Problem 25 in Section 16.3

Size: px
Start display at page:

Download "Problem 25 in Section 16.3"

Transcription

1 Problem 5 in Section 16.3 In[1]:= Recall that in this problem we are studying the pyramid bounded by the planes z 6, y 0, y x 4 and x y z 4. In class we calculated all the vertices of this pyramid. Now I will calculate them in Mathematica eqs z 6, y 0, y x 4, x y z 4 Out[1]= In[]:= Out[]= In[3]:= Out[3]= In[4]:= Out[4]= In[5]:= Out[5]= z 6, y 0, x y 4, x y z 4 Each vertex is at the intersection of three planes. So, I solve three of the four equations and get four vertices. pp1 x, y, z. Solve z 6, y 0, y x 4, x, y, z 1 4, 0, 6 pp x, y, z. Solve z 6, y 0, x y z 4, x, y, z 1 5, 0, 6 pp3 x, y, z. Solve z 6, y x 4, x y z 4, x, y, z 1, 6, 6 pp4 x, y, z. Solve y 0, y x 4, x y z 4, x, y, z 1 4, 0, 1 Plot these points:

2 Problem_16_3_5.nb In[6]:= Graphics3D PointSize 0.0, Point pp1, Point pp, Point pp3, Point pp4, Opacity 0.3, Polygon pp1, pp, pp3, Polygon pp1, pp, pp4, Polygon pp1, pp4, pp3, Polygon pp4, pp, pp3, Thickness 0.01, Cyan, Line pp1, pp, Green, Line pp1, pp3, Blue, Line pp, pp3, Red, Line pp1, pp4, Magenta, Line pp, pp4, Yellow, Line pp3, pp4, Text P 1, pp1, 1, 1, Text P, pp, 1, 1, Text P 3, pp3, 1, 1, Text P 4, pp4, 1, 1, PlotRange 5, 6, 1, 8, 7, 13, Axes True, BoxRatios 11, 9, 0, AxesLabel x, y, z Out[6]= In[7]:= There are 6 lines of interest Cyan lic x, y, z. Solve z 6, y 0, x, y, z 1 Out[7]= In[8]:= x, 0, 6 Green lig x, y, z. Solve z 6, y x 4, x, y, z 1 Out[8]= x, 4 x, 6 Blue

3 Problem_16_3_5.nb 3 In[9]:= lib x, y, z. Solve z 6, x y z 4, x, y, z 1 Out[9]= In[10]:= x, 10 x, 6 Red lir x, y, z. Solve y 0, y x 4, x, y, z 1 Out[10]= In[11]:= 4, 0, z Magenta lim x, y, z. Solve y 0, x y z 4, x, y, z 1 Out[11]= In[1]:= x, 0, 4 x Yellow liy x, y, z. Solve y x 4, x y z 4, x, y, z 1 Out[1]= x, 4 x, 3 x In[13]:= How to integrate? (easier way) How to integrate? Fix y to be y0 and find the corresponding points on Green, Blue and Yellow lines lig Out[13]= In[14]:= Out[14]= In[15]:= Out[15]= In[16]:= Out[16]= In[17]:= Out[17]= In[18]:= Out[18]= x, 4 x, 6 lib x, 10 x, 6 liy x, 4 x, 3 x lig. Solve lig y0, x 1 4 y0, y0, 6 lib. Solve lib y0, x 1 10 y0, y0, 6 liy. Solve liy y0, x 1 4 y0, y0, 3 4 y0

4 4 Problem_16_3_5.nb In[19]:= 10 y0 y0.5; ppg 4 y0, y0, 6 ; ppb, y0, 6 ; ppy 4 y0, y0, 3 4 y0 ; Graphics3D PointSize 0.0, Point pp1, Point pp, Point pp3, Point pp4, Opacity 0.3, Polygon pp1, pp, pp3, Polygon pp1, pp, pp4, Polygon pp1, pp4, pp3, Polygon pp4, pp, pp3, Thickness 0.01, Cyan, Line pp1, pp, Green, Line pp1, pp3, Blue, Line pp, pp3, Red, Line pp1, pp4, Magenta, Line pp, pp4, Yellow, Line pp3, pp4, Text P 1, pp1, 1, 1, Text P, pp, 1, 1, Text P 3, pp3, 1, 1, Text P 4, pp4, 1, 1, Polygon ppg, ppb, ppy, PlotRange 5, 6, 1, 8, 7, 13, Axes True, BoxRatios 11, 9, 0, AxesLabel x, y, z Out[0]=

