Technology for a better society. SINTEF ICT, Applied Mathematics, Heterogeneous Computing Group

Size: px
Start display at page:

Download "Technology for a better society. SINTEF ICT, Applied Mathematics, Heterogeneous Computing Group"

Transcription

1 Technology for a better society SINTEF, Applied Mathematics, Heterogeneous Computing Group Trond Hagen GPU Computing Seminar, SINTEF Oslo, October 23,

2 Agenda 12:30 Introduction and welcoming Trond Hagen, SINTEF 12:45 The State of the Art in GPU Computing Jon Hjelmervik, SINTEF 13:45 Commercial Overview Chris Butler, NVIDIA 13:55 The NVIDIA Tesla GPU Compute Platform: Hardware, Software Developer Tools, and Support Timothy Lanfear, NVIDIA 14:30 Coffee, discussions, and mingling 2

3 Department of Applied Mathematics The Simulation group in Trondheim focuses on developing robust and efficient numerical methods for computational mechanics and geophysical flows. The Simulation group in Oslo develops robust and efficient computational methods for subsurface flow (petroleum, CO2, groundwater). Group for Heterogeneous Computing (Oslo) performs research on heterogeneous computing, many-core and data-stream processing. Group for Geometry (Oslo) focuses on computational geometry and development of 3D technology for the IT industry. Group for Optimization (Oslo) develops advanced optimization methods for applications within, among others; transportation, (maritime) logistics, and health care planning. 3

4 Heterogeneous Computing Group Seven Research Scientists and PhD students. 4 Geometry Simulation, Oslo Simulation, Trd. Optimization Heterogeneous Computing

5 Heterogeneous Computing 5

6 Heterogeneous Computer A heterogeneous computer (HC) is a tightly coupled system of processing units with distinct characteristics. A modern desktop or laptop computer is an example of such a system, as most systems include both a task-parallel, multi-core CPU and one or more data-parallel processors in the form of programmable graphics processing units(gpus). CPU (Intel Nehalem) GPU (NVIDIA Fermi) 6

7 Heterogeneous Computing Heterogeneous computing is the strategy of using multiple types of processing elements within a single workflow, and allowing each to perform the tasks to which it is best suited. aka Hybrid Computing aka Accelerated Computing aka General-Purpose Computing using GPUs (GPGPU) aka GPU Computing 7

8 Architecture and Algorithm Interaction ARCHITECTURE ALGORITHMS The key to performance is to understand the architecture and algorithm interaction. Need to know how to utilize the computational power of parallel accelerators in modern computer hardware. Designing compute intensive algorithms for obsolete hardware will most likely give bad performance. (sequential code / single-core CPUs) 8

9 Research Activities in the HC Group 9

10 Research Activities View-dependent tessellation Preparation of finite element models Soliving partial differential equations 10

11 Research Activities contd. Silhouette refinement Self-intersection detection of NURBS surfaces Registration of medical data Visualization of algebraic surfaces 11

12 Research Activities contd. Inpainting Navier-Stokes: Fluid dynamics 12

13 Research Activities contd. Volume visualization Electric activity in a human heart. Water injection in a fluvial reservoir 13

14 Research Activities contd. Matlab Interface to the GPU Cluster of GPU s Linear algebra / load balancing CPU - GPU 14

15 Research Activities contd. Ray-tracing, reservoir Adaptiv tessellation 15

16 Research Activities contd. Reservoir Simulation Operator split: Evaluate the pressure on the CPU in parallel with the GPU transport evaluation. Proposed a model for simulating in corner-point grids on the GPU: 16

17 High-speed Marching Cubes using Histogram Pyramids Marching cubes on GPUs: CPU: not interactive GPU: 200 fps Extraction of iso-surfaces Based on joint research with Gernot Ziegler, NVIDIA HPMC Open source library released soon 17

