February 3, 2011 Outline: - active sensors - introduction to

More information

Loop detection and extended target tracking using laser data

Loop detection and extended target tracking using laser data Licentiate seminar 1(39) Loop detection and extended target tracking using laser data Karl Granström Division of Automatic Control Department of Electrical Engineering Linköping University Linköping, Sweden

More information

SIFT, SURF and Seasons: Appearance-based Long-term Localization in Outdoor Environments

SIFT, SURF and Seasons: Appearance-based Long-term Localization in Outdoor Environments See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222546832, and Seasons: Appearance-based Long-term Localization in Outdoor Environments Article

More information

3D Environment Reconstruction

3D Environment Reconstruction 3D Environment Reconstruction Using Modified Color ICP Algorithm by Fusion of a Camera and a 3D Laser Range Finder The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15,

More information

Large-Scale. Point Cloud Processing Tutorial. Application: Mobile Mapping

Large-Scale. Point Cloud Processing Tutorial. Application: Mobile Mapping Large-Scale 3D Point Cloud Processing Tutorial 2013 Application: Mobile Mapping The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well

More information

Appearance-based Tracking of Persons with an Omnidirectional Vision Sensor

Appearance-based Tracking of Persons with an Omnidirectional Vision Sensor Appearance-based Tracking of Persons with an Omnidirectional Vision Sensor Grzegorz Cielniak 1, Mihajlo Miladinovic 1, Daniel Hammarin 1, Linus Göranson 1, Achim Lilienthal 2 and Tom Duckett 1 1 Dept.

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

On the Accuracy of the 3D Normal Distributions Transform as a Tool for Spatial Representation

On the Accuracy of the 3D Normal Distributions Transform as a Tool for Spatial Representation On the Accuracy of the 3D Normal Distributions Transform as a Tool for Spatial Representation Todor Stoyanov, Martin Magnusson, Håkan Almqvist and Achim J. Lilienthal Center of Applied Autonomous Sensor

More information

Local Feature Detectors

Local Feature Detectors Local Feature Detectors Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Slides adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial, Matthew Brown,

More information

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Features 2 SIFT descriptor Aaron Bobick School of Interactive Computing Administrivia PS 3: Out due Oct 6 th. Features recap: Goal is to find corresponding locations in two images.

More information

A Genetic Algorithm for Simultaneous Localization and Mapping

A Genetic Algorithm for Simultaneous Localization and Mapping A Genetic Algorithm for Simultaneous Localization and Mapping Tom Duckett Centre for Applied Autonomous Sensor Systems Dept. of Technology, Örebro University SE-70182 Örebro, Sweden http://www.aass.oru.se

More information

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy BSB663 Image Processing Pinar Duygulu Slides are adapted from Selim Aksoy Image matching Image matching is a fundamental aspect of many problems in computer vision. Object or scene recognition Solving

More information

Normal Distributions Transform Monte-Carlo Localization (NDT-MCL)

Normal Distributions Transform Monte-Carlo Localization (NDT-MCL) Normal Distributions Transform Monte-Carlo Localization (NDT-MCL) Jari Saarinen, Henrik Andreasson, Todor Stoyanov and Achim J. Lilienthal Abstract Industrial applications often impose hard requirements

More information

THE ANNALS OF DUNAREA DE JOS UNIVERSITY OF GALATI FASCICLE III, 2007 ISSN X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

THE ANNALS OF DUNAREA DE JOS UNIVERSITY OF GALATI FASCICLE III, 2007 ISSN X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS SIFT BASE ALGORITHM FOR POINT FEATURE TRACKING Adrian Burlacu, Cosmin Copot and Corneliu Lazar Gh. Asachi Technical University of Iasi, epartment

More information

QUANTITATIVE PERFORMANCE EVALUATION OF A PEOPLE TRACKING SYSTEM ON A MOBILE ROBOT

QUANTITATIVE PERFORMANCE EVALUATION OF A PEOPLE TRACKING SYSTEM ON A MOBILE ROBOT QUANTITATIVE PERFORMANCE EVALUATION OF A PEOPLE TRACKING SYSTEM ON A MOBILE ROBOT Grzegorz Cielniak 1, André Treptow 2 and Tom Duckett 1 1 AASS, Department of Technology, University of Örebro, Örebro,

More information

Learning to close loops from range data

Learning to close loops from range data Learning to close loops from range data Karl Granström, Thomas Schön and Juan I Nieto Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Karl

More information

Image Features: Detection, Description, and Matching and their Applications

Image Features: Detection, Description, and Matching and their Applications Image Features: Detection, Description, and Matching and their Applications Image Representation: Global Versus Local Features Features/ keypoints/ interset points are interesting locations in the image.