5 Problem_16_3_5.nb 5 In[1]:= Clear y0 ; Manipulate ppg 4 y0, y0, 6 ; 10 y0 ppb, y0, 6 ; ppy 4 y0, y0, 3 4 y0 ; Graphics3D PointSize 0.0, Point pp1, Point pp, Point pp3, Point pp4, Opacity 0.3, Polygon pp1, pp, pp3, Polygon pp1, pp, pp4, Polygon pp1, pp4, pp3, Polygon pp4, pp, pp3, Thickness 0.01, Cyan, Line pp1, pp, Green, Line pp1, pp3, Blue, Line pp, pp3, Red, Line pp1, pp4, Magenta, Line pp, pp4, Yellow, Line pp3, pp4, Text P 1, pp1, 1, 1, Text P, pp, 1, 1, Text P 3, pp3, 1, 1, Text P 4, pp4, 1, 1, Polygon ppg, ppb, ppy, PlotRange 5, 6, 1, 8, 7, 13, Axes True, BoxRatios 11, 9, 0, AxesLabel x, y, z, y0,, 0, 6 y0 Out[1]=

6 6 Problem_16_3_5.nb In[]:= Out[]= 16 In[3]:= Integrate Integrate Integrate 1, z, 6, 4 x y, x, y 4, 10 y, y, 0, 6 How to integrate? (harder way) How to integrate? Fix z to be z0 and find the corresponding points on Red, Magenta and Yellow lines lir Out[3]= In[4]:= Out[4]= In[5]:= Out[5]= In[6]:= Out[6]= In[7]:= Out[7]= In[8]:= Out[8]= 4, 0, z lim x, 0, 4 x liy x, 4 x, 3 x lir. Solve lir 3 z0, z 1 4, 0, z0 lim. Solve lim 3 z0, x 1 4 z0, 0, z0 liy. Solve liy 3 z0, x 1 z0 3, 4 z0 3, z0

7 Problem_16_3_5.nb 7 In[9]:= Clear z0 ; Manipulate ppr 4, 0, z0 ; ppm 4 z0, 0, z0 ; ppy1 z0 3, 4 z0 3, z0 ; Graphics3D PointSize 0.0, Point pp1, Point pp, Point pp3, Point pp4, Opacity 0.3, Polygon pp1, pp, pp3, Polygon pp1, pp, pp4, Polygon pp1, pp4, pp3, Polygon pp4, pp, pp3, Thickness 0.01, Cyan, Line pp1, pp, Green, Line pp1, pp3, Blue, Line pp, pp3, Red, Line pp1, pp4, Magenta, Line pp, pp4, Yellow, Line pp3, pp4, Text P 1, pp1, 1, 1, Text P, pp, 1, 1, Text P 3, pp3, 1, 1, Text P 4, pp4, 1, 1, Thickness 0.01, Cyan, Line ppr, ppm, Green, Line ppr, ppy1, Blue, Line ppm, ppy1, PointSize 0.0, Point ppr, Point ppm, Point ppy1, Polygon ppr, ppm, ppy1, PlotRange 5, 6, 1, 8, 7, 13, Axes True, BoxRatios 11, 9, 0, AxesLabel x, y, z, z0,, 6, 1 z0 Out[9]=

8 8 Problem_16_3_5.nb In[30]:= Out[30]= Recall ppy1 z0 z0 3, 4 z0 3, z0 3, 4 z0 3, z0 So, y is between 0 and 4 z 3. In[31]:= Recall, the green and blue line, but now change them to be at the level z0 Green ligz x, y, z. Solve z z0, y x 4, x, y, z 1 Out[31]= In[3]:= x, 4 x, z0 Blue libz x, y, z. Solve z z0, x y z 4, x, y, z 1 Out[3]= x, 4 x z0, z0 In[33]:= Out[33]= 16 Integrate Integrate Integrate 1, x, y 4, 4 y z, y, 0, 4 z, z, 6, 1 3