18 Smoothed Particle Hydrodynamics 18

19 Shallow-Water Equations 19

20 Heterogeneous Computing in the Cloud Heterogeneous computers (CPUs &GPUs) Web based clients Workstations 20

21 Thank you 21

GPU-accelerated data expansion for the Marching Cubes algorithm

GPU-accelerated data expansion for the Marching Cubes algorithm GPU-accelerated data expansion for the Marching Cubes algorithm San Jose (CA) September 23rd, 2010 Christopher Dyken, SINTEF Norway Gernot Ziegler, NVIDIA UK Agenda Motivation & Background Data Compaction

More information

Heterogeneous Computing and Geometry Processing

Heterogeneous Computing and Geometry Processing Heterogeneous Computing and Geometry Processing Tor Dokken SINTEF ICT and CMA University of Oslo tor.dokken@sintef.no www.sintef.no/math www.sintef.no/gpgpu www.sintef.no/parallel3d 1 Structure of presentation

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

Abstract. Introduction. Kevin Todisco

Abstract. Introduction. Kevin Todisco - Kevin Todisco Figure 1: A large scale example of the simulation. The leftmost image shows the beginning of the test case, and shows how the fluid refracts the environment around it. The middle image

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection. Anmol Paudel Satish Puri Marquette University Milwaukee, WI

OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection. Anmol Paudel Satish Puri Marquette University Milwaukee, WI OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection Anmol Paudel Satish Puri Marquette University Milwaukee, WI Introduction Scalable spatial computation on high performance

More information

Hybrid Implementation of 3D Kirchhoff Migration

Hybrid Implementation of 3D Kirchhoff Migration Hybrid Implementation of 3D Kirchhoff Migration Max Grossman, Mauricio Araya-Polo, Gladys Gonzalez GTC, San Jose March 19, 2013 Agenda 1. Motivation 2. The Problem at Hand 3. Solution Strategy 4. GPU Implementation

More information

Two-Phase flows on massively parallel multi-gpu clusters

Two-Phase flows on massively parallel multi-gpu clusters Two-Phase flows on massively parallel multi-gpu clusters Peter Zaspel Michael Griebel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Workshop Programming of Heterogeneous

More information

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Nikolai Sakharnykh - NVIDIA San Jose Convention Center, San Jose, CA September 21, 2010 Introduction Tridiagonal solvers very popular

More information

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Hybrid Computing @ KAUST Many Cores and OpenACC Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Agenda Hybrid Computing n Hybrid Computing n From Multi-Physics

More information

Next-generation CFD: Real-Time Computation and Visualization

Next-generation CFD: Real-Time Computation and Visualization Next-generation CFD: Real-Time Computation and Visualization Christian F. Janßen Hamburg University of Technology Tesla C1060, ~20 million lattice nodes [2010] Kinetic approaches for the simulation of

More information

Real-Time Scene Reconstruction. Remington Gong Benjamin Harris Iuri Prilepov

Real-Time Scene Reconstruction. Remington Gong Benjamin Harris Iuri Prilepov Real-Time Scene Reconstruction Remington Gong Benjamin Harris Iuri Prilepov June 10, 2010 Abstract This report discusses the implementation of a real-time system for scene reconstruction. Algorithms for

More information

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport GTC 2018 Jeremy Sweezy Scientist Monte Carlo Methods, Codes and Applications Group 3/28/2018 Operated by Los Alamos National

More information

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS

S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS S0432 NEW IDEAS FOR MASSIVELY PARALLEL PRECONDITIONERS John R Appleyard Jeremy D Appleyard Polyhedron Software with acknowledgements to Mark A Wakefield Garf Bowen Schlumberger Outline of Talk Reservoir

More information

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization Duksu Kim Assistant professor, KORATEHC Education Ph.D. Computer Science, KAIST Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications Professional Experience Senior

More information

State-of-the-art in Heterogeneous Computing

State-of-the-art in Heterogeneous Computing State-of-the-art in Heterogeneous Computing Guest Lecture NTNU Trond Hagen, Research Manager SINTEF, Department of Applied Mathematics 1 Overview Introduction GPU Programming Strategies Trends: Heterogeneous