More information

Evaluation of interest point detectors for Visual SLAM

Evaluation of interest point detectors for Visual SLAM Evaluation of interest point detectors for Visual SLAM Mónica Ballesta, Arturo Gil, Óscar Reinoso Systems Engineering Department Miguel Hernández University 03202 Elche (Alicante), SPAIN Email: {mballesta,

More information

3D Laserscanner App for Indoor Measurements

3D Laserscanner App for Indoor Measurements 3D Laserscanner App for Indoor Measurements V&R Vision & Robotics GmbH Prof. Dr.-Ing. Dietrich Paulus, Dipl.-Inform. Johannes Pellenz info@vision-robotics.de 20. April 2011 vr 3D Laserscanner App for Indoor

More information

Visual Recognition and Search April 18, 2008 Joo Hyun Kim

Visual Recognition and Search April 18, 2008 Joo Hyun Kim Visual Recognition and Search April 18, 2008 Joo Hyun Kim Introduction Suppose a stranger in downtown with a tour guide book?? Austin, TX 2 Introduction Look at guide What s this? Found Name of place Where

More information

5. Tests and results Scan Matching Optimization Parameters Influence

5. Tests and results Scan Matching Optimization Parameters Influence 126 5. Tests and results This chapter presents results obtained using the proposed method on simulated and real data. First, it is analyzed the scan matching optimization; after that, the Scan Matching

More information

Ensemble of Bayesian Filters for Loop Closure Detection

Ensemble of Bayesian Filters for Loop Closure Detection Ensemble of Bayesian Filters for Loop Closure Detection Mohammad Omar Salameh, Azizi Abdullah, Shahnorbanun Sahran Pattern Recognition Research Group Center for Artificial Intelligence Faculty of Information

More information

PRECEDING VEHICLE TRACKING IN STEREO IMAGES VIA 3D FEATURE MATCHING

PRECEDING VEHICLE TRACKING IN STEREO IMAGES VIA 3D FEATURE MATCHING PRECEDING VEHICLE TRACKING IN STEREO IMAGES VIA 3D FEATURE MATCHING Daniel Weingerl, Wilfried Kubinger, Corinna Engelhardt-Nowitzki UAS Technikum Wien: Department for Advanced Engineering Technologies,

More information

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Features Points Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Finding Corners Edge detectors perform poorly at corners. Corners provide repeatable points for matching, so

More information

Feature descriptors and matching

Feature descriptors and matching Feature descriptors and matching Detections at multiple scales Invariance of MOPS Intensity Scale Rotation Color and Lighting Out-of-plane rotation Out-of-plane rotation Better representation than color:

More information

GeoSLAM Overview. The experts in go-anywhere 3D mobile mapping technology

GeoSLAM Overview. The experts in go-anywhere 3D mobile mapping technology GeoSLAM Overview The experts in go-anywhere 3D mobile mapping technology 1 About GeoSLAM The experts in go-anywhere 3D mobile mapping technology 2 Who We Are GeoSLAM is a global market leader in go-anywhere

More information

A visual bag of words method for interactive qualitative localization and mapping

A visual bag of words method for interactive qualitative localization and mapping A visual bag of words method for interactive qualitative localization and mapping David FILLIAT ENSTA - 32 boulevard Victor - 7515 PARIS - France Email: david.filliat@ensta.fr Abstract Localization for

More information

A Rapid Automatic Image Registration Method Based on Improved SIFT

A Rapid Automatic Image Registration Method Based on Improved SIFT Available online at www.sciencedirect.com Procedia Environmental Sciences 11 (2011) 85 91 A Rapid Automatic Image Registration Method Based on Improved SIFT Zhu Hongbo, Xu Xuejun, Wang Jing, Chen Xuesong,

More information

Implementation and Comparison of Feature Detection Methods in Image Mosaicing

Implementation and Comparison of Feature Detection Methods in Image Mosaicing IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p-ISSN: 2278-8735 PP 07-11 www.iosrjournals.org Implementation and Comparison of Feature Detection Methods in Image

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 6: Feature matching and alignment Szeliski: Chapter 6.1 Reading Last time: Corners and blobs Scale-space blob detector: Example Feature descriptors We know

More information

AUTOMATIC FEATURE-BASED POINT CLOUD REGISTRATION FOR A MOVING SENSOR PLATFORM

AUTOMATIC FEATURE-BASED POINT CLOUD REGISTRATION FOR A MOVING SENSOR PLATFORM AUTOMATIC FEATURE-BASED POINT CLOUD REGISTRATION FOR A MOVING SENSOR PLATFORM Martin Weinmann, André Dittrich, Stefan Hinz, and Boris Jutzi Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute

