A High-performance Drop-in GPU BLAS Library to Accelerate Existing Applications. Steve Rennich, Nvidia Developer Technology

Size: px
Start display at page:

Download "A High-performance Drop-in GPU BLAS Library to Accelerate Existing Applications. Steve Rennich, Nvidia Developer Technology"

Transcription

1 A High-performance Drop-in GPU BLAS Library to Accelerate Existing Applications Steve Rennich, Nvidia Developer Technology

2 Preliminaries Start EC2 lab instance Create account / sign in to the EC2 / qwiklab nvidia.qwiklab.com Select Nvidia Workshop -Santa Clara

3 Preliminaries Start EC2 lab instance Select Start Lab button for this workshop This means lab is running (don t press anything) Connect using ec compute-1.amazonaws.com

4 Preliminaries Connect to EC2 instance Use Nomachine NX OpenNX (mac) (remote desktop) (ssh to IP# ) configure Host: configure desktop: xterm user: gpudev1 pass: GTC2013! accept RSA key should bring up a terminal tutorial materials are at:

5 Source setup cd ~ source gpudev1/ex_setup copy Exercise source to /run and adjust permissions cd /run/gpudev1

6 Problem GPU provides large computational resource Many apps could benefit, but have not been ported Too many apps Source not available Would be nice if there was an easy way to allow more apps to benefit from GPU acceleration

7 Solution Many apps use libraries with standard interfaces BLAS, FFTW, LAPACK, Intercept standard calls and route to GPU Only when appropriate Without modifying application Minimal programming use LD_PRELOAD Obtain high performance

8 Workshop Learn about LD_PRELOAD library manipulation Nvidia cublas library (DGEMM) Create a drop-in library to intercept all calls to BLAS DGEMM and demonstrate its performance in GNU Octave Just enough to tie things together

9 Workshop Ex 1 Baseline performance Ex 2 Send all DGEMM calls to GPU Ex 3 Send appropriate calls to GPU Ex 4 Better performance using tiles & concurrency Ex 5 Can be applied to any application

10 Exercises Materials in /run/gpudev1/dropingpublas/ex*_ Exercise directories contain EXERCISE An ascii description of the Exercise dropingpublas.c The code to modify / build buildscript How to build the code matmul.m GNU Octave matrix multiplication script Ex#_runscript Executable script

11 Objective Create a GPU DGEMM library that Is always beneficial Leverages the computational power of the GPU Handles arbitrarily large matrices Can be applied to existing applications Demonstrate the use and performance of this library with GNU Octave

12 Workshop Red Cup / Blue Cup Display Red Cup to get expert help CHEAT! Refer to solution Help each other Work ahead / skip exercises Experiment

13 GNU Octave / test script General purpose matrixmath package software/octave/ general utility large uses BLAS complex code would benefit from GPU acceleration matmul.m for n = [2, 4, 8, 16, 4096 ] # Initialize the matrices with sample data a = ones(n,n); b = ones(n,n); # Record the start time tstart = time; # Perform the multiplication c = a * b; # Record the end time tend = time; # Compute and output performance endfor

14 LD_PRELOAD Loaded before any other libraries Will replace any subsequent libraries with same signature man ld.so A list of additional, user-specified, ELF shared libraries to be loaded before all others. This can be used to selectively override functions in shared libraries. OpenBLAS Tuned BLAS libs for CPU (for comparison)

15 Ex 1 Baseline Performance /run/gpudev1/dropingpublas/ex1_baseline/ EC2 nodes: X5570 -> 94 GF/s Ex1_runscript bash script that will run the exercise Exercise: Use Ex1_runscript to measure base performance Modify Ex1_runscript with LD_PRELOAD to use DGEMM from /run/gpudev1/lib/libopenblas.so Measure performance with OpenBLAS

16 Ex 1 - Baseline GF/s DropinCuBLAS OpenBLAS Matrix Dimension

17 Ex 2 Simple GPU Replacement /run/gpudev1/dropingpublas/ex2_simple libdigpublas.so : cublas DGEMM copy A, B, C to GPU compute C=alphaAB+betaC on GPU copy C back to hos build using source buildscript Use LD_PRELOAD to send all DGEMM calls to the new library Exercise Use LD_PRELOAD=/run/gpudev1/DropinGpuBlas/Ex2_DropinSimple/libdigpublas.so How fast is the simple GPU DGEMM library? Is it always faster than OpenBLAS?