More information

Shape of Things to Come: Next-Gen Physics Deep Dive

Shape of Things to Come: Next-Gen Physics Deep Dive Shape of Things to Come: Next-Gen Physics Deep Dive Jean Pierre Bordes NVIDIA Corporation Free PhysX on CUDA PhysX by NVIDIA since March 2008 PhysX on CUDA available: August 2008 GPU PhysX in Games Physical

More information

Shallow Water Simulations on Graphics Hardware

Shallow Water Simulations on Graphics Hardware Shallow Water Simulations on Graphics Hardware Ph.D. Thesis Presentation 2014-06-27 Martin Lilleeng Sætra Outline Introduction Parallel Computing and the GPU Simulating Shallow Water Flow Topics of Thesis

More information

N-Body Simulation using CUDA. CSE 633 Fall 2010 Project by Suraj Alungal Balchand Advisor: Dr. Russ Miller State University of New York at Buffalo

N-Body Simulation using CUDA. CSE 633 Fall 2010 Project by Suraj Alungal Balchand Advisor: Dr. Russ Miller State University of New York at Buffalo N-Body Simulation using CUDA CSE 633 Fall 2010 Project by Suraj Alungal Balchand Advisor: Dr. Russ Miller State University of New York at Buffalo Project plan Develop a program to simulate gravitational

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

The Beach Law does not hold any more Discrete optimization needs heterogeneous computing. Seminar

The Beach Law does not hold any more Discrete optimization needs heterogeneous computing. Seminar The Beach Law does not hold any more Discrete optimization needs heterogeneous computing Christian Schulz, Trond Hagen, Geir Hasle Department of, SINTEF ICT, Oslo, Norway Seminar CORAL, Aarhus School of

More information

SENSEI / SENSEI-Lite / SENEI-LDC Updates

SENSEI / SENSEI-Lite / SENEI-LDC Updates SENSEI / SENSEI-Lite / SENEI-LDC Updates Chris Roy and Brent Pickering Aerospace and Ocean Engineering Dept. Virginia Tech July 23, 2014 Collaborations with Math Collaboration on the implicit SENSEI-LDC

More information

Comparison of CPU and GPGPU performance as applied to procedurally generating complex cave systems

Comparison of CPU and GPGPU performance as applied to procedurally generating complex cave systems Comparison of CPU and GPGPU performance as applied to procedurally generating complex cave systems Subject: Comp6470 - Special Topics in Computing Student: Tony Oakden (U4750194) Supervisor: Dr Eric McCreath

More information

CUDA Conference. Walter Mundt-Blum March 6th, 2008

CUDA Conference. Walter Mundt-Blum March 6th, 2008 CUDA Conference Walter Mundt-Blum March 6th, 2008 NVIDIA s Businesses Multiple Growth Engines GPU Graphics Processing Units MCP Media and Communications Processors PESG Professional Embedded & Solutions

More information

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 Challenges What is Algebraic Multi-Grid (AMG)? AGENDA Why use AMG? When to use AMG? NVIDIA AmgX Results 2

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Faster Innovation - Accelerating SIMULIA Abaqus Simulations with NVIDIA GPUs. Baskar Rajagopalan Accelerated Computing, NVIDIA

Faster Innovation - Accelerating SIMULIA Abaqus Simulations with NVIDIA GPUs. Baskar Rajagopalan Accelerated Computing, NVIDIA Faster Innovation - Accelerating SIMULIA Abaqus Simulations with NVIDIA GPUs Baskar Rajagopalan Accelerated Computing, NVIDIA 1 Engineering & IT Challenges/Trends NVIDIA GPU Solutions AGENDA Abaqus GPU

More information

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing Real-Time Rigid id 2D-3D Medical Image Registration ti Using RapidMind Multi-Core Platform Georgia Tech/AFRL Workshop on Computational Science Challenge Using Emerging & Massively Parallel Computer Architectures

More information

Performance of Implicit Solver Strategies on GPUs

Performance of Implicit Solver Strategies on GPUs 9. LS-DYNA Forum, Bamberg 2010 IT / Performance Performance of Implicit Solver Strategies on GPUs Prof. Dr. Uli Göhner DYNAmore GmbH Stuttgart, Germany Abstract: The increasing power of GPUs can be used

