Heterogenous Computing

Size: px
Start display at page:

Download "Heterogenous Computing"

Transcription

1 Heterogenous Computing Fall 2018 CS, SE - Freshman Seminar 11:00 a 11:50a

2 Computer Architecture What are the components of a computer? How do these components work together to perform computations? How do we instruct computers how and what to compute? 1

3 Computer Architecture Can we understand this computation process in a general sense? That is, can we express computation for all computers or at least a large class of computers? 2

4 Computer Architecture 3

5 Computer Architecture 4

6 Computer Architecture Can we instruct computers how and what to compute in a general sense? That is, can we write software in a high-level language that is generative in terms of producing solutions? 5

7 Computer Architecture 6

8 7

9 Computer Architecture 8

10 What about this question? Which processor do we use? Is this the same question as which architecture do we use? Are there different processors particularly engineered for specific problems? Can you think of one example right now that is likely in your computer or laptop and possibly phone or tablet? 9

11 What about this question? Which processor do we use? Is this the same question as which architecture do we use? No not the same question - Architecture specifically refers to the compute system components and their interaction lots of these SIMD, MIMD, SISD Are there different processors particularly engineered for specific problems? Can you think of one example right now that is likely in your computer or laptop and possibly phone or tablet? GPUs, Communications Chips (Wifi, Ethernet, Bluetooth), etc. 10

12 Why do we have a CPU and a GPU? What are the advantages? What do they do differently? How are they controlled (programmed)? What kinds of problems do each solve? 11

13 What is computer performance? A measure of how quickly a machine can process instructions per unit time. What governs this rate? Is this rate bounded or can we make processors as fast as we want? 12

14 Gordon Moore Moore s Law Moore observed that the number of components (transistors, resistors, diodes or capacitors) in a dense integrated circuit had doubled approximately every year, and speculated that it would continue to do so for at least the next ten years. (4/19/1965) Revised the rate to approximately every two years. (revised 1975) What a fantastic outcome that computer power is effectively doubling every two years 13

15 The Power Wall and Multiple Core Designs First, this is not Tesla s Power Wall, but the power wall concept associated with computer architecture The doubling of component density on integrated circuits to scale up the performance, also increased (exponentially) the power consumed to switch the transistors and to cool the chips. To address this issue, chip manufacturers began experimenting with replicating the computing components of the chips and layering these in different ways to provide better management of heat, and reuse chip components in the packaging. We ended up with multiple compute cores in our modern day chips. 14

16 Multicore as a scalar performance increase Multiple compute cores means the introduction of multiple instruction streams can be computed at once Can compute four instruction streams in the time it took to compute a single instruction stream if the CPU has four compute cores Linear scaling of computer performance Modern chips can have cores as high as today How do we keep all these cores busy? What about the coupling of different instruction streams based on dependencies in the computations? How do our software compilers detect these and reorganize code to layout the instruction streams to maximize independent instruction streams? 15

17 Is scalar performance acceptable? What kinds of problems do you think are not met by scalar performance? Can you imagine specific areas in computer science, software, engineering, data science, computational science, cryptography that would require large computation that might not be met by scalar performance increases? 16

18 How to meet the performance challenge? Today: Increases in the number of compute cores per chip Increases in the number of chips per computer Increases in the number of computers in a system Faster and large memory access Faster and large secondary storage arrays Faster and larger capacity networks Alternative compute architectures SIMD, MIMD, Clusters Alternative algorithms for large scale computation map/reduce, data federation, associative memory modeling, etc. 17

19 What about this? remember me? 18

20 Multicore processing What are the cores in a multicore system? The are all the same set of chip components, replicated and package. What if they weren t the same? What if different cores could perform different tasks? Like have some CPU and some GPU cores? or have some CPU, some GPU, some DSP, some FPGA, some Communications What might that look like and can these be made? How would that be programed? 19

21 Heterogeneous computing Such heterogeneous multicore chips can be made today. Problem is: We don t know how to program them in the general case. We can write software to solve specific problems on them, and when we do, they outperform most other software architectures So, how do we start to make sense of how to program these systems? I introduce Hydra.cs.mtech.edu 20

22 Hydra Heterogeneous Computing Platform CPU AMD Phenom II x T 6 compute cores Memory: 16GB of DDR3 1Ghz RAM GPUs: 3 x Nvidia Quadro FX GFLOPS (32-bit) (3/5/2007) 2 x Radeon HD GFLOPS (64-bit) (12/14/2010) 21