18 Ex 2 Simple GPU Replacement x GF/s DropinCuBLAS OpenBLAS 50 0 slower for small dimension Matrix Dimension fails for large dimension

19 Ex 2 Simple GPU Replacement Better peak performance 250 GF/s vs. 85 GF/s (2.9x) Suffers from Slower for small matrices Doesn t work for large matrices We d like to avoid these issues

20 Ex 3 Best of Both CPU and GPU Use GPU or CPU when appropriate Send small matrices to CPU Send matrices > 3GB to CPU Explicitly define host library dlopen( /run/gpudev1/lib/libopenblas.so, ) dlsym(, dgemm_ ) Exercise Properly load host library Choose appropriate conditionals for sending DGEMM to GPU Verify that this provides a robust solution

21 Ex 3 Best of Both x Always best GF/s OpenBLAS DropinBoth Matrix Dimension

22 Ex 3 Best of Both CPU and GPU Best of both CPU and GPU Good performance for small matrices Leverages GPU when appropriate Reverts to CPU when matrices are too large to fit on GPU No reason not to use this by default Doesn t achieve peak GPU performance capability Doesn t accelerate large matrices

23 Ex 4 Tiled DGEMM on GPU Tiling only part of the matrix is on the GPU at any one time REMOVES LIMIT ON MATRIX SIZE Leverages concurrency on the GPU HIDES TRANSFERS BEHIND COMPUTE Simple tiling algorithm

24 Ex4 - Tiled DGEMM on GPU CPU GPU 1,1 1,2 1,3 1,4 2,1 B H2D 1,3 1,1 1,3 Only need space for 7 tiles on GPU! 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 Kernel 1,2 += 1,1 * 1,2 run concurrently 2,1 A 2,1 C D2H 1,1 With suitably large tiles communication is hidden!

25 Ex 4 Tiled DGEMM on GPU Exercise Find appropriate tile sizes for maximum performance Note the amount of device memory this uses Optional Profile matmul by prefixing octave with nvprof o exercise4.nvvp Visualize timeline using nvvp

26 Ex 4 Tiled DGEMM on GPU x GF/s OpenBLAS DropinBoth DropinTiled Matrix Dimension

27 Ex 4 Tiled DGEMM on GPU Tiling provides peak performance 300 GF/s 3.5x Tiling permits multiplication of arbitrarily large matrices GPU is accelerates the most demanding problems Small matrices are still sent to the GPU

28 Ex 5 Use Drop-in library with Other Apps Many other applications use DGEMM (BLAS) Scilab Freemat Exercise Use LD_PRELOAD to perform matrix-multiplication in Scilab and verify it has been accelerated on the GPU Experiment with matrix sizes

29 Ex 5 Use Drop-in library with Other Apps 2048 square matrix multiplication using Scilab achieves: 10 GF/s using OpenBLAS 35 GF/s using DropinGpuBlas Once the drop-in library is written accelerating other apps is simple

30 Performance Note Performance plots have represented EC2 & Fermi SandyBridge and Kepler performance is quite improved 1200 GF/s x OpenBlas DropinBoth DropinTiled core 3.2 GHz Matrix Dimension K20C

31 Summary If codes use standard libraries, which are amenable to GPU acceleration They can be easily accelerated on the GPU Access to source is not necessary Shown here with DGEMM, could apply to BLAS3, FFTW, Lapack, etc. Substantial optimization / refinement still possible multi-gpu, hybrid computing This is not meant to replace source porting That is still the way to achieve optimal performance We hope this helps you get more out of your GPU!

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

A Multi-Tiered Optimization Framework for Heterogeneous Computing

A Multi-Tiered Optimization Framework for Heterogeneous Computing A Multi-Tiered Optimization Framework for Heterogeneous Computing IEEE HPEC 2014 Alan George Professor of ECE University of Florida Herman Lam Assoc. Professor of ECE University of Florida Andrew Milluzzi

More information

GPU LIBRARY ADVISOR. DA _v8.0 September Application Note

GPU LIBRARY ADVISOR. DA _v8.0 September Application Note GPU LIBRARY ADVISOR DA-06762-001_v8.0 September 2016 Application Note TABLE OF CONTENTS Chapter 1. Overview... 1 Chapter 2. Usage... 2 DA-06762-001_v8.0 ii Chapter 1. OVERVIEW The NVIDIA is a cross-platform

More information

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca

Distributed Dense Linear Algebra on Heterogeneous Architectures. George Bosilca Distributed Dense Linear Algebra on Heterogeneous Architectures George Bosilca bosilca@eecs.utk.edu Centraro, Italy June 2010 Factors that Necessitate to Redesign of Our Software» Steepness of the ascent

More information

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Stan Tomov Innovative Computing Laboratory University of Tennessee, Knoxville OLCF Seminar Series, ORNL June 16, 2010

More information

Adrian Tate XK6 / openacc workshop Manno, Mar

Adrian Tate XK6 / openacc workshop Manno, Mar Adrian Tate XK6 / openacc workshop Manno, Mar6-7 2012 1 Overview & Philosophy Two modes of usage Contents Present contents Upcoming releases Optimization of libsci_acc Autotuning Adaptation Asynchronous

