Markov Chain Analysis Example

Size: px
Start display at page:

Download "Markov Chain Analysis Example"

Transcription

1 Markov Chain Analysis Example Example: single server with a queue holding up to requests 0 denotes the arrival rate denotes the service rate Steady-state analysis: mapping of Markov chain on a set of linear equations state : p = p state : p + p = p + p state : p0 + p = p + p steady state implies that arrivals = completions state 0: p = p0 normalization equation: p0 + p + p + p = resolution of system of equations to derive state probabilities p0 = / ( + / + ( / ) + ( / ) ) p = ( / ) / ( + / + ( / ) + ( / ) ); p =... derivation of mean values and distribution functions from state probabilities utilization: U = - p0; mean number of jobs in system: N = p + p + p ; blocking probability B; distribution functions for waiting time, response time, etc.

2 Queuing Network Analysis - Example Example: communication system (unbounded queues) prot. stack arrival rate: 5 packets/s = 5 /s = 00 MIps / MI = 50 /s MI prozessor 00 MIps = 0 /s medium Mb phy network 0 Mbps prot. stack = /s,8 MI prozessor 0 MIps Results (assuming exponential service times and arrivals): utilization = (e.g. physical network util. = 8 %) population per station n i = ( mean total population N = i n i =7,9 mean response time T = N/ = 96 msec (Little s law)

3 Discrete-event Simulation Idea: model the relevant events of the system process the events according to their temporal order (similar to the real execution with the exception that simple processing blocks are modeled only) Example: Execution on a -processor system (non-preemptive) / /5 Legend: green: blue: / / 5 / 6 /6 execution time process priority (=low) P P Discussion no assumptions danger of including too many details evaluation is time consuming problems with rare events large set of tools and models available 6

4 Comparision of Methods best case Analysis worst case average Analysis of multiprocessor systems Verification of Real Time requests Modelling of parallel processing (prec. constraints) Process graph no Task graph not really? Schedulability Utiliz.-based no no Resp.-based no no Markov chains no Queuing networks Operational analysis no no no no Simulation no Measurements no

5 Heuristic Search Most heuristics are based on an iterative search comprising the following elements: selection of an initial (intermediate) solution (e.g. a sequence) evaluation of the quality of the intermediate solution check of termination criteria select initial solution select next solution (based on previous solution) search strategy evaluate quality acceptance criteria satisfied y accept solution as best solution so far n termination criteria satisfied y 5

6 Hill-Climbing Discussion simple local optimizations only: algorithm is not able to pass a valley to finally reach a higher peak idea is only applicable to small parts of optimization algorithms but needs to be complemented with other strategies to overcome local optimas 6

7 Random Search also called Monte Carlo algorithm Idea: random selection of the candidates for a change of intermediate solutions or random selection of the solutions (no use of neighborhood) Discussion: simple (no neighborhood relation is needed) not time efficient, especially where the time to evaluate solutions is high sometimes used as a reference algorithm to evaluate and compare the quality of heuristic optimization algorithms idea of randomization is applied to other techniques, e.g. genetic algorithms and simulated annealing 7

8 Simulated Annealing Idea: simulate the annealing process of material: the slow cooling of material leads to a state with minimal energy, i.e. the global optimum Classification: Search strategy random local search Acceptance criteria unconditional acceptance of the selected solution if it represents an improvement over previous solutions otherwise probabilistic acceptance Termination criteria static bound on the number of iterations (cooling process) 8

9 Simulated Annealing Discussion and Variants Discussion: parameter settings for cooling process is essential (but complicated) slow decrease results in long run times fast decrease results in poor solutions discussion whether temperature decrease should be linear or logarithmic straightforward to implement Variants: deterministic acceptance nonlinear cooling (slow cooling in the middle of the process) adaptive cooling based on accepted solutions at a temperature reheating 9

10 Genetic Algorithms Basic Operations crossover mutation

11 Genetic Algorithms Basic Algorithm crossover Replacement and selection rely on some cost function defining the quality of each solution selection population replacement mutation Different replacement strategies, e.g. survival of the fittest General parameters: size of population mutation probability candidate selection strategy (mapping quality on probability) replacement strategy (replace own parents, replace weakest, influence of probability) Application-specific parameters: mapping of problem on appropriate coding handling of invalid solutions in codings Crossover selection is typically random

12 Genetische Algorithmen Minimum Spanning Tree small population results in inbreeding larger population works well with small mutation rate tradeoff between size of population and number of iterations

13 Genetic Algorithms Basic Operations Mutation => crating a new member of the population by changing one member

14 Genetic Algorithms Basic Operations Crossover => crating a new member of the population from two members

15 Genetische Algorithmen Traveling Salesman Problem minimal impact of mutation rate with small population negativ impact of high mutation rate with larger population (increased randomness) impact not quite clear 5

