Subdivision curves. University of Texas at Austin CS384G - Computer Graphics

Size: px
Start display at page:

Download "Subdivision curves. University of Texas at Austin CS384G - Computer Graphics"

Transcription

1 Subdivision curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

2 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section , A.5. Note: there is an error in Stollnitz, et al., section A.5. Equation A.3 should read: MV = VΛ University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 2

3 Subdivision curves Idea: repeatedly refine the control polygon P 1 P 2 P 2! curve is the limit of an infinite process Q = lim P j j University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 3

4 Chaikin s algorithm Chaikin introduced the following corner-cutting scheme in 1974: Start with a piecewise linear curve Insert new vertices at the midpoints (the splitting step) Average each vertex with the next (clockwise) neighbor (the averaging step) Go to the splitting step University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 4

5 Averaging masks The limit curve is a quadratic B-spline! Instead of averaging with the nearest neighbor, we can generalize by applying an averaging mask during the averaging step: r = (,r 1,r 0,r 1, ) In the case of Chaikin s algorithm: " r = 1 2, 1 % $ ' # 2& University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 5

6 Can we generate other B-splines? Answer: Yes Lane-Riesenfeld algorithm (1980) Use averaging masks from Pascal s triangle: Gives B-splines of degree n+1. n=0: 1 n=1: n=2: & & n# & n# & n# # r = $ $!, $!,!, $!! n 2 %% 0" % 1" % n" " University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 6

7 Subdivide ad nauseum? After each split-average step, we are closer to the limit curve. How many steps until we reach the final (limit) position? Can we push a vertex to its limit position without infinite subdivision? Yes! University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 7

8 One subdivision step Consider the cubic B-spline subdivision mask: Now consider what happens during splitting and averaging: A B C split ( ) A B a c average C A B a b c C a b c repeat University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 8

9 Math for one subdivision step Subdivision mask: One subdivision step: ( ) B split B a c average B a b c A C A C A C Split: 1 a = ( A + B ) 2 1 c = ( B + C ) 2 Average: a and c do not change 1 1 b = ( a + 2 B + c ) = ( A + 6 B + C ) 4 8 University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 9

10 Consolidated math for one step Subdivision mask: One subdivision step: ( ) B b a c A C Consolidated math for one subdivision step: P j + 1! a"! 4 4 0"! A" # $ 1 # $ # $ # b $ = 8 # $ # B $ #% c $ & #% 0 4 4$ & #% C$ & repeat P j Local subdivision matrix S University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 10

11 Local subdivision matrix, cont d Tracking the point s value through subdivision: P = SP = S SP = S S SP =! = S P j j j j The limit position of the point is then: P = S P 0 or as we d say in calculus P = lim j OK, so how do we apply a matrix an infinite number of times?? j S P 0 j University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 11

12 Eigenvectors and eigenvalues To solve this problem, we need to look at the eigenvectors and eigenvalues of S. First, a review Let v be a vector such that Sv = λv We say that v is an eigenvector with eigenvalue λ. An n x n matrix can have n eigenvalues and eigenvectors: Sv 1 = λ 1 v 1! Sv n = λ n v n If the eigenvectors are linearly independent (which means that S is non-defective), then they form a basis, and we can re-write P in terms of the eigenvectors: P = n i=1 a i v i University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 12

13 To infinity, but not beyond So, applying S to P: Applying it j times: Let s assume the eigenvalues are non-negative and sorted so that: λ 1 > λ 2 λ 3! λ n 0 Now let j go to infinity: If λ 1 > 1, then: If λ 1 < 1, then: If λ 1 = 1, then: 1 0 n n n P = SP = S a v = a Sv = a λ v j i i i i i i i i i i n n n j j j j 0 i i i i iλi i P = S P = S a v = a S v = a v i i i = j lim = 0 lim j j i n j iλi P S P a v i University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 13