More information

Breaking the memory barrier (for finite difference modeling)

Breaking the memory barrier (for finite difference modeling) Breaking the memory barrier (for finite difference modeling) Jon Marius Venstad Norwegian University of Science and Technology (NTNU) Department of Petroleum Engineering & Applied Geophysics E-mail: venstad@gmail.com

More information

Lecture 1. Introduction Course Overview

Lecture 1. Introduction Course Overview Lecture 1 Introduction Course Overview Welcome to CSE 260! Your instructor is Scott Baden baden@ucsd.edu Office: room 3244 in EBU3B Office hours Week 1: Today (after class), Tuesday (after class) Remainder

More information

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk

Alex Li 11/20/2009. Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk Alex Li 11/20/2009 Chris Wojtan, Nils Thurey, Markus Gross, Greg Turk duction Overview of Lagrangian of Topological s Altering the Topology 2 Presents a method for accurately tracking the moving surface

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

DirectX10 Effects and Performance. Bryan Dudash

DirectX10 Effects and Performance. Bryan Dudash DirectX10 Effects and Performance Bryan Dudash Today s sessions Now DX10のエフェクトとパフォーマンスならび使用法 Bryan Dudash NVIDIA 16:50 17:00 BREAK 17:00 18:30 NVIDIA GPUでの物理演算 Simon Green NVIDIA Motivation Direct3D 10

More information

Splotch: High Performance Visualization using MPI, OpenMP and CUDA

Splotch: High Performance Visualization using MPI, OpenMP and CUDA Splotch: High Performance Visualization using MPI, OpenMP and CUDA Klaus Dolag (Munich University Observatory) Martin Reinecke (MPA, Garching) Claudio Gheller (CSCS, Switzerland), Marzia Rivi (CINECA,

More information

Fluid-Structure-Interaction Using SPH and GPGPU Technology

Fluid-Structure-Interaction Using SPH and GPGPU Technology IMPETUS AFEA SOLVER Fluid-Structure-Interaction Using SPH and GPGPU Technology Jérôme Limido Jean Luc Lacome Wayne L. Mindle GTC May 2012 IMPETUS AFEA SOLVER 1 2D Sloshing Water in Tank IMPETUS AFEA SOLVER

More information

Applications of Berkeley s Dwarfs on Nvidia GPUs

Applications of Berkeley s Dwarfs on Nvidia GPUs Applications of Berkeley s Dwarfs on Nvidia GPUs Seminar: Topics in High-Performance and Scientific Computing Team N2: Yang Zhang, Haiqing Wang 05.02.2015 Overview CUDA The Dwarfs Dynamic Programming Sparse

More information

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC 2015-09-14 Algorithms, System and Data Centre Optimisation for Energy Efficient HPC Vincent Heuveline URZ Computing Centre of Heidelberg University EMCL Engineering Mathematics and Computing Lab 1 Energy

More information

Large-scale Gas Turbine Simulations on GPU clusters

Large-scale Gas Turbine Simulations on GPU clusters Large-scale Gas Turbine Simulations on GPU clusters Tobias Brandvik and Graham Pullan Whittle Laboratory University of Cambridge A large-scale simulation Overview PART I: Turbomachinery PART II: Stencil-based

More information

DirectX10 Effects. Sarah Tariq

DirectX10 Effects. Sarah Tariq DirectX10 Effects Sarah Tariq Motivation Direct3D 10 is Microsoft s next graphics API Driving the feature set of next generation GPUs New driver model Improved performance Many new features New programmability,

More information

Nvidia Tesla The Personal Supercomputer

Nvidia Tesla The Personal Supercomputer International Journal of Allied Practice, Research and Review Website: www.ijaprr.com (ISSN 2350-1294) Nvidia Tesla The Personal Supercomputer Sameer Ahmad 1, Umer Amin 2, Mr. Zubair M Paul 3 1 Student,

More information

14MMFD-34 Parallel Efficiency and Algorithmic Optimality in Reservoir Simulation on GPUs

