ICESATPROCESSOR, AN INTERFACE FOR ICESAT DATA EXTRACTION: APPLICATION GUIDE

Size: px
Start display at page:

Download "ICESATPROCESSOR, AN INTERFACE FOR ICESAT DATA EXTRACTION: APPLICATION GUIDE"

Transcription

1 ICESATPROCESSOR, AN INTERFACE FOR ICESAT DATA EXTRACTION: APPLICATION GUIDE September, 2017 Otá vio Augusto Pássáiá Rodrigo C. D. Páivá

2 1 INTRODUCTION This manual aims to present an application guide for the ICESatProcessor, an interface for ICESat (Ice, Cloud, Land and Elevation Satellite) data extraction focused on hydrological applications. ICESat is an altimeter satellite developed by NASA. ICESatProcessor is a set of tools developed through Matlab subroutines for extraction and visualization of ICESat altimetry data for water bodies. This application guide presents a case study at Guaíba River region, located in the state of Rio Grande do Sul, Brazil. In the following article you can search further information: Passaia, O. A.; Paiva, R. C. D. ICESat Data Processing for Hydrological Aplications. Revista Brasileira de Recursos Hídricos. Submitted The ICESatProcessor user can define: a) the study period as day/month/year (for example, 08/11/2003 to 08/11/2004); b) the study site (for example, Guaíba River), in two ways: i) latitude and longitude limits; ii) a polygon within the limits of its region, previously developed in a Geographic Information System (GIS) program; b) the use or not of SRTM DEM as a criterion for the removal of outlieds. There are some indexes (flags) that contain information about the observation, such as the elevation-use flag (i_elvuseflg), which is used to identify appropriate observations. The saturation index was also used to remove or correct saturated observations. Observations with index three or greater were removed. An index of zero or one is suitable for use without correction because there is no saturation or there is an unimportant level of saturation, respectively. Those with index 2 had saturation correction applied to them. After that, it is necessary to change the reference system. Therefore, the data are converted from the Ellipsoid T/P to the World Geodetic System ellipsoid of 1984 (WGS84), and then to the Vertical Earth Gravitational Model datum of 1996 (EGM96). Geoid EGM96 was chosen for this study because of its common use, particularly in hydrodynamic modeling of large river plains where Shuttle Radar

3 Topography Mission (SRTM) data, which is also referenced to WGS84 EGM96, are commonly topographic data sources (HALL, 2012, O'LOUGHLIN, 2016). However, with only these spurious data removal criteria, there are still many unusable data (outliers). In an attempt to remove them, a new criteria was used: compare ICESat measurements with SRTM. The study of Carabajal and Harding (2005) showed that the difference between the observations of the two missions for the worst case (a lot of vegetation covering the ground) is, on average, m (average and standard deviation). Therefore, in the software developed in this study, if the difference is greater than 50 m, the observation is removed. The following flowchart illustrates all steps performed in the program. Figure 1 Software operation flowchart ICESatProcessor can also compute water elevation time series for Virtual Stations. According to Silva (2010), "Each intersection of a trace of the altimetric satellite with reflective surface of the water plane consists of a virtual station, being possible to obtain a time series of the height of the water level". For each intersection, the ICESatProcessor will calculate the mean, median, and standard deviation of the series, and identify the outliers in two ways (in addition from those already mentioned: a) points that are likely to belong to the

4 population less than or equal to 5% (considering a normal distribution); and b) observations outside the quartile limit plus 1.5 times the interquartile range. 2 TUTORIAL The procedures described in the last three paragraphs are performed internally by the software. Hereafter it is show each step to be performed for its use. The steps are bold and underlined. It is necessary to download data from the National Snow and Ice Data Center (NSIDC) website, available at < (ZWALLY, 2014). In this raw data packet, there is information about latitude, longitude, elevation, about wave peaks, and various flags that can be used for an initial screening. The raw data has been attached for a few days, so you can test the software while you do not have all the data yet. The ICESatProcessor must be installed. Before that, you must have the correct version of Matlab used to compile. Double-click MCRInstaller.exe and install MatlabRunCompiler. When finished, click on ICESatProcessor, and its interface (figure 2) should appear on the screen. It was all written in English, to enable worldwide use. Figure 2 Software Interface

5 Usually this step is not required but, if prompted, click on the ww15mgh.grd file. During the more time-consuming steps, while an operation is performed, there is a "Please Wait" window. When the operation is finished, a window called "Sucess" will appear saying "Operation Completed". Well, click ICESat Data Folder and select the directory where the raw data is downloaded (in this example, NASA Raw Data). Afterwards, select the output folder in Output Folder. The spatial boundaries can be entered manually, always from left to right and from bottom to top. For example, Latitude: and Longitude Or you can simply click Select Shapefile and your polygon boundaries will also be the latitude and longitude boundaries. There is a sample polygon called Guaiba.shp. In the button SRTM DEM Selection, you decide whether to use the SRTM MDE as a criterion for spurious data (outliers) removal, or not. If you wish, check the box on the left, and select the.asc file that contains the grid corresponding to your study region (a grid of this example was placed, SRTM_26_19). It is possible to download boxes for the whole world at Now you will select the period for which you want to run the application. The default dates are the entire satellite period. You can select the ones you want, and then click Availability. This step is necessary because the satellite does not have data for every day of the year. If the chosen dates correspond to ICESat dates of passage, messages will appear stating that the dates have been found. Otherwise, change the days to those in which the satellite passed. For this example, chose 08/11/2003 a 08/11/2004. In the button Spatial Distribution the user can view satellite orbits over the region of interest. The data is not processed, only extracted for that area. The output is a text file with the longitude; latitude; elevation; year; month and day. At this point, the ICESatProcessor interface should be as follows:

6 Figura 3 Software Interface at the example At Extract Data the software handles the data as described above. The outputs are three text files: READ-ME; Results; and ICESat and SRTM. The READ-ME file shows the days in which the satellite passed over the region of interest, how many observations ("points") are in the area, how many were excluded based on the elevation flag and how many were removed based on saturation flag. The Results file has the same format as the Spatial Distribution. The output file of the ICESat and SRTM type has: longitude; latitude; elevation of ICESat; SRTM elevation; elevation used; year; month and day. The option Virtual Stations is similar to Extract Data, besides handling the data and generating the file READ-ME, There are two more text documents, called ResultsShapefile and Virtual Stations. The first is similar to the Results file, however only with the observations inside the polygon, and with an additional column (ID) indicating the number of the polygon in which the station was made. In the second, the columns show, from left to right: elevations average; median; standard deviation; longitude; latitude; year; month; day; number of points used; index of the polygon where the station was made; number of points removed by the criteria in the last paragraph of the introduction. When using ICESatProcessor, quote the reference as follows:

7 Passaia, O. A.; Paiva, R. C. D. ICESat Data Processing for Hydrological Aplications. Revista Brasileira de Recursos Hídricos. Submitted If you have any questions, suggestions, difficulties or distress, you can write to the software developer via REFERENCES Hall, A. C.; Schumann, G.; Bamber, P. D.; Bates, P. A.; Trigg, M. A. Geodetic corrections to Amazon River water level gauges using ICESat altimetry. Water Resources Research. Florida, v. 48, n. 10, p. 1-6, Jun O'Loughlin, F.; Neal, J.; Yamazaki, D., Bates, P. ICESat derived inland water surface spot heights. Water Resources Research, Florida, v. 52, n. 4, p , Abr Silva, J. S. Altimetria Espacial aplicada aos estudos de processos hídricos em zonas úmidas da bacia Amazônica p. Tese Doutorado em Engenharia Civil Curso de Pós-Graduação COPPE/UFRJ - Université de Toulouse, 2010 Zwally, H. J. GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5), Version 34. GLA14. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: Accessed in 26/05/2016, 2014.

NEXTMap World 30 Digital Surface Model

NEXTMap World 30 Digital Surface Model NEXTMap World 30 Digital Surface Model Intermap Technologies, Inc. 8310 South Valley Highway, Suite 400 Englewood, CO 80112 083013v3 NEXTMap World 30 (top) provides an improvement in vertical accuracy

More information

NEXTMap World 10 Digital Elevation Model

NEXTMap World 10 Digital Elevation Model NEXTMap Digital Elevation Model Intermap Technologies, Inc. 8310 South Valley Highway, Suite 400 Englewood, CO 80112 10012015 NEXTMap (top) provides an improvement in vertical accuracy and brings out greater

More information

I. An Intro to ArcMap Version 9.3 and 10. 1) Arc Map is basically a build your own Google map

I. An Intro to ArcMap Version 9.3 and 10. 1) Arc Map is basically a build your own Google map I. An Intro to ArcMap Version 9.3 and 10 What is Arc Map? 1) Arc Map is basically a build your own Google map a. Display and manage geo-spatial data (maps, images, points that have a geographic location)

More information

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA

VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA VALIDATION OF A NEW 30 METER GROUND SAMPLED GLOBAL DEM USING ICESAT LIDARA ELEVATION REFERENCE DATA M. Lorraine Tighe Director, Geospatial Solutions Intermap Session: Photogrammetry & Image Processing

More information

Purpose : Understanding Projections, 12D, and the System 1200.

Purpose : Understanding Projections, 12D, and the System 1200. Purpose : Understanding Projections, 12D, and the System 1200. 1. For any Cad work created inside 12D, the distances entered are plane (Horizontal Chord) distances. 2. Setting a projection, or changing

More information

Resource assessment and siting using SRTM 3 arc-second elevation data

Resource assessment and siting using SRTM 3 arc-second elevation data Downloaded from orbit.dtu.dk on: Dec 19, 2017 Resource assessment and siting using SRTM 3 arc-second elevation data Mortensen, Niels Gylling Publication date: 2005 Link back to DTU Orbit Citation (APA):

More information

The Global River Width Algorithm

The Global River Width Algorithm GRW algorithm ver1.5 3 April, 2014 1 The Global River Width Algorithm 2 3 4 Dai Yamazaki School of Geographical Sciences, University of Bristol Dai.Yamazaki@bristol.ac.uk 5 6 7 8 9 Note: This document

More information

Lecture 13.1: Airborne Lidar Systems

Lecture 13.1: Airborne Lidar Systems Lecture 13.1: Airborne Lidar Systems 1. Introduction v The main advantages of airborne lidar systems are that they expand the geographical range of studies beyond those possible by surface-based fixed

More information

Basic Tasks in ArcGIS 10.3.x

Basic Tasks in ArcGIS 10.3.x Basic Tasks in ArcGIS 10.3.x This guide provides instructions for performing a few basic tasks in ArcGIS 10.3.1, such as adding data to a map document, viewing and changing coordinate system information,

More information

Lecture 4: Digital Elevation Models

Lecture 4: Digital Elevation Models Lecture 4: Digital Elevation Models GEOG413/613 Dr. Anthony Jjumba 1 Digital Terrain Modeling Terms: DEM, DTM, DTEM, DSM, DHM not synonyms. The concepts they illustrate are different Digital Terrain Modeling

More information

Terrain Analysis. Using QGIS and SAGA

Terrain Analysis. Using QGIS and SAGA Terrain Analysis Using QGIS and SAGA Tutorial ID: IGET_RS_010 This tutorial has been developed by BVIEER as part of the IGET web portal intended to provide easy access to geospatial education. This tutorial

More information

SPOT VGT.