14 Evaluation masks What are the eigenvalues and eigenvectors of our cubic B-spline subdivision matrix? # 1& % ( λ 1 =1 V 1 = 1 % ( $ 1' We re OK! But what is the final position? j j j ( 1λ1 1 2λ2 2 3λ3 3) P = lim a v + a v + a v P = j λ 2 = 1 2 $ 1' V = & ) 2 0 & ) % 1 ( λ 3 = 1 4 $ 2 ' & ) V 3 = 1 & ) % 2 ( Almost done from earlier we know that we can find a i, we but didn t give specifics. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 14

15 Evaluation masks To finish up, we need to compute a 1. Remember: Rewrite as: P = a v + a v +! + a v n n We need to solve for the vector A. (This is really just a change of basis 1 A = V P0 for representing the vector P). T The solution is: " a1 # "! u1!# $ T a % $ % $ 2 % $! u2! = % P0 $ " % $ " % $ % $ T % & an ' $ &! un!%' Now we can compute the limit position: We call u 1 the evaluation mask.! a1 "!!!! " # a $ # $ # $ # $ V #! $ #%!!! $ & # $ % a & 2 P0 = v1 v2 " vn = A T 1 1 P = a = u P n 0 University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 15

16 Evaluation masks Note that we need not start with the 0 th level control points and push them to the limit. If we subdivide and average the control polygon j times, we can push the vertices of the refined polygon to the limit as well: T P = S P = u P So far we ve been looking at math for a subdivision function f(x). For a 2D parametric subdivision curve, (x(u), y(u)), just apply these formulas separately for the x(u) and y(u) functions. j 1 j University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 16

17 Recipe for subdivision curves The evaluation mask for the cubic B-spline is: ( ) Now we can cook up a simple procedure for creating subdivision curves: Subdivide (split+average) the control polygon a few times. Use the averaging mask. Push the resulting points to the limit positions. Use the evaluation mask. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 17

18 Derivative of subdiv. function What is the tangent to the cubic B-spline function? Consider the formula for P again: Where: P j Derivative is just: P = a λ v + a λ v + a λ v! left " = # center $ # $ #% right $ & j j j j " 1# " 1# " 2 # j $ % 1 j $ % 1 j $ % Pj = a1 (1) 1 + a2( ) 0 a3( ) $ 1% $ 1 % $ 2 % & ' & ' & ' " P = lim Δx 0 center left Δx = lim j center left 1 # $ % & P ' = lim % a a u P j % & = = 2 1 & % ' ( & j ' 2 ( j # 1 $ T University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 18 2 j

19 Tangent analysis for 2D curve What is the tangent to a parametric cubic B-spline 2D curve? Using a similar derivation to what we just did for a 1D function (but omitting details): P P u P T Center, j Left, j 2 0 t = lim = T j PCenter, j P u Left, j 2 P0 Thus, we can compute the tangent using the second left eigenvector! This analysis holds for general subdivision curves and gives us the tangent mask. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 19

20 Control Point Approximation vs. Interpolation Previous subdivision scheme approximated control points. Can we interpolate them? Yes: DLG interpolating scheme (1987) Slight modification to subdivision algorithm: splitting step introduces midpoints averaging step only changes midpoints For DLG (Dyn-Levin-Gregory), use: 1 r = ( 2,5,10,5, 2) 16 Since we are only changing the midpoints, the points after the averaging step do not move. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell 20

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015 Subdivision curves and surfaces Brian Curless CSE 557 Fall 2015 1 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2,

More information

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Subdivision surfaces University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications,

More information

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT On-Line Geometric Modeling Notes QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati Subdivision Surfaces Surfaces Having arbitrary Topologies Tensor Product Surfaces Non Tensor Surfaces We can t find u-curves and v-curves in general surfaces General Subdivision Coarse mesh Subdivision

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018 CS354 Computer Graphics Surface Representation III Qixing Huang March 5th 2018 Today s Topic Bspline curve operations (Brief) Knot Insertion/Deletion Subdivision (Focus) Subdivision curves Subdivision