16 Genetic Algorithms Discussion finding an appropriate coding for the binary vectors for the specific application at hand is not intuitive problems are redundant codings, codings that do not represent a valid solution, e.g. coding for a sequencing problem tuning of genetic algorithms may be time consuming parameter settings highly depend on problem specifics suited for parallelization of optimization 6

17 Tabu Search Idea: extension of hill-climbing to avoid being trapped in local optima allow intermediate solutions with lower quality maintain history to avoid running in cycles Classification: Search strategy deterministic local search Acceptance criteria acceptance of best solution in neighborhood which is not tabu Termination criteria static bound on number of iterations or dynamic, e.g. based on quality improvements of solutions 7

18 Tabu Search Algorithm select initial solution select neighborhood set (based on current solution) remove tabu solutions from set increase neigborhood set is empty y n evaluate quality and select best solution from set termination criteria satisfied n update tabu list y The brain of the algorithm is the tabu list that stores and maintains information about the history of the search. In the most simple case a number of previous solutions are stored in the tabu list. More advanced techniques maintain attributes of the solutions rather than the solutions itself 8

19 Tabu Search Organisation of the History The history is maintained by the tabu list Attributes of solutions are a very flexible mean to control the search Example of attributes of a HW/SW partitioning problem with 8 tasks assigned to of different HW entities: (A) change of the value of a task assignment variable (A) move to HW (A) move to SW (A) combined change of some attributes (A5) improvement of the quality of two subsequent solutions over or below a threshold value Aspiration criteria: Under certain conditions tabus may be ignored, e.g. if a tabu solution is the best solution found so far all solutions in a neighborhood are tabu a tabu solution is better than the solution that triggered the respective tabu conditions Intensification checks whether good solutions share some common properties Diversification searches for solution that do not share common properties Update of history information may be recency-based or frequency-based (i.e. depending on the frequency that the attribute has been activated) 9

20 Tabu Search Discussion easy to implement (at least the neighborhood search as such) non-trival tuning of parameters tuning is crucial to avoid cyclic search advantage of use of knowledge, i.e. feedback from the search (evaluation of solutions) to control the search (e.g. for the controlled removal of bottlenecks) 0

21 Heuristic Search Methods Classification Search strategy search area global search (potentially all solutions considered) local search (direct neighbors only stepwise optimization) selection strategy deterministic selection, i.e. according to some deterministic rules random selection from the set of possible solutions probabilistic selection, i.e. based on some probabilistic function history dependence, i.e. the degree to which the selection of the new candidate solution depends on the history of the search no dependence one-step dependence multi-step dependence Acceptance criteria deterministic acceptance, i.e. based on some deterministic function probabilistic acceptance, i.e. influenced by some random factor Termination criteria static, i.e. independent of the actual solutions visited during the search dynamic, i.e. dependent on the search history

22 Heuristic Search Methods Classification Heuristic Search strategy Acceptance criterion Termination criterion Search area Selection strategy History dependence det. prob. stat. dyn. local global det. prob. random none onestep multistep hillclimbing tabu search simulated annealing genetic algorithms random search x x x x x x x x x x x x x x x x x x x x x x x x x x x x

23 Single Pass Approaches The techniques covered so far search through a high number of solutions. Idea underlying single pass approaches: intelligent construction of a single solution (instead of updating and modification of a number of solutions) the solution is constructed by subsequently solving a number of subproblems Discussion: single-pass algorithms are very quick quality of solutions is often small not applicable where lots of constraints are present (which require some kind of backtracking) Important applications of the idea: list scheduling: subsequent selection of a task to be scheduled until the complete schedule has been computed clustering: subsequent merger of nodes/modules until a small number of cluster remains such that each cluster can be assigned a single HW unit

24 Single Pass Approaches Framework derive guidelines for solution construction select subproblem The guidelines are crucial and represent the intelligence of the algorithm decide subproblem based on guidelines possibly recompute or adapt guidelines n final solution constructed y

25 List Scheduling List scheduling: subsequent selection of a task to be scheduled on some processor (or HW entity) operation is similar to a dynamic task scheduler of an operating system assign priorities to the tasks according to some strategy priorisation strategy select executable task with highest priority assign task to a processor according to some strategy assignment strategy n schedule complete? y 5

26 List Scheduling Example () Problem: processors 6 tasks with precedence constraints find schedule with minimal execution time /8 HLFET (highest level first with estimated times) length of the longest (critical) path to the sink node (node 6) Assignment strategy /6 /5 / 5 /5 first fit 6 / Resulting schedule: P P 5 6 Legend: green: red: estimated times levels (priorities)

27 List Scheduling Example () Problem (unchanged): processors 6 tasks with precedence constraints find schedule with minimal execution time / SCFET (smallest co-level first with estimated times) length of the longest (critical) path to the source node (node ) Assignment strategy first fit / /7 /5 5 6 /8 /6 Resulting schedule: P P 5 6 Legend: green: blue: estimated times co-levels (priorities)