SPOT VGT. SPOT VGT http://www.spot-vegetation.com/ SPOT VGT General Information Resolution: 1km Projection: Unprojected, Plate Carree Geodetic system: WGS 1984 Geographic Extent Latitude: 75 o N to 56 o S Longitude:

More information

WHERE THEORY MEETS PRACTICE

WHERE THEORY MEETS PRACTICE world from others, leica geosystems WHERE THEORY MEETS PRACTICE A NEW BULLETIN COLUMN BY CHARLES GHILANI ON PRACTICAL ASPECTS OF SURVEYING WITH A THEORETICAL SLANT february 2012 ² ACSM BULLETIN ² 27 USGS

More information

Tutorial 1: Downloading elevation data

Tutorial 1: Downloading elevation data Tutorial 1: Downloading elevation data Objectives In this exercise you will learn how to acquire elevation data from the website OpenTopography.org, project the dataset into a UTM coordinate system, and

More information

CALPUFF View. Graphical Interface for the US EPA Approved Long Range Transport Model - CALPUFF

CALPUFF View. Graphical Interface for the US EPA Approved Long Range Transport Model - CALPUFF CALPUFF View Graphical Interface for the US EPA Approved Long Range Transport Model - CALPUFF These release notes cover CALPUFF View Version 3.0.0. They provide: New Features Resolved Issues Tel: (519)

More information

In this lab, you will create two maps. One map will show two different projections of the same data.

In this lab, you will create two maps. One map will show two different projections of the same data. Projection Exercise Part 2 of 1.963 Lab for 9/27/04 Introduction In this exercise, you will work with projections, by re-projecting a grid dataset from one projection into another. You will create a map

More information

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM

Contents of Lecture. Surface (Terrain) Data Models. Terrain Surface Representation. Sampling in Surface Model DEM Lecture 13: Advanced Data Models: Terrain mapping and Analysis Contents of Lecture Surface Data Models DEM GRID Model TIN Model Visibility Analysis Geography 373 Spring, 2006 Changjoo Kim 11/29/2006 1

More information

Distributed rainfall runoff model: 1K DHM event. Demonstration and Project

Distributed rainfall runoff model: 1K DHM event. Demonstration and Project CE74.55 Modeling of Water Resources Systems February 26 th and 27 th, 2011 Distributed rainfall runoff model: 1K DHM event Demonstration and Project Yasuto TACHIKAWA Dept. of Civil and Earth Resources

More information

Sentinel-1 Toolbox. Offset Tracking Tutorial Issued August Jun Lu Luis Veci

Sentinel-1 Toolbox. Offset Tracking Tutorial Issued August Jun Lu Luis Veci Sentinel-1 Toolbox Offset Tracking Tutorial Issued August 2016 Jun Lu Luis Veci Copyright 2016 Array Systems Computing Inc. http://www.array.ca/ http://step.esa.int Offset Tracking Tutorial The goal of

More information

Follow-Up on the Nueces River Groundwater Problem Uvalde Co. TX

Follow-Up on the Nueces River Groundwater Problem Uvalde Co. TX Follow-Up on the Nueces River Groundwater Problem Uvalde Co. TX Analysis by Ryan Kraft 12/4/2014 1 Problem Formulation A reduction in discharge was detected at a gauging station along a portion of the

More information

Quality of the TanDEM-X DEM

Quality of the TanDEM-X DEM Quality of the TanDEM-X DEM Manfred Zink, Markus Bachmann, Thomas Fritz, Paola Rizzoli, Daniel Schulze, Birgit Wessel CEOS SAR 2016 07-09 September 2016 Tokyo Denki University, Japan TerraSAR-X-add-on

More information

SWOT LAKE PRODUCT. Claire POTTIER(CNES) and P. Callahan (JPL) SWOT ADT project team J.F. Cretaux, T. Pavelsky SWOT ST Hydro leads

SWOT LAKE PRODUCT. Claire POTTIER(CNES) and P. Callahan (JPL) SWOT ADT project team J.F. Cretaux, T. Pavelsky SWOT ST Hydro leads SWOT LAKE PRODUCT Claire POTTIER(CNES) and P. Callahan (JPL) SWOT ADT project team J.F. Cretaux, T. Pavelsky SWOT ST Hydro leads Lake, Climate and Remote Sensing Workshop Toulouse June 1&2 2017 High Rate

More information

Accuracy Enhancement of ASTER Global Digital Elevation Models Using ICESat Data

Accuracy Enhancement of ASTER Global Digital Elevation Models Using ICESat Data Remote Sens. 2011, 3, 1323-1343; doi:10.3390/rs3071323 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Accuracy Enhancement of ASTER Global Digital Elevation Models