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces CS 4620 Lecture 31 Cornell CS4620 Fall 2015 1 Administration A5 due on Friday Dreamworks visiting Thu/Fri Rest of class Surfaces, Animation, Rendering w/ prior instructor Steve Marschner

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics

Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Karl-Heinz Brakhage RWTH Aachen, 55 Aachen, Deutschland, Email: brakhage@igpm.rwth-aachen.de Abstract In this paper

More information

On-Line Geometric Modeling Notes REFINEMENT

On-Line Geometric Modeling Notes REFINEMENT On-Line Geometric Modeling Notes REFINEMENT Kenneth I Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview Bézier curves, B-spline curves

More information

Reading. 14. Subdivision curves. Recommended:

Reading. 14. Subdivision curves. Recommended: eadng ecommended: Stollntz, Deose, and Salesn. Wavelets for Computer Graphcs: heory and Applcatons, 996, secton 6.-6., A.5. 4. Subdvson curves Note: there s an error n Stollntz, et al., secton A.5. Equaton

More information

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Computer Graphics Instructor: Brian Curless CSEP 557 Autumn 2016 Homework #2 Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Assigned: Wednesday, Nov 16 th Due: Wednesday, Nov 30

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #12: Curves and Surfaces Prof. James O Brien University of California, Berkeley V2007-F-12-1.0 Today General curve and surface representations Splines and other polynomial

More information

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018 CS354 Computer Graphics Surface Representation IV Qixing Huang March 7th 2018 Today s Topic Subdivision surfaces Implicit surface representation Subdivision Surfaces Building complex models We can extend

More information

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended:

Reading. Subdivision curves and surfaces. Subdivision curves. Chaikin s algorithm. Recommended: Readig Recommeded: Stollitz, DeRose, ad Salesi. Wavelets for Computer Graphics: Theory ad Applicatios, 996, sectio 6.-6.3, 0., A.5. Subdivisio curves ad surfaces Note: there is a error i Stollitz, et al.,

More information

To appear in Computer-Aided Design Revised June 18, J-splines

To appear in Computer-Aided Design Revised June 18, J-splines To appear in Computer-Aided Design Revised June 18, 2008 J-splines Jarek Rossignac School of Interactive Computing, College of Computing, Georgia Institute of Technology, Atlanta, GA http://www.gvu.gatech.edu/~jarek

More information

Recursive Subdivision Surfaces for Geometric Modeling

Recursive Subdivision Surfaces for Geometric Modeling Recursive Subdivision Surfaces for Geometric Modeling Weiyin Ma City University of Hong Kong, Dept. of Manufacturing Engineering & Engineering Management Ahmad Nasri American University of Beirut, Dept.

More information

SPLITTING THE CUBIC UNIFORM B-SPLINE CURVE

SPLITTING THE CUBIC UNIFORM B-SPLINE CURVE On-Line Geometric odeling Notes SPLITTING THE CUBIC UNIFOR B-SPLINE CURVE Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Subdivision of Curves and Surfaces: An Overview

Subdivision of Curves and Surfaces: An Overview Subdivision of Curves and Surfaces: An Overview Ben Herbst, Karin M Hunter, Emile Rossouw Applied Mathematics, Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland,

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Subdivision Curves and Surfaces

Subdivision Curves and Surfaces Subdivision Surfaces or How to Generate a Smooth Mesh?? Subdivision Curves and Surfaces Subdivision given polyline(2d)/mesh(3d) recursively modify & add vertices to achieve smooth curve/surface Each iteration

More information

Objects 2: Curves & Splines Christian Miller CS Fall 2011

Objects 2: Curves & Splines Christian Miller CS Fall 2011 Objects 2: Curves & Splines Christian Miller CS 354 - Fall 2011 Parametric curves Curves that are defined by an equation and a parameter t Usually t [0, 1], and curve is finite Can be discretized at arbitrary