More information

Vehicle Tracking using Optical Features

Vehicle Tracking using Optical Features Vehicle Tracking using Optical Features Songlin Piao Robotics Research Lab University of Kaiserslautern, Germany Outline Motivation State-of-Art Proposed System Experiments Conclusion Motivation Autonomous

More information

Improved Appearance-Based Matching in Similar and Dynamic Environments using a Vocabulary Tree

Improved Appearance-Based Matching in Similar and Dynamic Environments using a Vocabulary Tree 2010 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 2010, Anchorage, Alaska, USA Improved Appearance-Based Matching in Similar and Dynamic Environments

More information

DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE

DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE J. Kim and T. Kim* Dept. of Geoinformatic Engineering, Inha University, Incheon, Korea- jikim3124@inha.edu, tezid@inha.ac.kr

More information

A Comparison of SIFT, PCA-SIFT and SURF

A Comparison of SIFT, PCA-SIFT and SURF A Comparison of SIFT, PCA-SIFT and SURF Luo Juan Computer Graphics Lab, Chonbuk National University, Jeonju 561-756, South Korea qiuhehappy@hotmail.com Oubong Gwun Computer Graphics Lab, Chonbuk National

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Scale Invariant Feature Transform Why do we care about matching features? Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Image

More information

DeReEs: Real-Time Registration of RGBD Images Using Image-Based Feature Detection And Robust 3D Correspondence Estimation and Refinement

DeReEs: Real-Time Registration of RGBD Images Using Image-Based Feature Detection And Robust 3D Correspondence Estimation and Refinement DeReEs: Real-Time Registration of RGBD Images Using Image-Based Feature Detection And Robust 3D Correspondence Estimation and Refinement Sahand Seifi Memorial University of Newfoundland sahands[at]mun.ca

More information

Feature Matching and Robust Fitting

Feature Matching and Robust Fitting Feature Matching and Robust Fitting Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Project 2 questions? This

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

AN INDOOR SLAM METHOD BASED ON KINECT AND MULTI-FEATURE EXTENDED INFORMATION FILTER

AN INDOOR SLAM METHOD BASED ON KINECT AND MULTI-FEATURE EXTENDED INFORMATION FILTER AN INDOOR SLAM METHOD BASED ON KINECT AND MULTI-FEATURE EXTENDED INFORMATION FILTER M. Chang a, b, Z. Kang a, a School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road,

More information

Beyond Points: Evaluating Recent 3D Scan-Matching Algorithms

Beyond Points: Evaluating Recent 3D Scan-Matching Algorithms Beyond Points: Evaluating Recent 3D Scan-Matching Algorithms Martin Magnusson, Narunas Vaskevicius, 2 Todor Stoyanov, Kaustubh Pathak, 2 and Andreas Birk 2 Abstract Given that 3D scan matching is such

More information

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle)

Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Graph-based SLAM (Simultaneous Localization And Mapping) for Bridge Inspection Using UAV (Unmanned Aerial Vehicle) Taekjun Oh 1), Sungwook Jung 2), Seungwon Song 3), and Hyun Myung 4) 1), 2), 3), 4) Urban

More information

Semantic Mapping and Reasoning Approach for Mobile Robotics

Semantic Mapping and Reasoning Approach for Mobile Robotics Semantic Mapping and Reasoning Approach for Mobile Robotics Caner GUNEY, Serdar Bora SAYIN, Murat KENDİR, Turkey Key words: Semantic mapping, 3D mapping, probabilistic, robotic surveying, mine surveying

More information

Proc. 14th Int. Conf. on Intelligent Autonomous Systems (IAS-14), 2016

Proc. 14th Int. Conf. on Intelligent Autonomous Systems (IAS-14), 2016 Proc. 14th Int. Conf. on Intelligent Autonomous Systems (IAS-14), 2016 Outdoor Robot Navigation Based on View-based Global Localization and Local Navigation Yohei Inoue, Jun Miura, and Shuji Oishi Department

More information

Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight

Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight cameras Dipl.-Ing. Georg Arbeiter Fraunhofer Institute for Manufacturing Engineering

More information

Quasi-thematic Features Detection & Tracking. Future Rover Long-Distance Autonomous Navigation

Quasi-thematic Features Detection & Tracking. Future Rover Long-Distance Autonomous Navigation Quasi-thematic Feature Detection And Tracking For Future Rover Long-Distance Autonomous Navigation Authors: Affan Shaukat, Conrad Spiteri, Yang Gao, Said Al-Milli, and Abhinav Bajpai Surrey Space Centre,