More information

DIGITAL HEIGHT MODELS BY CARTOSAT-1

DIGITAL HEIGHT MODELS BY CARTOSAT-1 DIGITAL HEIGHT MODELS BY CARTOSAT-1 K. Jacobsen Institute of Photogrammetry and Geoinformation Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de KEY WORDS: high resolution space image,

More information

VALIDATION OF ENVISAT RADAR ALTIMETRY WITHIN THE OSCAR PROJECT

VALIDATION OF ENVISAT RADAR ALTIMETRY WITHIN THE OSCAR PROJECT VALIDATION OF ENVISAT RADAR ALTIMETRY WITHIN THE OSCAR PROJECT F. Blarel, B. Legresy and F. Remy LEGOS, CNRS, 14 Avenue Edouard Belin, 31400 Toulouse, FRANCE, Email:blarel@legos.obs-mip.fr ABSTRACT The

More information

VOID FILL OF SRTM ELEVATION DATA - PRINCIPLES, PROCESSES AND PERFORMANCE INTRODUCTION

VOID FILL OF SRTM ELEVATION DATA - PRINCIPLES, PROCESSES AND PERFORMANCE INTRODUCTION VOID FILL OF SRTM ELEVATION DATA - PRINCIPLES, PROCESSES AND PERFORMANCE Steve Dowding, Director, NEXTMap Products Division Trina Kuuskivi, SRTM Quality Manager Xiaopeng Li, Ph.D., Mapping Scientist Intermap

More information

The Study for Mapping Policy and Topographic Mapping for Integrated National Development Plan in the Republic of the Philippines

The Study for Mapping Policy and Topographic Mapping for Integrated National Development Plan in the Republic of the Philippines The Study for Mapping Policy and Topographic Mapping for Integrated National Development Plan in the Republic of the Philippines Japan International Cooperation Agency (JICA) National Mapping and Resources

More information

GIS in agriculture scale farm level - used in agricultural applications - managing crop yields, monitoring crop rotation techniques, and estimate

GIS in agriculture scale farm level - used in agricultural applications - managing crop yields, monitoring crop rotation techniques, and estimate Types of Input GIS in agriculture scale farm level - used in agricultural applications - managing crop yields, monitoring crop rotation techniques, and estimate soil loss from individual farms or agricultural

More information

Download elevation model page 2 Re-Project DEM coordinates page 5 Cut region of interest page 10

Download elevation model page 2 Re-Project DEM coordinates page 5 Cut region of interest page 10 1 Download elevation model page 2 Re-Project DEM coordinates page 5 Cut region of interest page 10 Version June 2017, Dr. Jonas von Rütte, Dr. Peter Lehmann 2 Download elevation model for region of interest:

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial

v Working with Rasters SMS 12.1 Tutorial Requirements Raster Module Map Module Mesh Module Time minutes Prerequisites Overview Tutorial v. 12.1 SMS 12.1 Tutorial Objectives This tutorial teaches how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots,

More information

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics

Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Classify Multi-Spectral Data Classify Geologic Terrains on Venus Apply Multi-Variate Statistics Operations What Do I Need? Classify Merge Combine Cross Scan Score Warp Respace Cover Subscene Rotate Translators

More information

Analysis Ready Data For Land (CARD4L-ST)

Analysis Ready Data For Land (CARD4L-ST) Analysis Ready Data For Land Product Family Specification Surface Temperature (CARD4L-ST) Document status For Adoption as: Product Family Specification, Surface Temperature This Specification should next

More information

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM

A Method to Create a Single Photon LiDAR based Hydro-flattened DEM A Method to Create a Single Photon LiDAR based Hydro-flattened DEM Sagar Deshpande 1 and Alper Yilmaz 2 1 Surveying Engineering, Ferris State University 2 Department of Civil, Environmental, and Geodetic

More information

GOVERNMENT GAZETTE REPUBLIC OF NAMIBIA

GOVERNMENT GAZETTE REPUBLIC OF NAMIBIA GOVERNMENT GAZETTE OF THE REPUBLIC OF NAMIBIA N$7.20 WINDHOEK - 7 October 2016 No. 6145 CONTENTS Page GENERAL NOTICE No. 406 Namibia Statistics Agency: Data quality standard for the purchase, capture,

More information

GPS What is it? Combination of: Orbiting satellites

GPS What is it? Combination of: Orbiting satellites Chart Your Course: Guidelines for GPS Mapping Dave Ragan Ragan Technical Solutions, Inc. www.ragantechnical.com GPS What is it? Combination of: Orbiting satellites GPS What is it? Orbiting satellites Combination

More information

Files Used in this Tutorial

Files Used in this Tutorial RPC Orthorectification Tutorial In this tutorial, you will use ground control points (GCPs), an orthorectified reference image, and a digital elevation model (DEM) to orthorectify an OrbView-3 scene that

More information

Making Topographic Maps

Making Topographic Maps T O P O Applications N Making Topographic Maps M A P S Making Topographic Maps with TNTmips page 1 Before Getting Started TNTmips provides a variety of tools for working with map data and making topographic

More information

Files Used in this Tutorial

Files Used in this Tutorial RPC Orthorectification Tutorial In this tutorial, you will use ground control points (GCPs), an orthorectified reference image, and a digital elevation model (DEM) to orthorectify an OrbView-3 scene that

More information

GPS/GIS Activities Summary

GPS/GIS Activities Summary GPS/GIS Activities Summary Group activities Outdoor activities Use of GPS receivers Use of computers Calculations Relevant to robotics Relevant to agriculture 1. Information technologies in agriculture