More information

Subdivision on Arbitrary Meshes: Algorithms and Theory

Subdivision on Arbitrary Meshes: Algorithms and Theory Subdivision on Arbitrary Meshes: Algorithms and Theory Denis Zorin New York University 719 Broadway, 12th floor, New York, USA E-mail: dzorin@mrl.nyu.edu Subdivision surfaces have become a standard geometric

More information

Grid Generation and Grid Conversion by Subdivision Schemes

Grid Generation and Grid Conversion by Subdivision Schemes Grid Generation and Grid Conversion by Subdivision Schemes Karl Heinz Brakhage Institute for Geometry and Applied Mathematics RWTH Aachen University D-55 Aachen brakhage@igpm.rwth-aachen.de Abstract In

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Geometric Modeling Notes A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview

More information

u 0+u 2 new boundary vertex

u 0+u 2 new boundary vertex Combined Subdivision Schemes for the design of surfaces satisfying boundary conditions Adi Levin School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:fadilev@math.tau.ac.ilg

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural Surface Modeling Types: Polygon surfaces Curved surfaces Volumes Generating models: Interactive Procedural Polygon Tables We specify a polygon surface with a set of vertex coordinates and associated attribute

More information

, etc. Let s work with the last one. We can graph a few points determined by this equation.

, etc. Let s work with the last one. We can graph a few points determined by this equation. 1. Lines By a line, we simply mean a straight curve. We will always think of lines relative to the cartesian plane. Consider the equation 2x 3y 4 = 0. We can rewrite it in many different ways : 2x 3y =

More information

Curve Corner Cutting

Curve Corner Cutting Subdivision ision Techniqueses Spring 2010 1 Curve Corner Cutting Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes

Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes CSCI 420 Computer Graphics Lecture 8 Splines Jernej Barbic University of Southern California Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Roller coaster

More information

Curves, Surfaces and Recursive Subdivision

Curves, Surfaces and Recursive Subdivision Department of Computer Sciences Graphics Fall 25 (Lecture ) Curves, Surfaces and Recursive Subdivision Conics: Curves and Quadrics: Surfaces Implicit form arametric form Rational Bézier Forms Recursive

More information

An interpolating 4-point C 2 ternary stationary subdivision scheme

An interpolating 4-point C 2 ternary stationary subdivision scheme Computer Aided Geometric Design 9 (2002) 8 www.elsevier.com/locate/comaid An interpolating 4-point C 2 ternary stationary subdivision scheme M.F Hassan a,, I.P. Ivrissimitzis a, N.A. Dodgson a,m.a.sabin

More information

(Spline, Bezier, B-Spline)

(Spline, Bezier, B-Spline) (Spline, Bezier, B-Spline) Spline Drafting terminology Spline is a flexible strip that is easily flexed to pass through a series of design points (control points) to produce a smooth curve. Spline curve

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

ECE 600, Dr. Farag, Summer 09

ECE 600, Dr. Farag, Summer 09 ECE 6 Summer29 Course Supplements. Lecture 4 Curves and Surfaces Aly A. Farag University of Louisville Acknowledgements: Help with these slides were provided by Shireen Elhabian A smile is a curve that

More information

CHAIKIN S ALGORITHMS FOR CURVES

CHAIKIN S ALGORITHMS FOR CURVES On-Line Geometric Modeling Notes CHAIKIN S ALGORITHMS FOR CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview In 1974,

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Slope of the Tangent Line. Estimating with a Secant Line

Slope of the Tangent Line. Estimating with a Secant Line Slope of the Tangent Line Given a function f find the slope of the line tangent to the graph of f, that is, to the curve, at the point P(a, f (a)). The graph of a function f and the tangent line at a point

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

A Continuous 3-D Medial Shape Model with Branching

A Continuous 3-D Medial Shape Model with Branching A Continuous 3-D Medial Shape Model with Branching Timothy B. Terriberry Guido Gerig Outline Introduction The Generic 3-D Medial Axis Review of Subdivision Surfaces Boundary Reconstruction Edge Curves