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus Assignment In[]:= Problems by Branko Curgus SetOptions $FrontEndSession, Magnification Prolog to Problem. Two cylinders In[]:= This is a tribute to a problem that I was assigned as an undergraduate student

More information

GRAPHICAL REPRESENTATION OF SURFACES

GRAPHICAL REPRESENTATION OF SURFACES 9- Graphical representation of surfaces 1 9 GRAPHICAL REPRESENTATION OF SURFACES 9.1. Figures defined in Mathematica ô Graphics3D[ ] ø Spheres Sphere of centre 1, 1, 1 and radius 2 Clear "Global` " Graphics3D

More information

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Bill Kinney, Bethel University, St. Paul, MN 2 KinneyComplexAnalysisLabCourse.nb

More information

A plane. Or, with more details, NotebookDirectory. C:\Dropbox\Work\myweb\Courses\Math_pages\Math_225\

A plane. Or, with more details, NotebookDirectory. C:\Dropbox\Work\myweb\Courses\Math_pages\Math_225\ In[1]:= NotebookDirectory Out[1]= C:\Dropbox\Work\myweb\Courses\Math_pages\Math_5\ A plane Given a point in R 3 (below it is vr) and two non-collinear vectors (below uu and vv) the parametric equation

More information

Making Holes and Windows in Surfaces

Making Holes and Windows in Surfaces The Mathematica Journal Making Holes and Windows in Surfaces Alan Horwitz In this article, we demonstrate makehole, a program which removes points from any Graphics or Graphics3D picture whose coordinates

More information

Examples of Fourier series

Examples of Fourier series Examples of Fourier series Preliminaries In[]:= Below is the definition of a periodic extension of a function defined on L, L. This definition takes a function as a variable. The function has to be inputted

More information

Principles of Linear Algebra With Mathematica Linear Programming

Principles of Linear Algebra With Mathematica Linear Programming Principles of Linear Algebra With Mathematica Linear Programming Kenneth Shiskowski and Karl Frinkle Draft date March 12, 12 Contents 1 Linear Programming 1 1.1 Geometric Linear Programming in Two Dimensions......

More information

You can drag the graphs using your mouse to rotate the surface.

You can drag the graphs using your mouse to rotate the surface. The following are some notes for relative maxima and mimima using surfaces plotted in Mathematica. The way to run the code is: Select Menu bar -- Evaluation -- Evaluate Notebook You can drag the graphs

More information

Graphs of Functions, Limits, and

Graphs of Functions, Limits, and Chapter Continuity Graphs of Functions, Limits, and ü. Plotting Graphs Students should read Chapter of Rogawski's Calculus [] for a detailed discussion of the material presented in this section. ü.. Basic

More information

15. Clipping. Projection Transformation. Projection Matrix. Perspective Division

15. Clipping. Projection Transformation. Projection Matrix. Perspective Division 15. Clipping Procedures for eliminating all parts of primitives outside of the specified view volume are referred to as clipping algorithms or simply clipping This takes place as part of the Projection

More information

Functions f and g are called a funny cosine and a funny sine if they satisfy the following properties:

Functions f and g are called a funny cosine and a funny sine if they satisfy the following properties: Assignment problems by Branko Ćurgus posted on 2070720 Problem. Funny trigonometry and its beauty ü Few Mathematica comments There are several standard Mathematica functions that can be useful here. For

More information

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007 CurvesAndSurfaces.nb Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R and R 3 Robert L.Foote, Fall 007 Curves and Surfaces Graphs ü The graph of f : Æ is a curve

More information

CS 445 HW#6 Solutions

CS 445 HW#6 Solutions CS 445 HW#6 Solutions Text problem 6.1 From the figure, x = 0.43 and y = 0.4. Since x + y + z = 1, it follows that z = 0.17. These are the trichromatic coefficients. We are interested in tristimulus values

More information

Parametric Curves, Polar Plots and 2D Graphics

Parametric Curves, Polar Plots and 2D Graphics Parametric Curves, Polar Plots and 2D Graphics Fall 2016 In[213]:= Clear "Global`*" 2 2450notes2_fall2016.nb Parametric Equations In chapter 9, we introduced parametric equations so that we could easily