More information

Quantum ESPRESSO on GPU accelerated systems

Quantum ESPRESSO on GPU accelerated systems Quantum ESPRESSO on GPU accelerated systems Massimiliano Fatica, Everett Phillips, Josh Romero - NVIDIA Filippo Spiga - University of Cambridge/ARM (UK) MaX International Conference, Trieste, Italy, January

More information

MAGMA. Matrix Algebra on GPU and Multicore Architectures

MAGMA. Matrix Algebra on GPU and Multicore Architectures MAGMA Matrix Algebra on GPU and Multicore Architectures Innovative Computing Laboratory Electrical Engineering and Computer Science University of Tennessee Piotr Luszczek (presenter) web.eecs.utk.edu/~luszczek/conf/

More information

Supporting Data Parallelism in Matcloud: Final Report

Supporting Data Parallelism in Matcloud: Final Report Supporting Data Parallelism in Matcloud: Final Report Yongpeng Zhang, Xing Wu 1 Overview Matcloud is an on-line service to run Matlab-like script on client s web browser. Internally it is accelerated by

More information

NEW ADVANCES IN GPU LINEAR ALGEBRA

NEW ADVANCES IN GPU LINEAR ALGEBRA GTC 2012: NEW ADVANCES IN GPU LINEAR ALGEBRA Kyle Spagnoli EM Photonics 5/16/2012 QUICK ABOUT US» HPC/GPU Consulting Firm» Specializations in:» Electromagnetics» Image Processing» Fluid Dynamics» Linear

More information

An Introduc+on to OpenACC Part II

An Introduc+on to OpenACC Part II An Introduc+on to OpenACC Part II Wei Feinstein HPC User Services@LSU LONI Parallel Programming Workshop 2015 Louisiana State University 4 th HPC Parallel Programming Workshop An Introduc+on to OpenACC-

More information

A GPU Sparse Direct Solver for AX=B

A GPU Sparse Direct Solver for AX=B 1 / 25 A GPU Sparse Direct Solver for AX=B Jonathan Hogg, Evgueni Ovtchinnikov, Jennifer Scott* STFC Rutherford Appleton Laboratory 26 March 2014 GPU Technology Conference San Jose, California * Thanks

More information

GPU ACCELERATION OF CHOLMOD: BATCHING, HYBRID AND MULTI-GPU

GPU ACCELERATION OF CHOLMOD: BATCHING, HYBRID AND MULTI-GPU April 4-7, 2016 Silicon Valley GPU ACCELERATION OF CHOLMOD: BATCHING, HYBRID AND MULTI-GPU Steve Rennich, Darko Stosic, Tim Davis, April 6, 2016 OBJECTIVE Direct sparse methods are among the most widely

More information

OpenACC Course. Office Hour #2 Q&A

OpenACC Course. Office Hour #2 Q&A OpenACC Course Office Hour #2 Q&A Q1: How many threads does each GPU core have? A: GPU cores execute arithmetic instructions. Each core can execute one single precision floating point instruction per cycle

More information

NVBLAS LIBRARY. DU _v6.0 February User Guide

NVBLAS LIBRARY. DU _v6.0 February User Guide NVBLAS LIBRARY DU-06702-001_v6.0 February 2014 User Guide DU-06702-001_v6.0 2 Chapter 1. INTRODUCTION The is a GPU-accelerated Libary that implements BLAS (Basic Linear Algebra Subprograms). It can accelerate

More information

AperTO - Archivio Istituzionale Open Access dell'università di Torino

AperTO - Archivio Istituzionale Open Access dell'università di Torino AperTO - Archivio Istituzionale Open Access dell'università di Torino An hybrid linear algebra framework for engineering This is the author's manuscript Original Citation: An hybrid linear algebra framework

More information

Cray Scientific Libraries. Overview

Cray Scientific Libraries. Overview Cray Scientific Libraries Overview What are libraries for? Building blocks for writing scientific applications Historically allowed the first forms of code re-use Later became ways of running optimized

More information

Comparing Hybrid CPU-GPU and Native GPU-only Acceleration for Linear Algebra. Mark Gates, Stan Tomov, Azzam Haidar SIAM LA Oct 29, 2015

Comparing Hybrid CPU-GPU and Native GPU-only Acceleration for Linear Algebra. Mark Gates, Stan Tomov, Azzam Haidar SIAM LA Oct 29, 2015 Comparing Hybrid CPU-GPU and Native GPU-only Acceleration for Linear Algebra Mark Gates, Stan Tomov, Azzam Haidar SIAM LA Oct 29, 2015 Overview Dense linear algebra algorithms Hybrid CPU GPU implementation

More information

Hierarchical DAG Scheduling for Hybrid Distributed Systems

Hierarchical DAG Scheduling for Hybrid Distributed Systems June 16, 2015 Hierarchical DAG Scheduling for Hybrid Distributed Systems Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, Jack Dongarra IPDPS 2015 Outline! Introduction & Motivation! Hierarchical

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville COSC 594 Lecture Notes March 22, 2017 1/20 Outline Introduction - Hardware

More information

Linear Algebra libraries in Debian. DebConf 10 New York 05/08/2010 Sylvestre

Linear Algebra libraries in Debian. DebConf 10 New York 05/08/2010 Sylvestre Linear Algebra libraries in Debian Who I am? Core developer of Scilab (daily job) Debian Developer Involved in Debian mainly in Science and Java aspects sylvestre.ledru@scilab.org / sylvestre@debian.org

More information

Portable and Productive Performance on Hybrid Systems with libsci_acc Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc.