14MMFD-34 Parallel Efficiency and Algorithmic Optimality in Reservoir Simulation on GPUs 14MMFD-34 Parallel Efficiency and Algorithmic Optimality in Reservoir Simulation on GPUs K. Esler, D. Dembeck, K. Mukundakrishnan, V. Natoli, J. Shumway and Y. Zhang Stone Ridge Technology, Bel Air, MD

More information

Gradient Free Design of Microfluidic Structures on a GPU Cluster

Gradient Free Design of Microfluidic Structures on a GPU Cluster Gradient Free Design of Microfluidic Structures on a GPU Cluster Austen Duffy - Florida State University SIAM Conference on Computational Science and Engineering March 2, 2011 Acknowledgements This work

More information

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA

Adaptive Mesh Astrophysical Fluid Simulations on GPU. San Jose 10/2/2009 Peng Wang, NVIDIA Adaptive Mesh Astrophysical Fluid Simulations on GPU San Jose 10/2/2009 Peng Wang, NVIDIA Overview Astrophysical motivation & the Enzo code Finite volume method and adaptive mesh refinement (AMR) CUDA

More information

Real-Time Ray Tracing Using Nvidia Optix Holger Ludvigsen & Anne C. Elster 2010

Real-Time Ray Tracing Using Nvidia Optix Holger Ludvigsen & Anne C. Elster 2010 1 Real-Time Ray Tracing Using Nvidia Optix Holger Ludvigsen & Anne C. Elster 2010 Presentation by Henrik H. Knutsen for TDT24, fall 2012 Om du ønsker, kan du sette inn navn, tittel på foredraget, o.l.

More information

Parallel Computing with MATLAB

Parallel Computing with MATLAB Parallel Computing with MATLAB CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University

More information

ACCELERATION OF A COMPUTATIONAL FLUID DYNAMICS CODE WITH GPU USING OPENACC

ACCELERATION OF A COMPUTATIONAL FLUID DYNAMICS CODE WITH GPU USING OPENACC Nonlinear Computational Aeroelasticity Lab ACCELERATION OF A COMPUTATIONAL FLUID DYNAMICS CODE WITH GPU USING OPENACC N I C H O L S O N K. KO U K PA I Z A N P H D. C A N D I D AT E GPU Technology Conference

More information

GPU Acceleration of Particle Advection Workloads in a Parallel, Distributed Memory Setting

GPU Acceleration of Particle Advection Workloads in a Parallel, Distributed Memory Setting Girona, Spain May 4-5 GPU Acceleration of Particle Advection Workloads in a Parallel, Distributed Memory Setting David Camp, Hari Krishnan, David Pugmire, Christoph Garth, Ian Johnson, E. Wes Bethel, Kenneth

More information

Practical Metaballs and Implicit Surfaces. Yury Uralsky NVIDIA Developer Technology

Practical Metaballs and Implicit Surfaces. Yury Uralsky NVIDIA Developer Technology Practical Metaballs and Implicit Surfaces Yury Uralsky NVIDIA Developer Technology Agenda The idea and motivation Implementation details Caveats & optimizations Where to go from here Conclusion What are

More information

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang

Interaction of Fluid Simulation Based on PhysX Physics Engine. Huibai Wang, Jianfei Wan, Fengquan Zhang 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015) Interaction of Fluid Simulation Based on PhysX Physics Engine Huibai Wang, Jianfei Wan, Fengquan Zhang College

More information

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead

Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU. Robert Strzodka NVAMG Project Lead Accelerated ANSYS Fluent: Algebraic Multigrid on a GPU Robert Strzodka NVAMG Project Lead A Parallel Success Story in Five Steps 2 Step 1: Understand Application ANSYS Fluent Computational Fluid Dynamics

More information

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation Ray Browell nvidia Technology Theater SC12 1 2012 ANSYS, Inc. nvidia Technology Theater SC12 HPC Revolution Recent

More information

LR B-splines: New spline technology for compact representation of measured shape

LR B-splines: New spline technology for compact representation of measured shape LR B-splines: New spline technology for compact representation of measured shape Tor Dokken SINTEF*, Oslo, Norway *SINTEF is a Norwegian research foundation dominantly working within technology (2000 employees)