More information

User s Manual Earth-Centered Earth-Fixed in WGS84 by Hydrometronics LLC

User s Manual Earth-Centered Earth-Fixed in WGS84 by Hydrometronics LLC User s Manual Earth-Centered Earth-Fixed in WGS84 by Hydrometronics LLC LEGAL NOTICE THIS FREE SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

More information

Learning Objectives LIGHT DETECTION AND RANGING. Sensing. Blacksburg, VA July 24 th 30 th, 2010 LiDAR: Mapping the world in 3-D Page 1

Learning Objectives LIGHT DETECTION AND RANGING. Sensing. Blacksburg, VA July 24 th 30 th, 2010 LiDAR: Mapping the world in 3-D Page 1 LiDAR: Mapping the world in 3-D Val Thomas Department of Forest Resources & Environmental Conservation July 29, 2010 Learning Objectives Part 1: Lidar theory What is lidar? How does lidar work? What are

More information

Objectives Learn how to work with projections in SMS, and how to combine data from different coordinate systems into the same SMS project.

Objectives Learn how to work with projections in SMS, and how to combine data from different coordinate systems into the same SMS project. v. 12.2 SMS 12.2 Tutorial Working with map projections in SMS Objectives Learn how to work with projections in SMS, and how to combine data from different coordinate systems into the same SMS project.

More information

Determination of the Quasi-Geoid of Xinjiang and Tibet Areas and the Normal Height of Mt. Everest Based on EGM2008

Determination of the Quasi-Geoid of Xinjiang and Tibet Areas and the Normal Height of Mt. Everest Based on EGM2008 Terr. Atmos. Ocean. Sci., Vol., No., -3, April 0 doi: 0.339/TAO.00.07.6.0(TibXS) Determination of the Quasi-Geoid of Xinjiang and Tibet Areas and the Normal Height of Mt. Everest Based on EGM008 WenBin

More information

Downloading and importing DEM data from ASTER or SRTM (~30m resolution) into ArcMap

Downloading and importing DEM data from ASTER or SRTM (~30m resolution) into ArcMap Downloading and importing DEM data from ASTER or SRTM (~30m resolution) into ArcMap Step 1: ASTER or SRTM? There has been some concerns about the quality of ASTER data, nicely exemplified in the following

More information

GIS Data Models. 4/9/ GIS Data Models

GIS Data Models. 4/9/ GIS Data Models GIS Data Models 1 Conceptual models of the real world The real world can be described using two conceptually different models: 1. As discrete objects, possible to represent as points, lines or polygons.

More information

Fig 1. Geometry of DGPS

Fig 1. Geometry of DGPS CARRYING DGPS SURVEY AND PREPARATION OF DIGITAL ELEVATION MODEL Tarun Nehra Assistant Professor Department of Civil Engineering, Quantum School of Technology, Roorkee Abstract This work presents a report

More information

4/7/2009. Model: Abstraction of reality following formal rules e.g. Euclidean space for physical space

4/7/2009. Model: Abstraction of reality following formal rules e.g. Euclidean space for physical space Model: Abstraction of reality following formal rules e.g. Euclidean space for physical space At different levels: mathematical model (Euclidean space) conceptual design model (ER model) data model (design)

More information

Objectives Learn how to work with projections in SMS, and how to combine data from different coordinate systems into the same SMS project.

Objectives Learn how to work with projections in SMS, and how to combine data from different coordinate systems into the same SMS project. v. 12.3 SMS 12.3 Tutorial Working with map projections in SMS Objectives Learn how to work with projections in SMS, and how to combine data from different coordinate systems into the same SMS project.

More information

Satellite derived reference surfaces for surveying (VORF, BLAST and LAT) Dr Ole B. Andersen, DTU Space, Copenhagen, Denmark,

Satellite derived reference surfaces for surveying (VORF, BLAST and LAT) Dr Ole B. Andersen, DTU Space, Copenhagen, Denmark, Satellite derived reference surfaces for surveying (VORF, BLAST and LAT) Dr Ole B. Andersen, DTU Space, Copenhagen, Denmark, Who am I. Gravity Author of KMS02/DNSC08/DTU10 high resolution marine geophysical/geodetic

More information

Algorithms for GIS: Terrain simplification

Algorithms for GIS: Terrain simplification Algorithms for GIS: Terrain simplification Digital terrain models in GIS grid (raster) TIN Data Sources: digitizing contour maps Data Sources: satellite imagery Data Sources: satellite imagery \ Data Sources:

More information

v Getting Started An introduction to GMS GMS Tutorials Time minutes Prerequisite Tutorials None

v Getting Started An introduction to GMS GMS Tutorials Time minutes Prerequisite Tutorials None v. 10.3 GMS 10.3 Tutorial An introduction to GMS Objectives This tutorial introduces GMS and covers the basic elements of the user interface. It is the first tutorial that new users should complete. Prerequisite

More information

Lecture 7 Digitizing. Dr. Zhang Spring, 2017

Lecture 7 Digitizing. Dr. Zhang Spring, 2017 Lecture 7 Digitizing Dr. Zhang Spring, 2017 Model of the course Using and making maps Navigating GIS maps Map design Working with spatial data Geoprocessing Spatial data infrastructure Digitizing File