Portable and Productive Performance on Hybrid Systems with libsci_acc Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc. Portable and Productive Performance on Hybrid Systems with libsci_acc Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc. 1 What is Cray Libsci_acc? Provide basic scientific

More information

Porting Scientific Research Codes to GPUs with CUDA Fortran: Incompressible Fluid Dynamics using the Immersed Boundary Method

Porting Scientific Research Codes to GPUs with CUDA Fortran: Incompressible Fluid Dynamics using the Immersed Boundary Method Porting Scientific Research Codes to GPUs with CUDA Fortran: Incompressible Fluid Dynamics using the Immersed Boundary Method Josh Romero, Massimiliano Fatica - NVIDIA Vamsi Spandan, Roberto Verzicco -

More information

Technical Report Performance Analysis of CULA on different NVIDIA GPU Architectures. Prateek Gupta

Technical Report Performance Analysis of CULA on different NVIDIA GPU Architectures. Prateek Gupta Technical Report 2014-02 Performance Analysis of CULA on different NVIDIA GPU Architectures Prateek Gupta May 20, 2014 1 Spring 2014: Performance Analysis of CULA on different NVIDIA GPU Architectures

More information

Hands-on CUDA Optimization. CUDA Workshop

Hands-on CUDA Optimization. CUDA Workshop Hands-on CUDA Optimization CUDA Workshop Exercise Today we have a progressive exercise The exercise is broken into 5 steps If you get lost you can always catch up by grabbing the corresponding directory

More information

FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms

FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms FatMan vs. LittleBoy: Scaling up Linear Algebraic Operations in Scale-out Data Platforms Luna Xu (Virginia Tech) Seung-Hwan Lim (ORNL) Ali R. Butt (Virginia Tech) Sreenivas R. Sukumar (ORNL) Ramakrishnan

More information

MAGMA: a New Generation

MAGMA: a New Generation 1.3 MAGMA: a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Jack Dongarra T. Dong, M. Gates, A. Haidar, S. Tomov, and I. Yamazaki University of Tennessee, Knoxville Release

More information

RAPID MULTI-GPU PROGRAMMING WITH CUDA LIBRARIES. Nikolay Markovskiy

RAPID MULTI-GPU PROGRAMMING WITH CUDA LIBRARIES. Nikolay Markovskiy RAPID MULTI-GPU PROGRAMMING WITH CUDA LIBRARIES Nikolay Markovskiy CUDA 6 cublas cufft 2. cublas-xt 3. cufft-xt 1. NVBLAS WHAT IS NVBLAS? Drop-in replacement of BLAS Built on top of cublas-xt BLAS Level

More information

NEW FEATURES IN CUDA 6 MAKE GPU ACCELERATION EASIER MARK HARRIS

NEW FEATURES IN CUDA 6 MAKE GPU ACCELERATION EASIER MARK HARRIS NEW FEATURES IN CUDA 6 MAKE GPU ACCELERATION EASIER MARK HARRIS 1 Unified Memory CUDA 6 2 3 XT and Drop-in Libraries GPUDirect RDMA in MPI 4 Developer Tools 1 Unified Memory CUDA 6 2 3 XT and Drop-in Libraries

More information

OMPlab on Sun - Lab Programs

OMPlab on Sun - Lab Programs IWOMP 2005 - OMPlab on Sun 1/8 OMPlab on Sun - Lab Programs Introduction We have prepared a set of lab programs for you. We have an exercise to implement OpenMP in a simple algorithm and also various programs

More information

Profiling and Parallelizing with the OpenACC Toolkit OpenACC Course: Lecture 2 October 15, 2015

Profiling and Parallelizing with the OpenACC Toolkit OpenACC Course: Lecture 2 October 15, 2015 Profiling and Parallelizing with the OpenACC Toolkit OpenACC Course: Lecture 2 October 15, 2015 Oct 1: Introduction to OpenACC Oct 6: Office Hours Oct 15: Profiling and Parallelizing with the OpenACC Toolkit

More information

MAGMA. LAPACK for GPUs. Stan Tomov Research Director Innovative Computing Laboratory Department of Computer Science University of Tennessee, Knoxville