More information

System Design for Visualizing Scientific Computations

System Design for Visualizing Scientific Computations 25 Chapter 2 System Design for Visualizing Scientific Computations In Section 1.1 we defined five broad goals for scientific visualization. Specifically, we seek visualization techniques that 1. Can be

More information

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1 Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Ecosystem @neilt3d Copyright Khronos Group 2015 - Page 1 Copyright Khronos Group 2015 - Page 2 Khronos Connects Software to Silicon

More information

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D

HPC with GPU and its applications from Inspur. Haibo Xie, Ph.D HPC with GPU and its applications from Inspur Haibo Xie, Ph.D xiehb@inspur.com 2 Agenda I. HPC with GPU II. YITIAN solution and application 3 New Moore s Law 4 HPC? HPC stands for High Heterogeneous Performance

More information

ANSYS Discovery Live- Getting Started

ANSYS Discovery Live- Getting Started ANSYS Discovery Live- Getting Started Every engineer deserves the power of Discovery ANSYS Discovery Live provides instantaneous simulation, tightly coupled with direct geometry modeling, to enable interactive

More information

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Introduction to CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Introduction to CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of Applied

More information

Generic framework for taking geological models as input for reservoir simulation

Generic framework for taking geological models as input for reservoir simulation Generic framework for taking geological models as input for reservoir simulation Collaborators: SINTEF: Texas A&M: NTNU: Stanford Stein Krogstad, Knut-Andreas Lie, Vera L. Hauge Yalchin Efendiev and Akhil

More information

Evacuate Now? Faster-than-real-time Shallow Water Simulations on GPUs. NVIDIA GPU Technology Conference San Jose, California, 2010 André R.

Evacuate Now? Faster-than-real-time Shallow Water Simulations on GPUs. NVIDIA GPU Technology Conference San Jose, California, 2010 André R. Evacuate Now? Faster-than-real-time Shallow Water Simulations on GPUs NVIDIA GPU Technology Conference San Jose, California, 2010 André R. Brodtkorb Talk Outline Learn how to simulate a half an hour dam

More information

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea.

PhD Student. Associate Professor, Co-Director, Center for Computational Earth and Environmental Science. Abdulrahman Manea. Abdulrahman Manea PhD Student Hamdi Tchelepi Associate Professor, Co-Director, Center for Computational Earth and Environmental Science Energy Resources Engineering Department School of Earth Sciences

More information

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method

The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method The Study of Ship Motions in Regular Waves using a Mesh-Free Numerical Method by Bruce Kenneth Cartwright, B. Eng., M. Sc. Submitted in fulfilment of the requirements for the Degree of Master of Philosophy

More information

HPC and IT Issues Session Agenda. Deployment of Simulation (Trends and Issues Impacting IT) Mapping HPC to Performance (Scaling, Technology Advances)

HPC and IT Issues Session Agenda. Deployment of Simulation (Trends and Issues Impacting IT) Mapping HPC to Performance (Scaling, Technology Advances) HPC and IT Issues Session Agenda Deployment of Simulation (Trends and Issues Impacting IT) Discussion Mapping HPC to Performance (Scaling, Technology Advances) Discussion Optimizing IT for Remote Access

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs Gordon Erlebacher Department of Scientific Computing Sept. 28, 2012 with Dimitri Komatitsch (Pau,France) David Michea

More information

Heterogenous Computing

Heterogenous Computing Heterogenous Computing Fall 2018 CS, SE - Freshman Seminar 11:00 a 11:50a Computer Architecture What are the components of a computer? How do these components work together to perform computations? How

More information

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV)

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV) University of West Bohemia» Department of Power System Engineering NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV) Publication was supported by project: Budování excelentního

More information

PTE 519 Lecture Note Finite Difference Approximation (Model)

PTE 519 Lecture Note Finite Difference Approximation (Model) PTE 519 Lecture Note 3 3.0 Finite Difference Approximation (Model) In this section of the lecture material, the focus is to define the terminology and to summarize the basic facts. The basic idea of any