More information

Introduction to Mathematica and Graphing in 3-Space

Introduction to Mathematica and Graphing in 3-Space 1 Mathematica is a powerful tool that can be used to carry out computations and construct graphs and images to help deepen our understanding of mathematical concepts. This document will serve as a living

More information

Math-2. Lesson 3-1. Equations of Lines

Math-2. Lesson 3-1. Equations of Lines Math-2 Lesson 3-1 Equations of Lines How can an equation make a line? y = x + 1 x -4-3 -2-1 0 1 2 3 Fill in the rest of the table rule x + 1 f(x) -4 + 1-3 -3 + 1-2 -2 + 1-1 -1 + 1 0 0 + 1 1 1 + 1 2 2 +

More information

Graphing on the Riemann Sphere

Graphing on the Riemann Sphere The Mathematica Journal Graphing on the Riemann Sphere Djilali Benayat We give a procedure to plot parametric curves on the sphere whose advantages over classical graphs in the Cartesian plane are obvious

More information

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved.

Systems of Equations and Inequalities. Copyright Cengage Learning. All rights reserved. 5 Systems of Equations and Inequalities Copyright Cengage Learning. All rights reserved. 5.5 Systems of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

{σ 1}; Hessian2D[f_] := yleft = -12; xright = 5; yright = 5; max4 = FindMaximum[Det[Hessian2D[f]] // Evaluate, {{x, -10}, {y, -10}}][[2, ;;, 2]]

{σ 1}; Hessian2D[f_] := yleft = -12; xright = 5; yright = 5; max4 = FindMaximum[Det[Hessian2D[f]] // Evaluate, {{x, -10}, {y, -10}}][[2, ;;, 2]] g[x_, y_] := f[x_, y_] := x 1 2 +y 2 2 * π * σ * 2 e- 2*σ 2 ; 10 g[x, y] + g[x + i, y] + g[x, y + i] + g[x + 10, y + 10] /. {σ 1}; i=1 10 i=1 Hessian2D[f_] := D[D[f[x, y], {x}], {x}] D[D[f[x, y], {x}],

More information

Problem #130 Ant On Cylinders

Problem #130 Ant On Cylinders Problem #130 Ant On Cyliners The Distance The Ant Travels Along The Surface John Snyer November, 009 Problem Consier the soli boune by the three right circular cyliners x y (greenish-yellow), x z (re),

More information

6th Grade Math. Parent Handbook

6th Grade Math. Parent Handbook 6th Grade Math Benchmark 3 Parent Handbook This handbook will help your child review material learned this quarter, and will help them prepare for their third Benchmark Test. Please allow your child to

More information

Graded Assignment 2 Maple plots

Graded Assignment 2 Maple plots Graded Assignment 2 Maple plots The Maple part of the assignment is to plot the graphs corresponding to the following problems. I ll note some syntax here to get you started see tutorials for more. Problem

More information

2.5: GRAPHS OF EXPENSE AND REVENUE FUNCTIONS OBJECTIVES

2.5: GRAPHS OF EXPENSE AND REVENUE FUNCTIONS OBJECTIVES Section 2.5: GRAPHS OF EXPENSE AND REVENUE FUNCTIONS OBJECTIVES Write, graph and interpret the expense function. Write, graph and interpret the revenue function. Identify the points of intersection of

More information

Scalar Field Visualization I

Scalar Field Visualization I Scalar Field Visualization I What is a Scalar Field? The approximation of certain scalar function in space f(x,y,z). Image source: blimpyb.com f What is a Scalar Field? The approximation of certain scalar

More information

Computational methods in Mathematics

Computational methods in Mathematics Computational methods in Mathematics José Carlos Díaz Ramos Cristina Vidal Castiñeira June 13, 2014 1 Graphics Mathematica represents all graphics in terms of a collection of graphics primitives. The primitives

More information

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of "Size" 0.05 *L

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of Size 0.05 *L Define and plotting a point and vector H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P H* Plot a Single Red Point of "Size" 0.05 *L Graphics3D@8PointSize@0.05D, Red, Point@PD