23 Call to Action!!!! Help solve the challenges associated with Heterogeneous Computing Program Language Translation Granularity Loosely Coupled (Hydra); Tightly Coupled Systems Mapping Problems Algorithm Development on these systems Operating System Run-time management of system components Architecture new architectures to support H.Computing Thank you and I can answer any questions 22

Multicore Hardware and Parallelism

Multicore Hardware and Parallelism Multicore Hardware and Parallelism Minsoo Ryu Department of Computer Science and Engineering 2 1 Advent of Multicore Hardware 2 Multicore Processors 3 Amdahl s Law 4 Parallelism in Hardware 5 Q & A 2 3

More information

CS671 Parallel Programming in the Many-Core Era

CS671 Parallel Programming in the Many-Core Era CS671 Parallel Programming in the Many-Core Era Lecture 1: Introduction Zheng Zhang Rutgers University CS671 Course Information Instructor information: instructor: zheng zhang website: www.cs.rutgers.edu/~zz124/

More information

Parallelism in Hardware

Parallelism in Hardware Parallelism in Hardware Minsoo Ryu Department of Computer Science and Engineering 2 1 Advent of Multicore Hardware 2 Multicore Processors 3 Amdahl s Law 4 Parallelism in Hardware 5 Q & A 2 3 Moore s Law

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 1. Copyright 2012, Elsevier Inc. All rights reserved. Computer Technology Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis 1 Computer Technology Performance improvements: Improvements in semiconductor technology

More information

Introduction to GPU computing

Introduction to GPU computing Introduction to GPU computing Nagasaki Advanced Computing Center Nagasaki, Japan The GPU evolution The Graphic Processing Unit (GPU) is a processor that was specialized for processing graphics. The GPU

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 1 Computer Abstractions and Technology (Ch.1) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations

More information

Parallelism. CS6787 Lecture 8 Fall 2017

Parallelism. CS6787 Lecture 8 Fall 2017 Parallelism CS6787 Lecture 8 Fall 2017 So far We ve been talking about algorithms We ve been talking about ways to optimize their parameters But we haven t talked about the underlying hardware How does

More information

EECS4201 Computer Architecture

EECS4201 Computer Architecture Computer Architecture A Quantitative Approach, Fifth Edition Chapter 1 Fundamentals of Quantitative Design and Analysis These slides are based on the slides provided by the publisher. The slides will be

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

Parallel Systems I The GPU architecture. Jan Lemeire

Parallel Systems I The GPU architecture. Jan Lemeire Parallel Systems I The GPU architecture Jan Lemeire 2012-2013 Sequential program CPU pipeline Sequential pipelined execution Instruction-level parallelism (ILP): superscalar pipeline out-of-order execution

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

Fra superdatamaskiner til grafikkprosessorer og

Fra superdatamaskiner til grafikkprosessorer og Fra superdatamaskiner til grafikkprosessorer og Brødtekst maskinlæring Prof. Anne C. Elster IDI HPC/Lab Parallel Computing: Personal perspective 1980 s: Concurrent and Parallel Pascal 1986: Intel ipsc

More information

Fundamentals of Computer Design

Fundamentals of Computer Design Fundamentals of Computer Design Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Spring 2016 :: CSE 502 Computer Architecture. Introduction. Nima Honarmand

Spring 2016 :: CSE 502 Computer Architecture. Introduction. Nima Honarmand Introduction Nima Honarmand CSE 502 - CompArch Computer Architecture is the science and art of selecting (or designing) and interconnecting hardware and software components to create computers Computer

More information

The Art of Parallel Processing

The Art of Parallel Processing The Art of Parallel Processing Ahmad Siavashi April 2017 The Software Crisis As long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a

More information

Programmation Concurrente (SE205)

Programmation Concurrente (SE205) Programmation Concurrente (SE205) CM1 - Introduction to Parallelism Florian Brandner & Laurent Pautet LTCI, Télécom ParisTech, Université Paris-Saclay x Outline Course Outline CM1: Introduction Forms of

More information

Overview. CS 472 Concurrent & Parallel Programming University of Evansville

Overview. CS 472 Concurrent & Parallel Programming University of Evansville Overview CS 472 Concurrent & Parallel Programming University of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information Science, University