More information

Revision History. Applicable Documents

Revision History. Applicable Documents Revision History Version Date Revision History Remarks 1.0 2011.11-1.1 2013.1 Update of the processing algorithm of CAI Level 3 NDVI, which yields the NDVI product Ver. 01.00. The major updates of this

More information

Satellite Laser Altimetry: On-Orbit Calibration Techniques for Precise Geolocation

Satellite Laser Altimetry: On-Orbit Calibration Techniques for Precise Geolocation Satellite Laser Altimetry: On-Orbit Calibration Techniques for Precise Geolocation David D. ROWLANDS, Claudia C. CARABAJAL,* Scott B. LUTHCKE, David J. HARDING,** Jeanne M. SAUBER,** and Jack L. BUFTON***

More information

Assessment of digital elevation models using RTK GPS

Assessment of digital elevation models using RTK GPS Assessment of digital elevation models using RTK GPS Hsing-Chung Chang 1, Linlin Ge 2, Chris Rizos 3 School of Surveying and Spatial Information Systems University of New South Wales, Sydney, Australia

More information

Projections for use in the Merced River basin

Projections for use in the Merced River basin Instructions to download Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections for use in the Merced River basin Go to the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections website. 1.

More information

Generate Glacier Velocity Maps with the Sentinel-1 Toolbox

Generate Glacier Velocity Maps with the Sentinel-1 Toolbox Making remote-sensing data accessible since 1991 Generate Glacier Velocity Maps with the Sentinel-1 Toolbox Adapted from the European Space Agency s STEP community platform In this document you will find:

More information

AUTOMATIC EXTRACTION OF TERRAIN SKELETON LINES FROM DIGITAL ELEVATION MODELS

AUTOMATIC EXTRACTION OF TERRAIN SKELETON LINES FROM DIGITAL ELEVATION MODELS AUTOMATIC EXTRACTION OF TERRAIN SKELETON LINES FROM DIGITAL ELEVATION MODELS F. Gülgen, T. Gökgöz Yildiz Technical University, Department of Geodetic and Photogrammetric Engineering, 34349 Besiktas Istanbul,

More information

Smart GIS Course. Developed By. Mohamed Elsayed Elshayal. Elshayal Smart GIS Map Editor and Surface Analysis. First Arabian GIS Software

Smart GIS Course. Developed By. Mohamed Elsayed Elshayal. Elshayal Smart GIS Map Editor and Surface Analysis. First Arabian GIS Software Smart GIS Course Developed By Mohamed Elsayed Elshayal Elshayal Smart GIS Map Editor and Surface Analysis First Arabian GIS Software http://www.freesmartgis.blogspot.com/ http://tech.groups.yahoo.com/group/elshayalsmartgis/

More information

The CaMa-Flood model description

The CaMa-Flood model description Japan Agency for Marine-Earth cience and Technology The CaMa-Flood model description Dai Yamazaki JAMTEC Japan Agency for Marine-Earth cience and Technology 4 th ep, 2015 Concepts of the CaMa-Flood development

More information

v CMS-Wave Analysis SMS 12.2 Tutorial Prerequisites Requirements Time Objectives

v CMS-Wave Analysis SMS 12.2 Tutorial Prerequisites Requirements Time Objectives v. 12.2 SMS 12.2 Tutorial Objectives This workshop gives a brief introduction to the CMS-Wave interface and model. This model is similar to STWAVE and the tutorial for the models is similar. As with the

More information

Improving the Elevation Accuracy of CARTOSAT-1 DEM

Improving the Elevation Accuracy of CARTOSAT-1 DEM IJIRST International Journal for Innovative Research in Science & Technology Volume 2 Issue 08 January 2016 ISSN (online): 2349-6010 Improving the Elevation Accuracy of CARTOSAT-1 DEM Visakh S Dr. S. Muralikrishnan

More information

Combining Airborne LIDAR and Satellite RADAR for a Dynamic DEM. Ramon Hanssen, Delft University of Technology

Combining Airborne LIDAR and Satellite RADAR for a Dynamic DEM. Ramon Hanssen, Delft University of Technology Combining Airborne LIDAR and Satellite RADAR for a Dynamic DEM Ramon Hanssen, Delft University of Technology 1 Release 27 September 2 Land surface elevation H(t) = H(t 0 ) + dh(dt) dt Elevation at time

More information

Significant Wave Height products :

Significant Wave Height products : Significant Wave Height products : dataset-wav-alti-l3-nrt-global-j3 dataset-wav-alti-l3-nrt-global-s3a Contributors: N. Taburet, R. Husson Approval date by the CMEMS product quality coordination team:

More information

Lecture 21 - Chapter 8 (Raster Analysis, part2)

Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Today: Digital Elevation Models (DEMs), Topographic functions (surface analysis): slope, aspect hillshade, viewshed,

More information

LiDAR QA/QC - Quantitative and Qualitative Assessment report -

LiDAR QA/QC - Quantitative and Qualitative Assessment report - LiDAR QA/QC - Quantitative and Qualitative Assessment report - CT T0009_LiDAR September 14, 2007 Submitted to: Roald Haested Inc. Prepared by: Fairfax, VA EXECUTIVE SUMMARY This LiDAR project covered approximately

More information

Geographic Information Systems. using QGIS

Geographic Information Systems. using QGIS Geographic Information Systems using QGIS 1 - INTRODUCTION Generalities A GIS (Geographic Information System) consists of: -Computer hardware -Computer software - Digital Data Generalities GIS softwares

More information

Neighbourhood Operations Specific Theory

Neighbourhood Operations Specific Theory Neighbourhood Operations Specific Theory Neighbourhood operations are a method of analysing data in a GIS environment. They are especially important when a situation requires the analysis of relationships

More information

High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications. Edition

High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications. Edition High Resolution Digital Elevation Model (HRDEM) CanElevation Series Product Specifications Edition 1.1 2017-08-17 Government of Canada Natural Resources Canada Telephone: +01-819-564-4857 / 1-800-661-2638

More information

Objectives Learn how to work with projections in GMS, and how to combine data from different coordinate systems into the same GMS project.