More information

GeoProbe Geophysical Interpretation Software

GeoProbe Geophysical Interpretation Software DATA SHEET GeoProbe Geophysical Interpretation Software overview DecisionSpace Geosciences key features Integrated building, editing and interactive deformation of sealed multi-z bodies extracted from

More information

Optimizing and Accelerating Your MATLAB Code

Optimizing and Accelerating Your MATLAB Code Optimizing and Accelerating Your MATLAB Code Sofia Mosesson Senior Application Engineer 2016 The MathWorks, Inc. 1 Agenda Optimizing for loops and using vector and matrix operations Indexing in different

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

Numerical Algorithms on Multi-GPU Architectures

Numerical Algorithms on Multi-GPU Architectures Numerical Algorithms on Multi-GPU Architectures Dr.-Ing. Harald Köstler 2 nd International Workshops on Advances in Computational Mechanics Yokohama, Japan 30.3.2010 2 3 Contents Motivation: Applications

More information

PERFORMANCE PORTABILITY WITH OPENACC. Jeff Larkin, NVIDIA, November 2015

PERFORMANCE PORTABILITY WITH OPENACC. Jeff Larkin, NVIDIA, November 2015 PERFORMANCE PORTABILITY WITH OPENACC Jeff Larkin, NVIDIA, November 2015 TWO TYPES OF PORTABILITY FUNCTIONAL PORTABILITY PERFORMANCE PORTABILITY The ability for a single code to run anywhere. The ability

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Isogeometric Analysis (IGA) Part I (MS62) and Part II (MS78)

Isogeometric Analysis (IGA) Part I (MS62) and Part II (MS78) Isogeometric Analysis (IGA) Part I (MS62) and Part II (MS78) July 11, 4:00-6:00 PM Challenges in Isogeometric Analysis (IGA) Tor Dokken, Oslo, Norway Locally Refined B-splines, Tom Lyche, University of

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

AN INTRODUCTION TO CLUSTER COMPUTING

AN INTRODUCTION TO CLUSTER COMPUTING CLUSTERS AND YOU AN INTRODUCTION TO CLUSTER COMPUTING Engineering IT BrownBag Series 29 October, 2015 Gianni Pezzarossi Linux Systems Administrator Mark Smylie Hart Research Technology Facilitator WHAT

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

NVIDIA Advanced Rendering

NVIDIA Advanced Rendering NVIDIA Advanced Rendering and GPU Ray Tracing SIGGRAPH ASIA 2012 Singapore Phillip Miller Director of Product Management NVIDIA Advanced Rendering Agenda 1. What is NVIDIA Advanced Rendering? 2. Progress

More information

GPU Computing and Its Applications

GPU Computing and Its Applications GPU Computing and Its Applications Bhavana Samel 1, Shubhrata Mahajan 2, Prof.A.M.Ingole 3 1 Student, Dept. of Computer Engineering, BVCOEL Pune, Maharashtra, India 2Student, Dept. of Computer Engineering,

More information

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata CUDA Fluid simulation Lattice Boltzmann Models Cellular Automata Please excuse my layout of slides for the remaining part of the talk! Fluid Simulation Navier Stokes equations for incompressible fluids

More information

Algorithm Engineering Lab: Ray Tracing. 8. Februar 2018

Algorithm Engineering Lab: Ray Tracing. 8. Februar 2018 Algorithm Engineering Lab: Ray Tracing Jenette Sellin Markus Pawellek 8. Februar 2018 Gliederung Goal of the Project Ray Tracing Background Starting Point Setting up the Environment Implementation Serialization

More information

ORAP Forum October 10, 2013

ORAP Forum October 10, 2013 Towards Petaflop simulations of core collapse supernovae ORAP Forum October 10, 2013 Andreas Marek 1 together with Markus Rampp 1, Florian Hanke 2, and Thomas Janka 2 1 Rechenzentrum der Max-Planck-Gesellschaft