More information

Chapter 2 Parallel Hardware

Chapter 2 Parallel Hardware Chapter 2 Parallel Hardware Part I. Preliminaries Chapter 1. What Is Parallel Computing? Chapter 2. Parallel Hardware Chapter 3. Parallel Software Chapter 4. Parallel Applications Chapter 5. Supercomputers

More information

Lecture 28 Multicore, Multithread" Suggested reading:" (H&P Chapter 7.4)"

Lecture 28 Multicore, Multithread Suggested reading: (H&P Chapter 7.4) Lecture 28 Multicore, Multithread" Suggested reading:" (H&P Chapter 7.4)" 1" Processor components" Multicore processors and programming" Processor comparison" CSE 30321 - Lecture 01 - vs." Goal: Explain

More information

CS516 Programming Languages and Compilers II

CS516 Programming Languages and Compilers II CS516 Programming Languages and Compilers II Zheng Zhang Spring 2015 Jan 22 Overview and GPU Programming I Rutgers University CS516 Course Information Staff Instructor: zheng zhang (eddy.zhengzhang@cs.rutgers.edu)

More information

Lecture 1: Introduction

Lecture 1: Introduction Contemporary Computer Architecture Instruction set architecture Lecture 1: Introduction CprE 581 Computer Systems Architecture, Fall 2016 Reading: Textbook, Ch. 1.1-1.7 Microarchitecture; examples: Pipeline

More information

Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor.

Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor. CS 320 Ch. 18 Multicore Computers Multicore computer: Combines two or more processors (cores) on a single die. Also called a chip-multiprocessor. Definitions: Hyper-threading Intel's proprietary simultaneous

More information

Fundamentals of Computers Design

Fundamentals of Computers Design Computer Architecture J. Daniel Garcia Computer Architecture Group. Universidad Carlos III de Madrid Last update: September 8, 2014 Computer Architecture ARCOS Group. 1/45 Introduction 1 Introduction 2

More information

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D.

Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. Lecture 1: What is a Computer? Lecture for CPSC 2105 Computer Organization by Edward Bosworth, Ph.D. An Older Computer The figure at right is an older computer, called a PDP-11/20. It was designed in the

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

Suggested Readings! Lecture 24" Parallel Processing on Multi-Core Chips! Technology Drive to Multi-core! ! Readings! ! H&P: Chapter 7! vs.! CSE 30321!

Suggested Readings! Lecture 24 Parallel Processing on Multi-Core Chips! Technology Drive to Multi-core! ! Readings! ! H&P: Chapter 7! vs.! CSE 30321! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7!! (Over next 2 weeks)! Lecture 24" Parallel Processing on Multi-Core Chips! 3! Processor components! Multicore processors and programming! Processor

More information

Turbostream: A CFD solver for manycore

Turbostream: A CFD solver for manycore Turbostream: A CFD solver for manycore processors Tobias Brandvik Whittle Laboratory University of Cambridge Aim To produce an order of magnitude reduction in the run-time of CFD solvers for the same hardware

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Now we are going to speak about the CPU, the Central Processing Unit.

Now we are going to speak about the CPU, the Central Processing Unit. Now we are going to speak about the CPU, the Central Processing Unit. The central processing unit or CPU is the component that executes the instructions of the program that is stored in the computer s

More information

Paper Summary Problem Uses Problems Predictions/Trends. General Purpose GPU. Aurojit Panda

Paper Summary Problem Uses Problems Predictions/Trends. General Purpose GPU. Aurojit Panda s Aurojit Panda apanda@cs.berkeley.edu Summary s SIMD helps increase performance while using less power For some tasks (not everything can use data parallelism). Can use less power since DLP allows use

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework and numa control Examples

More information

Parallelism and Concurrency. COS 326 David Walker Princeton University

Parallelism and Concurrency. COS 326 David Walker Princeton University Parallelism and Concurrency COS 326 David Walker Princeton University Parallelism What is it? Today's technology trends. How can we take advantage of it? Why is it so much harder to program? Some preliminary

More information

Laptop Requirement: Technical Specifications and Guidelines. Frequently Asked Questions

Laptop Requirement: Technical Specifications and Guidelines. Frequently Asked Questions Laptop Requirement: Technical Specifications and Guidelines As artists and designers, you will be working in an increasingly digital landscape. The Parsons curriculum addresses this by making digital literacy

More information

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it Lab 1 Starts Today Already posted on Canvas (under Assignment) Let s look at it CS 590: High Performance Computing Parallel Computer Architectures Fengguang Song Department of Computer Science IUPUI 1