MAGMA. LAPACK for GPUs. Stan Tomov Research Director Innovative Computing Laboratory Department of Computer Science University of Tennessee, Knoxville MAGMA LAPACK for GPUs Stan Tomov Research Director Innovative Computing Laboratory Department of Computer Science University of Tennessee, Knoxville Keeneland GPU Tutorial 2011, Atlanta, GA April 14-15,

More information

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli

High performance 2D Discrete Fourier Transform on Heterogeneous Platforms. Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli High performance 2D Discrete Fourier Transform on Heterogeneous Platforms Shrenik Lad, IIIT Hyderabad Advisor : Dr. Kishore Kothapalli Motivation Fourier Transform widely used in Physics, Astronomy, Engineering

More information

Our Workshop Environment

Our Workshop Environment Our Workshop Environment John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2015 Our Environment Today Your laptops or workstations: only used for portal access Blue Waters

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

Using the computational resources at the GACRC

Using the computational resources at the GACRC An introduction to zcluster Georgia Advanced Computing Resource Center (GACRC) University of Georgia Dr. Landau s PHYS4601/6601 course - Spring 2017 What is GACRC? Georgia Advanced Computing Resource Center

More information

Approaches to acceleration: GPUs vs Intel MIC. Fabio AFFINITO SCAI department

Approaches to acceleration: GPUs vs Intel MIC. Fabio AFFINITO SCAI department Approaches to acceleration: GPUs vs Intel MIC Fabio AFFINITO SCAI department Single core Multi core Many core GPU Intel MIC 61 cores 512bit-SIMD units from http://www.karlrupp.net/ from http://www.karlrupp.net/

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

Part I. UNIX Workshop Series: Quick-Start

Part I. UNIX Workshop Series: Quick-Start Part I UNIX Workshop Series: Quick-Start Objectives Overview Connecting with ssh Command Window Anatomy Command Structure Command Examples Getting Help Files and Directories Wildcards, Redirection and

More information

SCALING DGEMM TO MULTIPLE CAYMAN GPUS AND INTERLAGOS MANY-CORE CPUS FOR HPL

SCALING DGEMM TO MULTIPLE CAYMAN GPUS AND INTERLAGOS MANY-CORE CPUS FOR HPL SCALING DGEMM TO MULTIPLE CAYMAN GPUS AND INTERLAGOS MANY-CORE CPUS FOR HPL Matthias Bach and David Rohr Frankfurt Institute for Advanced Studies Goethe University of Frankfurt I: INTRODUCTION 3 Scaling

More information

A quick Matlab tutorial

A quick Matlab tutorial A quick Matlab tutorial Michael Robinson 1 Introduction In this course, we will be using MATLAB for computer-based matrix computations. MATLAB is a programming language/environment that provides easy access

More information

Solving Dense Linear Systems on Graphics Processors

Solving Dense Linear Systems on Graphics Processors Solving Dense Linear Systems on Graphics Processors Sergio Barrachina Maribel Castillo Francisco Igual Rafael Mayo Enrique S. Quintana-Ortí High Performance Computing & Architectures Group Universidad

More information

GPU COMPUTING WITH MSC NASTRAN 2013

GPU COMPUTING WITH MSC NASTRAN 2013 SESSION TITLE WILL BE COMPLETED BY MSC SOFTWARE GPU COMPUTING WITH MSC NASTRAN 2013 Srinivas Kodiyalam, NVIDIA, Santa Clara, USA THEME Accelerated computing with GPUs SUMMARY Current trends in HPC (High

More information

Some notes on efficient computing and high performance computing environments

Some notes on efficient computing and high performance computing environments Some notes on efficient computing and high performance computing environments Abhi Datta 1, Sudipto Banerjee 2 and Andrew O. Finley 3 July 31, 2017 1 Department of Biostatistics, Bloomberg School of Public

More information

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018

S WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS. Jakob Progsch, Mathias Wagner GTC 2018 S8630 - WHAT THE PROFILER IS TELLING YOU: OPTIMIZING GPU KERNELS Jakob Progsch, Mathias Wagner GTC 2018 1. Know your hardware BEFORE YOU START What are the target machines, how many nodes? Machine-specific

More information

Accelerating Data Centers Using NVMe and CUDA

Accelerating Data Centers Using NVMe and CUDA Accelerating Data Centers Using NVMe and CUDA Stephen Bates, PhD Technical Director, CSTO, PMC-Sierra Santa Clara, CA 1 Project Donard @ PMC-Sierra Donard is a PMC CTO project that leverages NVM Express

More information

Welcome to our walkthrough of Setting up an AWS EC2 Instance

Welcome to our walkthrough of Setting up an AWS EC2 Instance Welcome to our walkthrough of Setting up an AWS EC2 Instance What is an EC2 Instance: An EC2 Instance is a virtual server in Amazon s Elastic Compute Cloud EC2 for running applications on AWS infrastructure.