More information

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Charles Loop Microsoft Research Scott Schaefer Texas A&M University April 24, 2007 Technical Report MSR-TR-2007-44 Microsoft Research

More information

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville Curves and Surfaces Shireen Elhabian and Aly A. Farag University of Louisville February 21 A smile is a curve that sets everything straight Phyllis Diller (American comedienne and actress, born 1917) Outline

More information

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

More information

Rendering Curves and Surfaces. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Rendering Curves and Surfaces. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Rendering Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Objectives Introduce methods to draw curves - Approximate

More information

3D Modeling techniques

3D Modeling techniques 3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

More information

Interpolatory 3-Subdivision

Interpolatory 3-Subdivision EUROGRAPHICS 2000 / M. Gross and F.R.A. Hopgood (Guest Editors) Volume 19 (2000), Number 3 Interpolatory 3-Subdivision U. Labsik G. Greiner Computer Graphics Group University of Erlangen-Nuremberg Am Weichselgarten

More information

Subdivision based Interpolation with Shape Control

Subdivision based Interpolation with Shape Control Subdivision based Interpolation with Shape Control Fengtao Fan University of Kentucky Deparment of Computer Science Lexington, KY 40506, USA ffan2@uky.edu Fuhua (Frank) Cheng University of Kentucky Deparment

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

CSC 305 More Modelling

CSC 305 More Modelling CSC 305 More Modelling Faramarz Samavati & Brian Wyvill The University of Victoria Graphics Group Bernstein Polynomials any degree University of Victoria Island Graphics Lab. CSC 305 2010 page 2 Implementation

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations Subdivision Surfaces Adam Finkelstein Princeton University COS 426, Spring 2003 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman, CS426, Fall99)

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Freeform Curves on Spheres of Arbitrary Dimension

Freeform Curves on Spheres of Arbitrary Dimension Freeform Curves on Spheres of Arbitrary Dimension Scott Schaefer and Ron Goldman Rice University 6100 Main St. Houston, TX 77005 sschaefe@rice.edu and rng@rice.edu Abstract Recursive evaluation procedures

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

Advanced Geometric Modeling CPSC789

Advanced Geometric Modeling CPSC789 Advanced Geometric Modeling CPSC789 Fall 2004 General information about the course CPSC 789 Advanced Geometric Modeling Fall 2004 Lecture Time and Place ENF 334 TR 9:30 10:45 Instructor : Office: MS 618

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday. ECS 175 Chapter 3: Object Representation Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

More information

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse?

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse? Homework 1: Questions/Comments? Subdivision Surfaces Questions on Homework? Last Time? What s an illegal edge collapse? Curves & Surfaces Continuity Definitions 2 3 C0, G1, C1, C 1 a b 4 Interpolation

More information

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Subdivision Surfaces Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd NURBS patches aren t the greatest NURBS patches are nxm, forming

More information

Erasing Haar Coefficients

Erasing Haar Coefficients Recap Haar simple and fast wavelet transform Limitations not smooth enough: blocky How to improve? classical approach: basis functions Lifting: transforms 1 Erasing Haar Coefficients 2 Page 1 Classical

More information

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows

Recollection. Models Pixels. Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Recollection Models Pixels Model transformation Viewport transformation Clipping Rasterization Texturing + Lights & shadows Can be computed in different stages 1 So far we came to Geometry model 3 Surface

More information

ECS 178 Course Notes REFINEMENT

ECS 178 Course Notes REFINEMENT ECS 78 Course Notes REFINEMENT Kenneth I Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview Bézier curves, B-spline curves and subdivision

More information

11.3 The Tangent Line Problem

11.3 The Tangent Line Problem 11.3 The Tangent Line Problem Copyright Cengage Learning. All rights reserved. What You Should Learn Understand the tangent line problem. Use a tangent line to approximate the slope of a graph at a point.