More information

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA Explore 3D Figures Dr. Jing Wang (517)2675965, wangj@lcc.edu Lansing Community College, Michigan, USA Part I. 3D Modeling In this part, we create 3D models using Mathematica for various solids in 3D space,

More information

Inflating the Platonic Solids while Preserving. Distance

Inflating the Platonic Solids while Preserving. Distance Inflating the Platonic Solids while Preserving Distance Seth Arnold Senior Project Southern Illinois University Edwardsville May 20 In R 2, it can be shown by the isoperimetric inequality that, of all

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Parametrizations

MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Parametrizations MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Goals of the lab: To learn some basic operations in Mathematica, such as how to define a function, and how to produce various

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

Triple Integrals: Setting up the Integral

Triple Integrals: Setting up the Integral Triple Integrals: Setting up the Integral. Set up the integral of a function f x, y, z over the region above the upper nappe of the cone z x y from z to z. Use the following orders of integration: d x

More information

Algebra 1 Semester 2 Final Review

Algebra 1 Semester 2 Final Review Team Awesome 011 Name: Date: Period: Algebra 1 Semester Final Review 1. Given y mx b what does m represent? What does b represent?. What axis is generally used for x?. What axis is generally used for y?

More information

CS251 Spring 2014 Lecture 7

CS251 Spring 2014 Lecture 7 CS251 Spring 2014 Lecture 7 Stephanie R Taylor Feb 19, 2014 1 Moving on to 3D Today, we move on to 3D coordinates. But first, let s recap of what we did in 2D: 1. We represented a data point in 2D data

More information

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line

Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Lesson 19: The Graph of a Linear Equation in Two Variables is a Line Classwork Exercises Theorem: The graph of a linear equation y = mx + b is a non-vertical line with slope m and passing through (0, b),

More information

Mathematical Experiments with Mathematica

Mathematical Experiments with Mathematica Mathematical Experiments with Mathematica Instructor: Valentina Kiritchenko Classes: F 12:00-1:20 pm E-mail : vkiritchenko@yahoo.ca, vkiritch@hse.ru Office hours : Th 5:00-6:20 pm, F 3:30-5:00 pm 1. Syllabus

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

Quickstart for Web and Tablet App

Quickstart for Web and Tablet App Quickstart for Web and Tablet App What is GeoGebra? Dynamic Mathematic Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information

REPRESENTATION OF CURVES IN PARAMETRIC FORM

REPRESENTATION OF CURVES IN PARAMETRIC FORM - Representation of curves in parametric form 1 REPRESENTATION OF CURVES IN PARAMETRIC FORM.1. Parametrization of curves in the plane Given a curve in parametric form, its graphical representation in a

More information

11.4. Imagine that you are, right now, facing a clock and reading the time on that. Spin to Win. Volume of Cones and Pyramids

11.4. Imagine that you are, right now, facing a clock and reading the time on that. Spin to Win. Volume of Cones and Pyramids Spin to Win Volume of Cones and Pyramids.4 Learning Goals In this lesson, you will: Rotate two-dimensional plane figures to generate three-dimensional figures. Give an informal argument for the volume

More information

itools Tutorial Three

itools Tutorial Three itools Tutorial Three A 3D Multiplanar Viewer Creating a 3D Multiplaner Viewer This tutorial assumes the user has a basic understanding of itools. If you are a beginning itools user, it is recommended

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

Mathematics Computer Laboratory - Math Version 11 Lab 7 - Graphics c

Mathematics Computer Laboratory - Math Version 11 Lab 7 - Graphics c Mathematics Computer Laboratory - Math 1200 - Version 11 Lab 7 - Graphics c Due You should only turn in exercises in this lab with its title and your name in Title and Subtitle font, respectively. Edit

More information

Rational Numbers: Graphing: The Coordinate Plane

Rational Numbers: Graphing: The Coordinate Plane Rational Numbers: Graphing: The Coordinate Plane A special kind of plane used in mathematics is the coordinate plane, sometimes called the Cartesian plane after its inventor, René Descartes. It is one

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

The 3 Voxet axes can be annotated: Menu > Voxet > Tools > Annotate Voxet > Custom system.