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 6. Parallel Processors from Client to Cloud COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 6 Parallel Processors from Client to Cloud Introduction Goal: connecting multiple computers to get higher performance

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

VLSI Design Automation

VLSI Design Automation VLSI Design Automation IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing Programmable PLA, FPGA Embedded systems Used in cars,

More information

VLSI Design Automation. Maurizio Palesi

VLSI Design Automation. Maurizio Palesi VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 Outline Technology trends VLSI Design flow (an overview) 3 IC Products Processors CPU, DSP, Controllers Memory chips

More information

Lecture 1: Introduction and Basics

Lecture 1: Introduction and Basics CS 515 Programming Language and Compilers I Lecture 1: Introduction and Basics Zheng (Eddy) Zhang Rutgers University Fall 2017, 9/5/2017 Class Information Instructor: Zheng (Eddy) Zhang Email: eddyzhengzhang@gmailcom

More information

Lec 25: Parallel Processors. Announcements

Lec 25: Parallel Processors. Announcements Lec 25: Parallel Processors Kavita Bala CS 340, Fall 2008 Computer Science Cornell University PA 3 out Hack n Seek Announcements The goal is to have fun with it Recitations today will talk about it Pizza

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

"On the Capability and Achievable Performance of FPGAs for HPC Applications"

On the Capability and Achievable Performance of FPGAs for HPC Applications "On the Capability and Achievable Performance of FPGAs for HPC Applications" Wim Vanderbauwhede School of Computing Science, University of Glasgow, UK Or in other words "How Fast Can Those FPGA Thingies

More information

Distributed System. Gang Wu. Spring,2019

Distributed System. Gang Wu. Spring,2019 Distributed System Gang Wu Spring,2019 Computer Systems How a single computer works? (traditional single core system) Interrupt User-level System-level Operating System How a distributed system works?

More information

Welcome to COMPSCI111/111G!

Welcome to COMPSCI111/111G! Welcome to COMPSCI111/111G! Today s class Introduction to COMPSCI111/111G People Assessment Labs Test and exam Introduction to computer hardware https://www.cs.auckland.ac.nz/courses/compsci111s1c/ Lecturers

More information

Programmer's View of Execution Teminology Summary

Programmer's View of Execution Teminology Summary CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: GP-GPU Programming GPUs Hardware specialized for graphics calculations Originally developed to facilitate the use of CAD programs

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

and Parallel Algorithms Programming with CUDA, WS09 Waqar Saleem, Jens Müller

and Parallel Algorithms Programming with CUDA, WS09 Waqar Saleem, Jens Müller Programming with CUDA and Parallel Algorithms Waqar Saleem Jens Müller Organization People Waqar Saleem, waqar.saleem@uni-jena.de Jens Mueller, jkm@informatik.uni-jena.de Room 3335, Ernst-Abbe-Platz 2

More information

CS 475: Parallel Programming Introduction

CS 475: Parallel Programming Introduction CS 475: Parallel Programming Introduction Wim Bohm, Sanjay Rajopadhye Colorado State University Fall 2014 Course Organization n Let s make a tour of the course website. n Main pages Home, front page. Syllabus.

More information

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues Top500 Supercomputer list represent parallel computers, so distributed systems such as SETI@Home are not considered Does not consider storage or I/O issues Both custom designed machines and commodity machines

More information

Concurrent Object Oriented Languages

Concurrent Object Oriented Languages Concurrent Object Oriented Languages Instructor Name: Franck van Breugel Email: franck@cse.yorku.ca Office: Lassonde Building, room 3046 Office hours: to be announced Overview concurrent algorithms concurrent

More information

Moore s Law. Computer architect goal Software developer assumption

Moore s Law. Computer architect goal Software developer assumption Moore s Law The number of transistors that can be placed inexpensively on an integrated circuit will double approximately every 18 months. Self-fulfilling prophecy Computer architect goal Software developer

More information

High Performance Computing (HPC) Introduction

High Performance Computing (HPC) Introduction High Performance Computing (HPC) Introduction Ontario Summer School on High Performance Computing Scott Northrup SciNet HPC Consortium Compute Canada June 25th, 2012 Outline 1 HPC Overview 2 Parallel Computing