More information

Modeling. Simulating the Everyday World

Modeling. Simulating the Everyday World Modeling Simulating the Everyday World Three broad areas: Modeling (Geometric) = Shape Animation = Motion/Behavior Rendering = Appearance Page 1 Geometric Modeling 1. How to represent 3d shapes Polygonal

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved.

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.2 Area Copyright Cengage Learning. All rights reserved. 2 Objectives Use sigma notation to write and evaluate a sum. Understand the concept

More information

Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

More information

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface.

Example: Loop Scheme. Example: Loop Scheme. What makes a good scheme? recursive application leads to a smooth surface. Example: Loop Scheme What makes a good scheme? recursive application leads to a smooth surface 200, Denis Zorin Example: Loop Scheme Refinement rule 200, Denis Zorin Example: Loop Scheme Two geometric

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn School of Mathematical Sciences Tel Aviv University Michael S. Floater Department of Informatics University of

More information

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches

Subdivision Surfaces. Homework 1: Last Time? Today. Bilinear Patch. Tensor Product. Spline Surfaces / Patches Homework 1: Questions/Comments? Subdivision Surfaces Last Time? Curves & Surfaces Continuity Definitions Spline Surfaces / Patches Tensor Product Bilinear Patches Bezier Patches Trimming Curves C0, G1,

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

More information

Spline Surfaces, Subdivision Surfaces

Spline Surfaces, Subdivision Surfaces CS-C3100 Computer Graphics Spline Surfaces, Subdivision Surfaces vectorportal.com Trivia Assignment 1 due this Sunday! Feedback on the starter code, difficulty, etc., much appreciated Put in your README

More information

Curves and Curved Surfaces. Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006

Curves and Curved Surfaces. Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006 Curves and Curved Surfaces Adapted by FFL from CSE167: Computer Graphics Instructor: Ronen Barzel UCSD, Winter 2006 Outline for today Summary of Bézier curves Piecewise-cubic curves, B-splines Surface

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

Tangents and curvatures of matrix-valued subdivision curves and their applications to curve design

Tangents and curvatures of matrix-valued subdivision curves and their applications to curve design Tangents and curvatures of matrix-valued subdivision curves and their applications to curve design Qingtang Jiang, James J. Smith Department of Mathematics and Computer Science University of Missouri St.

More information

Introduction to Geometry. Computer Graphics CMU /15-662

Introduction to Geometry. Computer Graphics CMU /15-662 Introduction to Geometry Computer Graphics CMU 15-462/15-662 Assignment 2: 3D Modeling You will be able to create your own models (This mesh was created in Scotty3D in about 5 minutes... you can do much

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Subdivision Surfaces. Homework 1: Questions/Comments?

Subdivision Surfaces. Homework 1: Questions/Comments? Subdivision Surfaces Homework 1: Questions/Comments? 1 Questions on Homework? What s an illegal edge collapse? 1 2 3 a b 4 7 To be legal, the ring of vertex neighbors must be unique (have no duplicates)!

More information

8.1 Geometric Queries for Ray Tracing

8.1 Geometric Queries for Ray Tracing Fall 2017 CSCI 420: Computer Graphics 8.1 Geometric Queries for Ray Tracing Hao Li http://cs420.hao-li.com 1 Outline Ray-Surface Intersections Special cases: sphere, polygon Barycentric coordinates 2 Outline

More information

Geometric modeling 1

Geometric modeling 1 Geometric Modeling 1 Look around the room. To make a 3D model of a room requires modeling every single object you can see. Leaving out smaller objects (clutter) makes the room seem sterile and unrealistic

More information

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions

A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions A C 2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extensions Nira Dyn Michael S. Floater Kai Hormann Abstract. We present a new four-point subdivision scheme that generates C 2 curves.

More information

Generalized Lane Riesenfeld algorithms

Generalized Lane Riesenfeld algorithms Generalized Lane Riesenfeld algorithms Thomas J. Cashman a, Kai Hormann a, Ulrich Reif b a Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6904 Lugano b TU Darmstadt, Schlossgartenstrasse

More information