Objectives Learn how to work with projections in GMS, and how to combine data from different coordinate systems into the same GMS project. v. 10.2 GMS 10.2 Tutorial Working with map projections in GMS Objectives Learn how to work with projections in GMS, and how to combine data from different coordinate systems into the same GMS project.

More information

Objectives Learn how to work with projections in WMS, and how to combine data from different coordinate systems into the same WMS project.

Objectives Learn how to work with projections in WMS, and how to combine data from different coordinate systems into the same WMS project. s v. 11.0 Projections / Coordinate Systems WMS 11.0 Tutorial Projections / Coordinate Systems Working with map projections in WMS Objectives Learn how to work with projections in WMS, and how to combine

More information

Stitching Fine Resolution DEMs

Stitching Fine Resolution DEMs 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 Stitching Fine Resolution DEMs Gallant, J.C. 1 and J.M. Austin 1 1 CSIRO Land and Water, Black Mountain

More information

Alberta-wide ALOS DSM "ALOS_DSM15.tif", "ALOS_DSM15_c6.tif"

Alberta-wide ALOS DSM ALOS_DSM15.tif, ALOS_DSM15_c6.tif Alberta-wide ALOS DSM "ALOS_DSM15.tif", "ALOS_DSM15_c6.tif" Alberta Biodiversity Monitoring Institute Geospatial Centre May 2017 Contents 1. Overview... 2 1.1. Summary... 2 1.2 Description... 2 1.3 Credits...

More information

Review of Cartographic Data Types and Data Models

Review of Cartographic Data Types and Data Models Review of Cartographic Data Types and Data Models GIS Data Models Raster Versus Vector in GIS Analysis Fundamental element used to represent spatial features: Raster: pixel or grid cell. Vector: x,y coordinate

More information

Orthorectification Using Rational Polynomials

Orthorectification Using Rational Polynomials R P C O R T H O Tutorial Orthorectification Using Rational Polynomials Orthorectification Using Rational Polynomials with TNTmips page 1 Before Getting Started You can orthorectify images that have a mathematical

More information

RECOMMENDATION ITU-R P DIGITAL TOPOGRAPHIC DATABASES FOR PROPAGATION STUDIES. (Question ITU-R 202/3)

RECOMMENDATION ITU-R P DIGITAL TOPOGRAPHIC DATABASES FOR PROPAGATION STUDIES. (Question ITU-R 202/3) Rec. ITU-R P.1058-1 1 RECOMMENDATION ITU-R P.1058-1 DIGITAL TOPOGRAPHIC DATABASES FOR PROPAGATION STUDIES (Question ITU-R 202/3) Rec. ITU-R P.1058-1 (1994-1997) The ITU Radiocommunication Assembly, considering

More information

Guidelines for Metadata and Data Directory

Guidelines for Metadata and Data Directory Guidelines for Metadata and Data Directory Prepared for the GRDC SIP09 project teams by: Mohammad Abuzar, Department of Primary Industries (DPI), Tatura, Victoria. Brett Whelan, Australian Centre for Precision

More information

The Ohio State University Stackfiles for Satellite Radar Altimeter Data

The Ohio State University Stackfiles for Satellite Radar Altimeter Data The Ohio State University Stackfiles for Satellite Radar Altimeter Data by Yuchan Yi Report No. 495 Geodetic Science The Ohio State University Columbus, Ohio 43210 May 2010 THE OHIO STATE UNIVERSITY STACKFILES

More information

Analysis Ready Data For Land

Analysis Ready Data For Land Analysis Ready Data For Land Product Family Specification Optical Surface Reflectance (CARD4L-OSR) Document status For Adoption as: Product Family Specification, Surface Reflectance, Working Draft (2017)

More information

Terrain Modeling with ArcView GIS from ArcUser magazine

Terrain Modeling with ArcView GIS from ArcUser magazine Lesson 5: Label Features Using GNIS Data Lesson Goal: Use GNIS label data to enhance the Bright Angel model created used in Lessons 3 and 4. GNIS data will be reprojected so that it will align properly

More information

Watershed Modeling With DEMs: The Rest of the Story

Watershed Modeling With DEMs: The Rest of the Story Watershed Modeling With DEMs: The Rest of the Story Lesson 7 7-1 DEM Delineation: The Rest of the Story DEM Fill for some cases when merging DEMs Delineate Basins Wizard Smoothing boundaries Representing

More information

Assessing the performance of m footprint waveform lidar data collected in ICESat data corridors in Greenland

Assessing the performance of m footprint waveform lidar data collected in ICESat data corridors in Greenland GEOPHYSICAL RESEARCH LETTERS, VOL. 35,, doi:10.1029/2008gl035774, 2008 Assessing the performance of 20 25 m footprint waveform lidar data collected in ICESat data corridors in Greenland M. A. Hofton, 1