More information

45-year CPU Evolution: 1 Law -2 Equations

45-year CPU Evolution: 1 Law -2 Equations 4004 8086 PowerPC 601 Pentium 4 Prescott 1971 1978 1992 45-year CPU Evolution: 1 Law -2 Equations Daniel Etiemble LRI Université Paris Sud 2004 Xeon X7560 Power9 Nvidia Pascal 2010 2017 2016 Are there

More information

A Data-Parallel Genealogy: The GPU Family Tree. John Owens University of California, Davis

A Data-Parallel Genealogy: The GPU Family Tree. John Owens University of California, Davis A Data-Parallel Genealogy: The GPU Family Tree John Owens University of California, Davis Outline Moore s Law brings opportunity Gains in performance and capabilities. What has 20+ years of development

More information

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica

VLSI Design Automation. Calcolatori Elettronici Ing. Informatica VLSI Design Automation 1 Outline Technology trends VLSI Design flow (an overview) 2 IC Products Processors CPU, DSP, Controllers Memory chips RAM, ROM, EEPROM Analog Mobile communication, audio/video processing

More information

Message Passing Interface (MPI)

Message Passing Interface (MPI) CS 220: Introduction to Parallel Computing Message Passing Interface (MPI) Lecture 13 Today s Schedule Parallel Computing Background Diving in: MPI The Jetson cluster 3/7/18 CS 220: Parallel Computing

More information

Approaches to Parallel Computing

Approaches to Parallel Computing Approaches to Parallel Computing K. Cooper 1 1 Department of Mathematics Washington State University 2019 Paradigms Concept Many hands make light work... Set several processors to work on separate aspects

More information

Top500 Supercomputer list

Top500 Supercomputer list Top500 Supercomputer list Tends to represent parallel computers, so distributed systems such as SETI@Home are neglected. Does not consider storage or I/O issues Both custom designed machines and commodity

More information

Trends in the Infrastructure of Computing

Trends in the Infrastructure of Computing Trends in the Infrastructure of Computing CSCE 9: Computing in the Modern World Dr. Jason D. Bakos My Questions How do computer processors work? Why do computer processors get faster over time? How much

More information

Why do we care about parallel?

Why do we care about parallel? Threads 11/15/16 CS31 teaches you How a computer runs a program. How the hardware performs computations How the compiler translates your code How the operating system connects hardware and software The

More information

Real-Time Rendering Architectures

Real-Time Rendering Architectures Real-Time Rendering Architectures Mike Houston, AMD Part 1: throughput processing Three key concepts behind how modern GPU processing cores run code Knowing these concepts will help you: 1. Understand

More information

Chapter 1: Introduction to Parallel Computing

Chapter 1: Introduction to Parallel Computing Parallel and Distributed Computing Chapter 1: Introduction to Parallel Computing Jun Zhang Laboratory for High Performance Computing & Computer Simulation Department of Computer Science University of Kentucky

More information

From Shader Code to a Teraflop: How GPU Shader Cores Work. Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian)

From Shader Code to a Teraflop: How GPU Shader Cores Work. Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian) From Shader Code to a Teraflop: How GPU Shader Cores Work Jonathan Ragan- Kelley (Slides by Kayvon Fatahalian) 1 This talk Three major ideas that make GPU processing cores run fast Closer look at real

More information

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 9 Fall 2017

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 9 Fall 2017 Memory Bandwidth and Low Precision Computation CS6787 Lecture 9 Fall 2017 Memory as a Bottleneck So far, we ve just been talking about compute e.g. techniques to decrease the amount of compute by decreasing

More information

ECE 574 Cluster Computing Lecture 16

ECE 574 Cluster Computing Lecture 16 ECE 574 Cluster Computing Lecture 16 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 26 March 2019 Announcements HW#7 posted HW#6 and HW#5 returned Don t forget project topics

More information

CS150 Introduction to Computer Science 1. What is CS150? Who Are We? CS150 is a programming course You will learn

CS150 Introduction to Computer Science 1. What is CS150? Who Are We? CS150 is a programming course You will learn CS 150 Introduction to Computer Science 1 Professor: Shereen Khoja shereen@pacificu.edu 1 What is CS150? CS150 is a programming course You will learn o The mechanics of writing programs in C++ o How to

More information

System-on-Chip Architecture for Mobile Applications. Sabyasachi Dey

System-on-Chip Architecture for Mobile Applications. Sabyasachi Dey System-on-Chip Architecture for Mobile Applications Sabyasachi Dey Email: sabyasachi.dey@gmail.com Agenda What is Mobile Application Platform Challenges Key Architecture Focus Areas Conclusion Mobile Revolution