The 3 Voxet axes can be annotated: Menu > Voxet > Tools > Annotate Voxet > Custom system. Annotate Voxet The 3 Voxet axes can be annotated: Menu > Voxet > Tools > Annotate Voxet > Custom system. You can then enter the start and end coordinate values as well as custom labels. The annotation

More information

Quickstart for Desktop Version

Quickstart for Desktop Version Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

Complex functions, Laurent Series & residues using Mathematica

Complex functions, Laurent Series & residues using Mathematica Complex functions, Laurent Series & residues using Mathematica Complex functions Real and Imaginary parts of functions can be obtained using ComplexExpand, which treats all variables (here x and y) as

More information

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Image Formation Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Fundamental imaging notions Physical basis for image formation

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Linear optimization. Linear programming using the Simplex method. Maximize M = 40 x x2. subject to: 2 x1 + x2 70 x1 + x2 40 x1 + 3 x2 90.

Linear optimization. Linear programming using the Simplex method. Maximize M = 40 x x2. subject to: 2 x1 + x2 70 x1 + x2 40 x1 + 3 x2 90. Linear optimization Linear programming using the Simplex method Maximize M = 40 x + 60 x2 subject to: 2 x + x2 70 x + x2 40 x + 3 x2 90 x 0 Here are the constraints 2 simplexnotes.nb constraints = Plot@870-2

More information

Appendix E Calculating Normal Vectors

Appendix E Calculating Normal Vectors OpenGL Programming Guide (Addison-Wesley Publishing Company) Appendix E Calculating Normal Vectors This appendix describes how to calculate normal vectors for surfaces. You need to define normals to use

More information

Lesson 1 Introduction to Algebraic Geometry

Lesson 1 Introduction to Algebraic Geometry Lesson 1 Introduction to Algebraic Geometry I. What is Algebraic Geometry? Algebraic Geometry can be thought of as a (vast) generalization of linear algebra and algebra. Recall that, in linear algebra,

More information

Revision Topic 11: Straight Line Graphs

Revision Topic 11: Straight Line Graphs Revision Topic : Straight Line Graphs The simplest way to draw a straight line graph is to produce a table of values. Example: Draw the lines y = x and y = 6 x. Table of values for y = x x y - - - - =

More information

Newton s Method. Example : Find the root of f (x) =

Newton s Method. Example : Find the root of f (x) = Newton s Method Example : Find the root of f (x) = If we draw the graph of f (x), we can see that the root of f (x) = 0 is the x - coordinate of the point where the curve intersects with the x - axis.

More information

Scalar Field Visualization I

Scalar Field Visualization I Scalar Field Visualization I What is a Scalar Field? The approximation of certain scalar function in space f(x,y,z). Image source: blimpyb.com f What is a Scalar Field? The approximation of certain scalar

More information

HydroperoxyCyclophosphamideDoses 0, 0.32`, 0.5`, 0.79`, 1.2`, 2, 3.2`, 5.07`, 8, 12.67`, 20;

HydroperoxyCyclophosphamideDoses 0, 0.32`, 0.5`, 0.79`, 1.2`, 2, 3.2`, 5.07`, 8, 12.67`, 20; In[1]:= HydroperoxyCyclophosphamideDoses 0, 0.32`, 0.5`, 0.79`, 1.2`, 2, 3.2`, 5.07`, 8, 12.67`, 20; In[2]:= In[3]:= VincristineDoses 0, 0.00032`, 0.000507`, 0.0008`, 0.00127`, 0.002`, 0.0032`, 0.00507`,

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics High School Geometry Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics Standard 5 : Graphical Representations = ALEKS course topic that addresses

More information

Chapter 3 Linear Programming: A Geometric Approach

Chapter 3 Linear Programming: A Geometric Approach Chapter 3 Linear Programming: A Geometric Approach Section 3.1 Graphing Systems of Linear Inequalities in Two Variables y 4x + 3y = 12 4 3 4 x 3 y 12 x y 0 x y = 0 2 1 P(, ) 12 12 7 7 1 1 2 3 x We ve seen