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

Maximize automotive simulation productivity with ANSYS HPC and NVIDIA GPUs

Maximize automotive simulation productivity with ANSYS HPC and NVIDIA GPUs Presented at the 2014 ANSYS Regional Conference- Detroit, June 5, 2014 Maximize automotive simulation productivity with ANSYS HPC and NVIDIA GPUs Bhushan Desam, Ph.D. NVIDIA Corporation 1 NVIDIA Enterprise

More information

Large Displacement Optical Flow & Applications

Large Displacement Optical Flow & Applications Large Displacement Optical Flow & Applications Narayanan Sundaram, Kurt Keutzer (Parlab) In collaboration with Thomas Brox (University of Freiburg) Michael Tao (University of California Berkeley) Parlab

More information

Toward reservoir simulation on geological grid models

Toward reservoir simulation on geological grid models 1 Toward reservoir simulation on geological grid models JØRG E. AARNES and KNUT ANDREAS LIE SINTEF ICT, Dept. of Applied Mathematics, P.O. Box 124 Blindern, NO-0314 Oslo, Norway Abstract We present a reservoir

More information

INVITATION TO THE NVIDIA ROUND TABLE MEETING 2015

INVITATION TO THE NVIDIA ROUND TABLE MEETING 2015 June 22 nd, 2015 INVITATION TO THE NVIDIA ROUND TABLE MEETING 2015 September 21-23 Königswinter, Germany Grand Hotel Petersberg Dear all, This year we will have our 11 th Round Table Meeting and we again

More information

designing a GPU Computing Solution

designing a GPU Computing Solution designing a GPU Computing Solution Patrick Van Reeth EMEA HPC Competency Center - GPU Computing Solutions Saturday, May the 29th, 2010 1 2010 Hewlett-Packard Development Company, L.P. The information contained

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Computational Acceleration of Image Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA

Computational Acceleration of Image Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA Computational Acceleration of Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA Mutaqin Akbar mutaqin.akbar@gmail.com Pranowo pran@mail.uajy.ac.id Suyoto suyoto@mail.uajy.ac.id Abstract

More information

Enabling the Next Generation of Computational Graphics with NVIDIA Nsight Visual Studio Edition. Jeff Kiel Director, Graphics Developer Tools

Enabling the Next Generation of Computational Graphics with NVIDIA Nsight Visual Studio Edition. Jeff Kiel Director, Graphics Developer Tools Enabling the Next Generation of Computational Graphics with NVIDIA Nsight Visual Studio Edition Jeff Kiel Director, Graphics Developer Tools Computational Graphics Enabled Problem: Complexity of Computation

More information

CS452/552; EE465/505. Finale!

CS452/552; EE465/505. Finale! CS452/552; EE465/505 Finale! 4-23 15 Outline! Non-Photorealistic Rendering! What s Next? Read: Angel, Section 6.11 Nonphotorealistic Shading Color Plate 11 Cartoon-shaded teapot Final Exam: Monday, April

More information

Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen

Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen Michael Glaßer Application Engineering MathWorks Germany 2014 The MathWorks, Inc. 1 Key Takeaways 1. Speed up your serial

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

Speeding up MATLAB Applications Sean de Wolski Application Engineer

Speeding up MATLAB Applications Sean de Wolski Application Engineer Speeding up MATLAB Applications Sean de Wolski Application Engineer 2014 The MathWorks, Inc. 1 Non-rigid Displacement Vector Fields 2 Agenda Leveraging the power of vector and matrix operations Addressing

More information

Ray-casting Algebraic Surfaces using the Frustum Form. Eurographics 2008 Crete, Thursday April 17.

Ray-casting Algebraic Surfaces using the Frustum Form. Eurographics 2008 Crete, Thursday April 17. Ray-casting Algebraic Surfaces using the Frustum Form Martin Reimers Johan Seland Eurographics 2008 Crete, Thursday April 17. Algebraic Surfaces Zero set of polynomial f : R 3 R f (x, y, z) = f ijk x i

More information

Parallel Mesh Partitioning in Alya

Parallel Mesh Partitioning in Alya Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Parallel Mesh Partitioning in Alya A. Artigues a *** and G. Houzeaux a* a Barcelona Supercomputing Center ***antoni.artigues@bsc.es

More information