More information

Object Reconstruction

Object Reconstruction B. Scholz Object Reconstruction 1 / 39 MIN-Fakultät Fachbereich Informatik Object Reconstruction Benjamin Scholz Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS Cognitive Robotics Original: David G. Lowe, 004 Summary: Coen van Leeuwen, s1460919 Abstract: This article presents a method to extract

More information

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 7: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

Filtering and mapping systems for underwater 3D imaging sonar

Filtering and mapping systems for underwater 3D imaging sonar Filtering and mapping systems for underwater 3D imaging sonar Tomohiro Koshikawa 1, a, Shin Kato 1,b, and Hitoshi Arisumi 1,c 1 Field Robotics Research Group, National Institute of Advanced Industrial

More information

Improvements for an appearance-based SLAM-Approach for large-scale environments

Improvements for an appearance-based SLAM-Approach for large-scale environments 1 Improvements for an appearance-based SLAM-Approach for large-scale environments Alexander Koenig Jens Kessler Horst-Michael Gross Neuroinformatics and Cognitive Robotics Lab, Ilmenau University of Technology,

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

Fast place recognition with plane-based maps

Fast place recognition with plane-based maps 2013 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-10, 2013 Fast place recognition with plane-based maps E. Fernández-Moral 1, W. Mayol-Cuevas 2, V. Arévalo

More information

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 8: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

Vision-Only Autonomous Navigation Using Topometric Maps

Vision-Only Autonomous Navigation Using Topometric Maps 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 2013. Tokyo, Japan Vision-Only Autonomous Navigation Using Topometric Maps Feras Dayoub, Timothy Morris, Ben

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Visual Registration and Recognition Announcements Homework 6 is out, due 4/5 4/7 Installing

More information

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale. Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe presented by, Sudheendra Invariance Intensity Scale Rotation Affine View point Introduction Introduction SIFT (Scale Invariant Feature

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 2: Image Enhancement in the Spatial Domain AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 3 2011-04-06 Contents

More information

Computer and Machine Vision

Computer and Machine Vision Computer and Machine Vision Lecture Week 4 Part-2 February 5, 2014 Sam Siewert Outline of Week 4 Practical Methods for Dealing with Camera Streams, Frame by Frame and De-coding/Re-encoding for Analysis

More information

GeoSLAM Overview. The global leader in go anywhere 3D mobile mapping technology. 1

GeoSLAM Overview. The global leader in go anywhere 3D mobile mapping technology. 1 GeoSLAM Overview The global leader in go anywhere 3D mobile mapping technology. 1 About GeoSLAM The global leader in go anywhere 3D mobile mapping technology. 2 Who We Are GeoSLAM is a global market leader

More information

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics CS 4495 Computer Vision Kelsey Hawkins Robotics Motivation What do animals, people, and robots want to do with vision? Detect and recognize objects/landmarks Find location of objects with respect to themselves

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

A Sparse Hybrid Map for Vision-Guided Mobile Robots

A Sparse Hybrid Map for Vision-Guided Mobile Robots A Sparse Hybrid Map for Vision-Guided Mobile Robots Feras Dayoub Grzegorz Cielniak Tom Duckett Department of Computing and Informatics, University of Lincoln, Lincoln, UK {fdayoub,gcielniak,tduckett}@lincoln.ac.uk

More information

A Comparative Evaluation of Interest Point Detectors and Local Descriptors for Visual SLAM

A Comparative Evaluation of Interest Point Detectors and Local Descriptors for Visual SLAM Machine Vision and Applications manuscript No. (will be inserted by the editor) Arturo Gil Oscar Martinez Mozos Monica Ballesta Oscar Reinoso A Comparative Evaluation of Interest Point Detectors and Local

More information

Robust Place Recognition for 3D Range Data based on Point Features

Robust Place Recognition for 3D Range Data based on Point Features 21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA Robust Place Recognition for 3D Range Data based on Point Features Bastian

More information

Scale Invariant Feature Transform by David Lowe

Scale Invariant Feature Transform by David Lowe Scale Invariant Feature Transform by David Lowe Presented by: Jerry Chen Achal Dave Vaishaal Shankar Some slides from Jason Clemons Motivation Image Matching Correspondence Problem Desirable Feature Characteristics

More information

Large-Scale 3D Point Cloud Processing Tutorial 2013

Large-Scale 3D Point Cloud Processing Tutorial 2013 Large-Scale 3D Point Cloud Processing Tutorial 2013 Features The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in Prof.

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Section 10 - Detectors part II Descriptors Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering

More information