More information

CENG4480 Lecture 09: Memory 1

CENG4480 Lecture 09: Memory 1 CENG4480 Lecture 09: Memory 1 Bei Yu byu@cse.cuhk.edu.hk (Latest update: November 8, 2017) Fall 2017 1 / 37 Overview Introduction Memory Principle Random Access Memory (RAM) Non-Volatile Memory Conclusion

More information

GP-GPU. General Purpose Programming on the Graphics Processing Unit

GP-GPU. General Purpose Programming on the Graphics Processing Unit GP-GPU General Purpose Programming on the Graphics Processing Unit Goals Learn modern GPU architectures and its advantage and disadvantage as compared to modern CPUs Learn how to effectively program the

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 207/8 A.J.Proença The Roofline Performance Model (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 207/8 AJProença, Advanced Architectures,

More information

Multimedia in Mobile Phones. Architectures and Trends Lund

Multimedia in Mobile Phones. Architectures and Trends Lund Multimedia in Mobile Phones Architectures and Trends Lund 091124 Presentation Henrik Ohlsson Contact: henrik.h.ohlsson@stericsson.com Working with multimedia hardware (graphics and displays) at ST- Ericsson

More information

Microprocessors, Lecture 1: Introduction to Microprocessors

Microprocessors, Lecture 1: Introduction to Microprocessors Microprocessors, Lecture 1: Introduction to Microprocessors Computing Systems General-purpose standalone systems (سيستم ھای نھفته ( systems Embedded 2 General-purpose standalone systems Stand-alone computer

More information

Lecture 1. Introduction Course Overview

Lecture 1. Introduction Course Overview Lecture 1 Introduction Course Overview Welcome to CSE 260! Your instructor is Scott Baden baden@ucsd.edu Office: room 3244 in EBU3B Office hours Week 1: Today (after class), Tuesday (after class) Remainder

More information

Imaging Solutions by Mercury Computer Systems

Imaging Solutions by Mercury Computer Systems Imaging Solutions by Mercury Computer Systems Presented By Raj Parihar Computer Architecture Reading Group, UofR Mercury Computer Systems Boston based; designs and builds embedded multi computers Loosely

More information

Advances of parallel computing. Kirill Bogachev May 2016

Advances of parallel computing. Kirill Bogachev May 2016 Advances of parallel computing Kirill Bogachev May 2016 Demands in Simulations Field development relies more and more on static and dynamic modeling of the reservoirs that has come a long way from being

More information

Lecture 7: The Programmable GPU Core. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011)

Lecture 7: The Programmable GPU Core. Kayvon Fatahalian CMU : Graphics and Imaging Architectures (Fall 2011) Lecture 7: The Programmable GPU Core Kayvon Fatahalian CMU 15-869: Graphics and Imaging Architectures (Fall 2011) Today A brief history of GPU programmability Throughput processing core 101 A detailed

More information

Parallel Architectures

Parallel Architectures Parallel Architectures Part 1: The rise of parallel machines Intel Core i7 4 CPU cores 2 hardware thread per core (8 cores ) Lab Cluster Intel Xeon 4/10/16/18 CPU cores 2 hardware thread per core (8/20/32/36

More information

UNIT 1.1 SYSTEMS ARCHITECTURE MCQS

UNIT 1.1 SYSTEMS ARCHITECTURE MCQS The numbers after the question are an approximate estimation of relative difficulty, broadly based around the new GCSE Numbering System. Please note that these were produced before final guidance was released

More information

Chapter 17 - Parallel Processing

Chapter 17 - Parallel Processing Chapter 17 - Parallel Processing Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ Luis Tarrataca Chapter 17 - Parallel Processing 1 / 71 Table of Contents I 1 Motivation 2 Parallel Processing Categories

More information

Moore s Law: Alive and Well. Mark Bohr Intel Senior Fellow

Moore s Law: Alive and Well. Mark Bohr Intel Senior Fellow Moore s Law: Alive and Well Mark Bohr Intel Senior Fellow Intel Scaling Trend 10 10000 1 1000 Micron 0.1 100 nm 0.01 22 nm 14 nm 10 nm 10 0.001 1 1970 1980 1990 2000 2010 2020 2030 Intel Scaling Trend

More information

Introduction to High-Performance Computing

Introduction to High-Performance Computing Introduction to High-Performance Computing Simon D. Levy BIOL 274 17 November 2010 Chapter 12 12.1: Concurrent Processing High-Performance Computing A fancy term for computers significantly faster than