More information

Profiling & Tuning Applica1ons. CUDA Course July István Reguly

Profiling & Tuning Applica1ons. CUDA Course July István Reguly Profiling & Tuning Applica1ons CUDA Course July 21-25 István Reguly Introduc1on Why is my applica1on running slow? Work it out on paper Instrument code Profile it NVIDIA Visual Profiler Works with CUDA,

More information

Accelerating GPU kernels for dense linear algebra

Accelerating GPU kernels for dense linear algebra Accelerating GPU kernels for dense linear algebra Rajib Nath, Stanimire Tomov, and Jack Dongarra Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville {rnath1, tomov,

More information

Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments

Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments Batch Linear Algebra for GPU-Accelerated High Performance Computing Environments Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra SIAM Conference on Computational Science and Engineering

More information

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield

NVIDIA GTX200: TeraFLOPS Visual Computing. August 26, 2008 John Tynefield NVIDIA GTX200: TeraFLOPS Visual Computing August 26, 2008 John Tynefield 2 Outline Execution Model Architecture Demo 3 Execution Model 4 Software Architecture Applications DX10 OpenGL OpenCL CUDA C Host

More information

Center for Scalable Application Development Software (CScADS): Automatic Performance Tuning Workshop

Center for Scalable Application Development Software (CScADS): Automatic Performance Tuning Workshop Center for Scalable Application Development Software (CScADS): Automatic Performance Tuning Workshop http://cscads.rice.edu/ Discussion and Feedback CScADS Autotuning 07 Top Priority Questions for Discussion

More information

CS 179: Lecture 10. Introduction to cublas

CS 179: Lecture 10. Introduction to cublas CS 179: Lecture 10 Introduction to cublas Table of contents, you are here. Welcome to week 4, this is new material from here on out so please ask questions and help the TAs to improve the lectures and

More information

Cray Scientific Libraries: Overview and Performance. Cray XE6 Performance Workshop University of Reading Nov 2012

Cray Scientific Libraries: Overview and Performance. Cray XE6 Performance Workshop University of Reading Nov 2012 Cray Scientific Libraries: Overview and Performance Cray XE6 Performance Workshop University of Reading 20-22 Nov 2012 Contents LibSci overview and usage BFRAME / CrayBLAS LAPACK ScaLAPACK FFTW / CRAFFT

More information

Device Memories and Matrix Multiplication

Device Memories and Matrix Multiplication Device Memories and Matrix Multiplication 1 Device Memories global, constant, and shared memories CUDA variable type qualifiers 2 Matrix Multiplication an application of tiling runningmatrixmul in the

More information

Fast and reliable linear system solutions on new parallel architectures

Fast and reliable linear system solutions on new parallel architectures Fast and reliable linear system solutions on new parallel architectures Marc Baboulin Université Paris-Sud Chaire Inria Saclay Île-de-France Séminaire Aristote - Ecole Polytechnique 15 mai 2013 Marc Baboulin

More information

Introduction. Overview of 201 Lab and Linux Tutorials. Stef Nychka. September 10, Department of Computing Science University of Alberta

Introduction. Overview of 201 Lab and Linux Tutorials. Stef Nychka. September 10, Department of Computing Science University of Alberta 1 / 12 Introduction Overview of 201 Lab and Linux Tutorials Stef Nychka Department of Computing Science University of Alberta September 10, 2007 2 / 12 Can you Log In? Should be same login and password

More information

Technology for a better society. hetcomp.com

Technology for a better society. hetcomp.com Technology for a better society hetcomp.com 1 J. Seland, C. Dyken, T. R. Hagen, A. R. Brodtkorb, J. Hjelmervik,E Bjønnes GPU Computing USIT Course Week 16th November 2011 hetcomp.com 2 9:30 10:15 Introduction

More information

Introduction to CUDA Programming

Introduction to CUDA Programming Introduction to CUDA Programming Steve Lantz Cornell University Center for Advanced Computing October 30, 2013 Based on materials developed by CAC and TACC Outline Motivation for GPUs and CUDA Overview

More information

Linux Operating System Environment Computadors Grau en Ciència i Enginyeria de Dades Q2

Linux Operating System Environment Computadors Grau en Ciència i Enginyeria de Dades Q2 Linux Operating System Environment Computadors Grau en Ciència i Enginyeria de Dades 2017-2018 Q2 Facultat d Informàtica de Barcelona This first lab session is focused on getting experience in working

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

Speed up a Machine-Learning-based Image Super-Resolution Algorithm on GPGPU

Speed up a Machine-Learning-based Image Super-Resolution Algorithm on GPGPU Speed up a Machine-Learning-based Image Super-Resolution Algorithm on GPGPU Ke Ma 1, and Yao Song 2 1 Department of Computer Sciences 2 Department of Electrical and Computer Engineering University of Wisconsin-Madison