More information

ELIMINATION OF THE OUTLIERS FROM ASTER GDEM DATA

ELIMINATION OF THE OUTLIERS FROM ASTER GDEM DATA ELMNATON OF THE OUTLERS FROM ASTER GDEM DATA Hossein Arefi and Peter Reinartz Remote Sensing Technology nstitute German Aerospace Center (DLR) 82234 Wessling, Germany hossein.arefi@dlr.de, peter.reinartz@dlr.de

More information

NASA-OU CREST 1.6c README

NASA-OU CREST 1.6c README NASA-OU CREST 1.6c README 27 May 2010 (Draft version) Table of Contents 1. A BRIEF DESCRIPTION OF THE MODEL 3 2. COMPILING ON LINUX 5 2.1 USING IFORT COMPILER 5 2.2 USING GFORTRAN COMPILER 5 3. COMPILING

More information

Main concepts of ILWIS 3.0

Main concepts of ILWIS 3.0 CHAPTER 2 Main concepts of ILWIS 3.0 In chapter one, Introduction to ILWIS, you started with ILWIS, and learned the basics of the user interface. This chapter presents some key concepts of ILWIS. In section

More information

Google Earth an introduction

Google Earth an introduction Luana Valentini InternetGIS course - 2011 Google Earth an introduction Google Earth combines the power of Google Search with satellite imagery, maps, terrain and 3D buildings to put the world's geographic

More information

Objectives for Terrain Week

Objectives for Terrain Week The Terrain Correction Chuck Connor, Laura Connor Potential Fields Geophysics: Terrain Week for Terrain Week Learn about the terrain correction The inner terrain correction Learn about The outer terrain

More information

WORLDDEM A NOVEL GLOBAL FOUNDATION LAYER

WORLDDEM A NOVEL GLOBAL FOUNDATION LAYER WORLDDEM A NOVEL GLOBAL FOUNDATION LAYER G. Riegler, S. D. Hennig, M. Weber Airbus Defence and Space GEO-Intelligence, 88039 Friedrichshafen, Germany - (gertrud.riegler, simon.hennig, marco.weber)@astrium.eads.net

More information

Biodiversity Interactive Map

Biodiversity Interactive Map Powered by MapShare Biodiversity Interactive Map (BIM) User Tips The Biodiversity Interactive Map (BIM) is accessible via the Department of Environment and Primary Industries (DEPI) website at www.depi.vic.gov.au.

More information

Representing Geography

Representing Geography Data models and axioms Chapters 3 and 7 Representing Geography Road map Representing the real world Conceptual models: objects vs fields Implementation models: vector vs raster Vector topological model

More information

v SMS Tutorials Working with Rasters Prerequisites Requirements Time Objectives

v SMS Tutorials Working with Rasters Prerequisites Requirements Time Objectives v. 12.2 SMS 12.2 Tutorial Objectives Learn how to import a Raster, view elevations at individual points, change display options for multiple views of the data, show the 2D profile plots, and interpolate

More information

Mapping Regional Inundation with Spaceborne L-band SAR

Mapping Regional Inundation with Spaceborne L-band SAR Making remote-sensing data accessible since 1991 Mapping Regional Inundation with Spaceborne L-band SAR Using open-source software such as QGIS and GIMP Adapted from Bruce Chapman 1, Rick Guritz 2, and

More information

Interferometric processing. Rüdiger Gens

Interferometric processing. Rüdiger Gens Rüdiger Gens Why InSAR processing? extracting three-dimensional information out of a radar image pair covering the same area digital elevation model change detection 2 Processing chain 3 Processing chain

More information

16) After contour layer is chosen, on column height_field, choose Elevation, and on tag_field column, choose <None>. Click OK button.

16) After contour layer is chosen, on column height_field, choose Elevation, and on tag_field column, choose <None>. Click OK button. 16) After contour layer is chosen, on column height_field, choose Elevation, and on tag_field column, choose . Click OK button. 17) The process of TIN making will take some time. Various process

More information

Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry

Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry Korean Journal of Remote Sensing, Vol.28, No.3, 2012, pp.307~318 Maximum Canopy Height Estimation Using ICESat GLAS Laser Altimetry Taejin Park*, Woo-Kyun Lee**, Jong-Yeol Lee**, Masato Hayashi***, Yanhong

More information

Corporation ROUTE MAP

Corporation ROUTE MAP Micropath Corporation P.O. Box 17184 Tel: 303.526 5454 Web: www.micropath.com Golden, Colorado 80402 Fax: 303.526 0202 E Mail: support@micropath.com Download Route Map: www.micropath.com/downloads/software/micropath

More information

Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation.

Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation. v. 12.1 SMS 12.1 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation. Prerequisites SMS Overview tutorial Requirements Model Map Module

More information

Base Configurations Carlson SurvCE

Base Configurations Carlson SurvCE There are six methods to set the stationary base position, organized into 2 categories: From New Position includes Read from GPS, Enter Lat/Long and Enter Grid System Coordinates. The From Known Position

More information

THE FUTURE OF STATE PLANE COORDINATES AT ODOT

THE FUTURE OF STATE PLANE COORDINATES AT ODOT THE FUTURE OF STATE PLANE COORDINATES AT ODOT BY: RAY FOOS P.S. AND BRIAN MEADE P.S. THE OHIO DEPARTMENT OF TRANSPORTATION WORKING WITH STATE PLANE COORDINATES OR HOW TO MAKE THE EARTH FLAT SURVEYORS AND

More information