More information

Intersecting Simple Surfaces. Dr. Scott Schaefer

Intersecting Simple Surfaces. Dr. Scott Schaefer Intersecting Simple Surfaces Dr. Scott Schaefer 1 Types of Surfaces Infinite Planes Polygons Convex Ray Shooting Winding Number Spheres Cylinders 2/66 Infinite Planes Defined by a unit normal n and a point

More information

a. Plot the point (x, y, z) and understand it as a vertex of a rectangular prism. c. Recognize and understand equations of planes and spheres.

a. Plot the point (x, y, z) and understand it as a vertex of a rectangular prism. c. Recognize and understand equations of planes and spheres. Standard: MM3G3 Students will investigate planes and spheres. a. Plot the point (x, y, z) and understand it as a vertex of a rectangular prism. b. Apply the distance formula in 3-space. c. Recognize and

More information

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations

12.4 Rotations. Learning Objectives. Review Queue. Defining Rotations Rotations 12.4. Rotations www.ck12.org 12.4 Rotations Learning Objectives Find the image of a figure in a rotation in a coordinate plane. Recognize that a rotation is an isometry. Review Queue 1. Reflect XY Z with

More information

Tutorial 14b: Advanced polygonal modeling

Tutorial 14b: Advanced polygonal modeling Tutorial 14b: Advanced polygonal modeling Table of Contents................................... 3 2 Download items Tutorial data Tutorial PDF Part 1: Polygonal Modeling Note that you can also find a video

More information

1 Basic Plotting. Radii Speeds Offsets 1, 1, 1 2, 5, 19 0, 0, 0 1, 0.8, 0.4, 0.2, 0.4, 0.2 1, 10, 17, 26, 28, 37 0, Π, Π, 0, 0, Π

1 Basic Plotting. Radii Speeds Offsets 1, 1, 1 2, 5, 19 0, 0, 0 1, 0.8, 0.4, 0.2, 0.4, 0.2 1, 10, 17, 26, 28, 37 0, Π, Π, 0, 0, Π 1 Basic Plotting Placing wheels on wheels on wheels and giving them different rates of spin leads to some interesting parametric plots. The images show four examples. They arise from the values below,

More information

The Viewing Pipeline Coordinate Systems

The Viewing Pipeline Coordinate Systems Overview Interactive Graphics System Model Graphics Pipeline Coordinate Systems Modeling Transforms Cameras and Viewing Transform Lighting and Shading Color Rendering Visible Surface Algorithms Rasterization

More information

GRADE 3 GRADE-LEVEL GOALS

GRADE 3 GRADE-LEVEL GOALS Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

More information

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by a two dimensional (plane) curve C in three dimensional space a line L in a plane not parallel to the one in

More information

Introduction to 3D Graphics

Introduction to 3D Graphics Graphics Without Polygons Volume Rendering May 11, 2010 So Far Volumetric Rendering Techniques Misc. So Far Extended the Fixed Function Pipeline with a Programmable Pipeline Programming the pipeline is

More information

Rational Numbers and the Coordinate Plane

Rational Numbers and the Coordinate Plane Rational Numbers and the Coordinate Plane LAUNCH (8 MIN) Before How can you use the numbers placed on the grid to figure out the scale that is used? Can you tell what the signs of the x- and y-coordinates

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Image Formation

More information

Multiply using the grid method.

Multiply using the grid method. Multiply using the grid method. Learning Objective Read and plot coordinates in all quadrants DEFINITION Grid A pattern of horizontal and vertical lines, usually forming squares. DEFINITION Coordinate

More information

Clipping Polygons. A routine for clipping polygons has a variety of graphics applications.

Clipping Polygons. A routine for clipping polygons has a variety of graphics applications. The Mathematica Journal Clipping Polygons Garry Helzer Department of Mathematics University of Maryland College Park, MD 20742 gah@math.umd.edu A routine for clipping polygons has a variety of graphics

More information

Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Linear Programming

Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Linear Programming Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang! Linear Programming In a linear programming problem, there is a set of variables, and we want to assign real values

More information

3. Raster Algorithms. 3.1 Raster Displays. (see Chapter 1 of the Notes) CRT LCD. CS Dept, Univ of Kentucky

3. Raster Algorithms. 3.1 Raster Displays. (see Chapter 1 of the Notes) CRT LCD. CS Dept, Univ of Kentucky 3. Raster Algorithms 3.1 Raster Displays CRT LCD (see Chapter 1 of the Notes) 1 3.2 Monitor Intensities & Gamma Compute intensity values by an illumination model Computed intensity values then are converted

More information

Reverse Engineering Convert STL mesh data to a Solid Edge part model and speed up Product Development.