More information

vs. GPU Performance Without the Answer University of Virginia Computer Engineering g Labs

vs. GPU Performance Without the Answer University of Virginia Computer Engineering g Labs Where is the Data? Why you Cannot Debate CPU vs. GPU Performance Without the Answer Chris Gregg and Kim Hazelwood University of Virginia Computer Engineering g Labs 1 GPUs and Data Transfer GPU computing

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v7.0 March 2015 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Design of a Virtualization Framework to Enable GPU Sharing in Cluster Environments

Design of a Virtualization Framework to Enable GPU Sharing in Cluster Environments Design of a Virtualization Framework to Enable GPU Sharing in Cluster Environments Michela Becchi University of Missouri nps.missouri.edu GPUs in Clusters & Clouds Many-core GPUs are used in supercomputers

More information

GPU Linear algebra extensions for GNU/Octave

GPU Linear algebra extensions for GNU/Octave Journal of Physics: Conference Series GPU Linear algebra extensions for GNU/Octave To cite this article: L B Bosi et al 2012 J. Phys.: Conf. Ser. 368 012062 View the article online for updates and enhancements.

More information

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core

Bindel, Fall 2011 Applications of Parallel Computers (CS 5220) Tuning on a single core Tuning on a single core 1 From models to practice In lecture 2, we discussed features such as instruction-level parallelism and cache hierarchies that we need to understand in order to have a reasonable

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Chap2: Operating-System Structures

Chap2: Operating-System Structures Chap2: Operating-System Structures Objectives: services OS provides to users, processes, and other systems structuring an operating system how operating systems are designed and customized and how they

More information

Profiling GPU Code. Jeremy Appleyard, February 2016

Profiling GPU Code. Jeremy Appleyard, February 2016 Profiling GPU Code Jeremy Appleyard, February 2016 What is Profiling? Measuring Performance Measuring application performance Usually the aim is to reduce runtime Simple profiling: How long does an operation

More information

A GPU based brute force de-dispersion algorithm for LOFAR

A GPU based brute force de-dispersion algorithm for LOFAR A GPU based brute force de-dispersion algorithm for LOFAR W. Armour, M. Giles, A. Karastergiou and C. Williams. University of Oxford. 8 th May 2012 1 GPUs Why use GPUs? Latest Kepler/Fermi based cards

More information

OPS235: Week 1. Installing Linux ( Lab1: Investigations 1-4)

OPS235: Week 1. Installing Linux ( Lab1: Investigations 1-4) OPS235: Week 1 Installing Linux ( Lab1: Investigations 1-4) 1 Agenda: Lab 1 Required materials Thinking Ahead (Tips / Warnings): Importance of Command Line LVM / Host vs Virtual Machines Importance of

More information

Diogenes: A tool for exposing Hidden GPU Performance Opportunities

Diogenes: A tool for exposing Hidden GPU Performance Opportunities Diogenes: A tool for exposing Hidden GPU Performance Opportunities Benjamin Welton and Barton P. Miller Computer Sciences Department University of Wisconsin Madison 2018 Performance Tools Workshop Solitude,

More information

Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design

Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design Piz Daint: Application driven co-design of a supercomputer based on Cray s adaptive system design Sadaf Alam & Thomas Schulthess CSCS & ETHzürich CUG 2014 * Timelines & releases are not precise Top 500

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

Lab 4: Hybrid Acoustic Models

Lab 4: Hybrid Acoustic Models v. 1.0 Lab 4: Hybrid Acoustic Models University of Edinburgh March 13, 2017 This is the final lab, in which we will have a look at training hybrid neural network acoustic models using a frame-level cross-entropy

More information

Short Read Sequencing Analysis Workshop

Short Read Sequencing Analysis Workshop Short Read Sequencing Analysis Workshop Day 2 Learning the Linux Compute Environment In-class Slides Matt Hynes-Grace Manager of IT Operations, BioFrontiers Institute Review of Day 2 Videos Video 1 Introduction

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

HPC Fall 2007 Project 1 Fast Matrix Multiply

HPC Fall 2007 Project 1 Fast Matrix Multiply HPC Fall 2007 Project 1 Fast Matrix Multiply Robert van Engelen Due date: October 11, 2007 1 Introduction 1.1 Account and Login For this assignment you need an SCS account. The account gives you access

More information

Working with Apple Loops

Working with Apple Loops 7 Working with Apple Loops So you want to create a complete song, but you don t know how to play every instrument? An Apple Loop is a short piece of music that you can add to your song. It can be either

More information

CSE 560M Computer Systems Architecture I

CSE 560M Computer Systems Architecture I CSE 560M Computer Systems Architecture I Assignment 1, due Friday, Oct. 19, 2018 This goal of this lab assignment is to help familiarize you with simulating a system using gem5 by simulating two programs