More information

GPU ACCELERATED DATABASE MANAGEMENT SYSTEMS

GPU ACCELERATED DATABASE MANAGEMENT SYSTEMS CIS 601 - Graduate Seminar Presentation 1 GPU ACCELERATED DATABASE MANAGEMENT SYSTEMS PRESENTED BY HARINATH AMASA CSU ID: 2697292 What we will talk about.. Current problems GPU What are GPU Databases GPU

More information

Distributed Systems. 01. Introduction. Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 01. Introduction. Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 01. Introduction Paul Krzyzanowski Rutgers University Fall 2013 September 9, 2013 CS 417 - Paul Krzyzanowski 1 What can we do now that we could not do before? 2 Technology advances

More information

Twos Complement Signed Numbers. IT 3123 Hardware and Software Concepts. Reminder: Moore s Law. The Need for Speed. Parallelism.

Twos Complement Signed Numbers. IT 3123 Hardware and Software Concepts. Reminder: Moore s Law. The Need for Speed. Parallelism. Twos Complement Signed Numbers IT 3123 Hardware and Software Concepts Modern Computer Implementations April 26 Notice: This session is being recorded. Copyright 2009 by Bob Brown http://xkcd.com/571/ Reminder:

More information

Course II Parallel Computer Architecture. Week 2-3 by Dr. Putu Harry Gunawan

Course II Parallel Computer Architecture. Week 2-3 by Dr. Putu Harry Gunawan Course II Parallel Computer Architecture Week 2-3 by Dr. Putu Harry Gunawan www.phg-simulation-laboratory.com Review Review Review Review Review Review Review Review Review Review Review Review Processor

More information

Better Security Tool Designs: Brainpower, Massive Threading, and Languages

Better Security Tool Designs: Brainpower, Massive Threading, and Languages Better Security Tool Designs: Brainpower, Massive Threading, and Languages Golden G. Richard III Professor and University Research Professor Department of Computer Science University of New Orleans Founder

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 18

ECE 571 Advanced Microprocessor-Based Design Lecture 18 ECE 571 Advanced Microprocessor-Based Design Lecture 18 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 11 November 2014 Homework #4 comments Project/HW Reminder 1 Stuff from Last

More information

CS5222 Advanced Computer Architecture. Lecture 1 Introduction

CS5222 Advanced Computer Architecture. Lecture 1 Introduction CS5222 Advanced Computer Architecture Lecture 1 Introduction Overview Teaching Staff Introduction to Computer Architecture History Future / Trends Significance The course Content Workload Administrative

More information

Martin Dubois, ing. Contents

Martin Dubois, ing. Contents Martin Dubois, ing Contents Without OpenNet vs With OpenNet Technical information Possible applications Artificial Intelligence Deep Packet Inspection Image and Video processing Network equipment development

More information

Concurrency & Parallelism, 10 mi

Concurrency & Parallelism, 10 mi The Beauty and Joy of Computing Lecture #7 Concurrency Instructor : Sean Morris Quest (first exam) in 5 days!! In this room! Concurrency & Parallelism, 10 mi up Intra-computer Today s lecture Multiple

More information

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 10 Fall 2018

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 10 Fall 2018 Memory Bandwidth and Low Precision Computation CS6787 Lecture 10 Fall 2018 Memory as a Bottleneck So far, we ve just been talking about compute e.g. techniques to decrease the amount of compute by decreasing

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Ten (or so) Small Computers

Ten (or so) Small Computers Ten (or so) Small Computers by Jon "maddog" Hall Executive Director Linux International and President, Project Cauã 1 of 50 Who Am I? Half Electrical Engineer, Half Business, Half Computer Software In

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

BREAKING THE MEMORY WALL

BREAKING THE MEMORY WALL BREAKING THE MEMORY WALL CS433 Fall 2015 Dimitrios Skarlatos OUTLINE Introduction Current Trends in Computer Architecture 3D Die Stacking The memory Wall Conclusion INTRODUCTION Ideal Scaling of power

More information

Mobile & embedded system: ELEC424, Fall 2010

Mobile & embedded system: ELEC424, Fall 2010 Mobile & embedded system: Introduction ti Lin Zhong ELEC424, Fall 2010 System vs. processor/ic vs. chip System Ready to interface with the physical world, including human users Usually has non-computing

More information