Reverse Engineering Convert STL mesh data to a Solid Edge part model and speed up Product Development. Reverse Engineering Convert STL mesh data to a Solid Edge part model and speed up Product Development. Realize innovation. Reverse Engineering Why Reverse Engineering? Convert an existing physical part

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Lesson 1. Unit 2 Practice Problems. Problem 2. Problem 1. Solution 1, 4, 5. Solution. Problem 3

Lesson 1. Unit 2 Practice Problems. Problem 2. Problem 1. Solution 1, 4, 5. Solution. Problem 3 Unit 2 Practice Problems Lesson 1 Problem 1 Rectangle measures 12 cm by 3 cm. Rectangle is a scaled copy of Rectangle. Select all of the measurement pairs that could be the dimensions of Rectangle. 1.

More information

Mathematical Modelling Lecture 7 Linear Programming

Mathematical Modelling Lecture 7 Linear Programming Lecture 7 Linear Programming phil.hasnip@york.ac.uk Overview of Course Model construction dimensional analysis Experimental input fitting Finding a best answer optimisation Tools for constructing and manipulating

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71 Display Introduction page 67 2D Images page 68 All Orientations page 69 Single Image page 70 3D Images page 71 Intersecting Sections page 71 Cube Sections page 72 Render page 73 1. Tissue Maps page 77

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Math 126: Calculus III Section 12.5: Equation of Lines and Planes

Math 126: Calculus III Section 12.5: Equation of Lines and Planes 1 Math 16: Calculus III Section 1.5: Equation of Lines and Planes Vector equations of lines Consider the position vector r 0 (which gives points to a point on the line) and the direction v line). Additional

More information

EXAMINATIONS 2016 TRIMESTER 2

EXAMINATIONS 2016 TRIMESTER 2 EXAMINATIONS 2016 TRIMESTER 2 CGRA 151 INTRODUCTION TO COMPUTER GRAPHICS Time Allowed: TWO HOURS CLOSED BOOK Permitted materials: Silent non-programmable calculators or silent programmable calculators

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

CHAOS Chaos Chaos Iterate

CHAOS Chaos Chaos Iterate CHAOS Chaos is a program that explores data analysis. A sequence of points is created which can be analyzed via one of the following five modes: 1. Time Series Mode, which plots a time series graph, that

More information

OffPlot::"plnr"; OffGraphics::"gptn"; OffParametricPlot3D::"plld" Needs"Graphics`Arrow`" Needs"VisualLA`"

OffPlot::plnr; OffGraphics::gptn; OffParametricPlot3D::plld NeedsGraphics`Arrow` NeedsVisualLA` Printed from the Mathematica Help Browser of.: Transformation of Functions In this section, we will explore three types of transformations:.) Shifting.) Reflections (or flips).) Stretches and compressions

More information

Curves Dr Richard Kenderdine

Curves Dr Richard Kenderdine Curves Dr Richard Kenderdine Kenderdine Maths Tutoring 1 December 01 This note shows some interesting curves not usually encountered. Most of the examples exist as families that can be altered by changing

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

3D graphics, raster and colors CS312 Fall 2010

3D graphics, raster and colors CS312 Fall 2010 Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

10.1 Prisms and Pyramids

10.1 Prisms and Pyramids AreasandVolumesofprismsandpyramids20052006.nb 0. Prisms and Pyramids We have already learned to calculate the areas of plane figures. In this chapter we will be calculating the surface areas and volumes

More information

Rasterization, or What is glbegin(gl_lines) really doing?

Rasterization, or What is glbegin(gl_lines) really doing? Rasterization, or What is glbegin(gl_lines) really doing? Course web page: http://goo.gl/eb3aa February 23, 2012 Lecture 4 Outline Rasterizing lines DDA/parametric algorithm Midpoint/Bresenham s algorithm

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information