More information

Parsing in Parallel on Multiple Cores and GPUs

Parsing in Parallel on Multiple Cores and GPUs 1/28 Parsing in Parallel on Multiple Cores and GPUs Mark Johnson Centre for Language Sciences and Department of Computing Macquarie University ALTA workshop December 2011 Why parse in parallel? 2/28 The

More information

Lecture 8: GPU Programming. CSE599G1: Spring 2017

Lecture 8: GPU Programming. CSE599G1: Spring 2017 Lecture 8: GPU Programming CSE599G1: Spring 2017 Announcements Project proposal due on Thursday (4/28) 5pm. Assignment 2 will be out today, due in two weeks. Implement GPU kernels and use cublas library

More information

Practical Introduction to CUDA and GPU

Practical Introduction to CUDA and GPU Practical Introduction to CUDA and GPU Charlie Tang Centre for Theoretical Neuroscience October 9, 2009 Overview CUDA - stands for Compute Unified Device Architecture Introduced Nov. 2006, a parallel computing

More information

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction Francesco Rossi University of Bologna and INFN * Using this terminology since you ve already heard of SIMD and SPMD at this school

More information

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement

Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Exploiting Multiple GPUs in Sparse QR: Regular Numerics with Irregular Data Movement Tim Davis (Texas A&M University) with Sanjay Ranka, Mohamed Gadou (University of Florida) Nuri Yeralan (Microsoft) NVIDIA

More information

SemCache++: Semantics-Aware Caching for Efficient Multi-GPU Offloading

SemCache++: Semantics-Aware Caching for Efficient Multi-GPU Offloading SemCache++: Semantics-Aware Caching for Efficient Multi-GPU Offloading Nabeel Al-Saber, Milind Kulkarni School of Electrical and Computer Engineering Purdue University West Lafayette, IN, USA nalsaber,

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

*Yuta SAWA and Reiji SUDA The University of Tokyo

*Yuta SAWA and Reiji SUDA The University of Tokyo Auto Tuning Method for Deciding Block Size Parameters in Dynamically Load-Balanced BLAS *Yuta SAWA and Reiji SUDA The University of Tokyo iwapt 29 October 1-2 *Now in Central Research Laboratory, Hitachi,

More information

General Purpose GPU Computing in Partial Wave Analysis

General Purpose GPU Computing in Partial Wave Analysis JLAB at 12 GeV - INT General Purpose GPU Computing in Partial Wave Analysis Hrayr Matevosyan - NTC, Indiana University November 18/2009 COmputationAL Challenges IN PWA Rapid Increase in Available Data

More information

Workshop on High Performance Computing (HPC08) School of Physics, IPM February 16-21, 2008 HPC tools: an overview

Workshop on High Performance Computing (HPC08) School of Physics, IPM February 16-21, 2008 HPC tools: an overview Workshop on High Performance Computing (HPC08) School of Physics, IPM February 16-21, 2008 HPC tools: an overview Stefano Cozzini CNR/INFM Democritos and SISSA/eLab cozzini@democritos.it Agenda Tools for

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation CUDA Accelerated Linpack on Clusters E. Phillips, NVIDIA Corporation Outline Linpack benchmark CUDA Acceleration Strategy Fermi DGEMM Optimization / Performance Linpack Results Conclusions LINPACK Benchmark

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v6.5 August 2014 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

GPU Clouds IGT Cloud Computing Summit Mordechai Butrashvily, CEO 2009 (c) All rights reserved

GPU Clouds IGT Cloud Computing Summit Mordechai Butrashvily, CEO 2009 (c) All rights reserved GPU Clouds IGT 2009 Cloud Computing Summit Mordechai Butrashvily, CEO moti@hoopoe-cloud.com 02/12/2009 Agenda Introduction to GPU Computing Future GPU architecture GPU on a Cloud: Visualization Computing

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

Kepler Overview Mark Ebersole

Kepler Overview Mark Ebersole Kepler Overview Mark Ebersole TFLOPS TFLOPS 3x Performance in a Single Generation 3.5 3 2.5 2 1.5 1 0.5 0 1.25 1 Single Precision FLOPS (SGEMM) 2.90 TFLOPS.89 TFLOPS.36 TFLOPS Xeon E5-2690 Tesla M2090

More information

GPI, Exercise #1. Part 1

GPI, Exercise #1. Part 1 GPI, Exercise #1 In this exercise you will gain some experience with GPI data and the basic reduction steps. Start by reading the three papers related to GPI s commissioning, first- light and observations

More information

Introduction to CUDA

Introduction to CUDA Introduction to CUDA Oliver Meister November 7 th 2012 Tutorial Parallel Programming and High Performance Computing, November 7 th 2012 1 References D. Kirk, W. Hwu: Programming Massively Parallel Processors,

More information