28 List Scheduling Example () Problem: processors 6 tasks with precedence constraints find schedule with minimal execution time /8 HLFET (highest level first with estimated times) length of the longest (critical) path to the sink node (node 6) Assignment strategy /6 /5 / 5 /5 first fit 6 / Resulting schedule: P P 5 6 Legend: green: red: estimated times levels (priorities)

29 Clustering - Basics Partitioning of a set of nodes in a given number of subsets n assign each node to a different cluster compute the distance between any pair of clusters select the pair of clusters with the highest affinity merge the clusters termination criteria holds y Application: processor assignment (load balancing minimize interprocess communication) scheduling (minimize critical path) HW/SW partitioning Clustering may be employed as part of the optimization process, i.e. combined with other techniques 9

30 Clustering probabilistic Each node belongs with certain probabilities to different clusters deterministic A node belongs to exactly one cluster or not hierarchical Starts with a distance matrix of each pair of nodes Exact method: always the same result Termination after all nodes belong to one cluster partitioning Starts with given number of K clusters (independent from nodes) Results depend on the chosen initial set of clusters Termination after a given number of iterations 0

31 Hierarchical Clustering Stepwise reduction of the number of clusters Determine the distance between each pair of nodes Select the smallest distance Replace the selected pair in distance matrix by a cluster representative Recompute distance matrix Dendrogramm n All nodes in one cluster y Algorithm is kind of subsequent merger of nearest neighbors (nodes/clusters)

32 Hierarchical Clustering Dendrogramm Algorithm is kind of subsequent merger of nearest neighbors (nodes/clusters)

33 Partitioning Clustering (k-means) Choose positions of k initial cluster representative assign each node to the nearest cluster representative Recompute positions of the cluster representative Based on the positions of the nodes in each cluster n Number of iterations reached y

34 Clustering Application to Load Balancing assign each node to a different cluster compute the sum of the communication cost between any pair of clusters Optimization goal: minimize inter-process (intercluster) communication limit maximum load per processor (cluster) to 0 select the pair of clusters with the highest comm. cost that does not violate the capacity constraints merge the clusters y reduction of comm. cost without violation of constraints possible n

35 Clustering Application to Load Balancing

36 Clustering Variants Clustering methods Partitioning methods Hierarchical methods k-means Fuzzy-c-means SOM Clique One Pass Gustafson-Kessel algorithm Agglomeration (bottom up) Single linkage Complete linkage Average group Centroid MST ROCK Division (top down) Wards Tree Structural Vector Quantification Macnaughton-Smith algorithm Distance Metrics Euclidean Manhattan Minkowsky Mahalanobis Jaccard Camberra Chebychev Correlation Chi-square Kendalls s Rank Correlation 6

37 Clustering Hierarchical Algorithms Single linkage Complete Linkage Centroid-based Algorithms implement different methods to compute the distance between two clusters 7

38 Clustering Single Linkage P P P P P5 P7 P Distance between groups is estimated as the smallest distance between entities Example: d, d d. d(,)5 min Cluster # P P P P P5 P6 P7 P P P P P P P

39 Clustering Single Linkage P P P P P5 P7 P Cluster # P C P C57 P6 P C P C P Cluster # P C C57 P6 P Cluster # P P P P P5 C P6 -P P C P P P P P P P

40 Clustering Group Average P P P P P5 P7 P Distance between groups is defined as the average distance between all pairs of entities Example: d d d. 8 (,)5 5 5 Cluster # P P P P P5 P6 P7 P P P P P P P

41 Clustering Group Average P P P P P5 P7 P Cluster # P C P C57 P6 P C P C P Cluster # P P P P P5 P6 P7 C P C P P P P P P P Cluster # P C C57 P6 P

42 Clustering Centroid-based x P P P P x P5 P7 x P x Determine distances between centroids (k,l) Merge centroids with the least distance C C C C d ( k, l) xk xl yk y l Cluster # P P P P P5 P6 P7 P P P P P P P

43 Clustering Centroid-based x P P P P x P5 P7 x P x Cluster # C C C C57 C6 C C C C C Cluster # P P P P P5 P6 P7 P P P P P P P

44 Differences between Clustering Algorithms Y (m).5 x 0.5 x Y (m).5 x 0 Single Linkage x Complete Linkage - - Single Centroid K-means Complete WardLinkage X (m) 0 0 x x X (m) x 0 Y (m) X (m) x 0 - Centroid Linkage Y (m) Y (m).5 K-means X (m) x 0.5 x Ward X (m) x X (m) x 0

45 Clustering Discussion Results Exact results (single linkage) Not-exact results often several iterations are necessary (K-means) Metrics Strong impact to clustering results Not each metric is suitable for each clustering algorithm Decision for one- or multi-criteria metrics (separated or joint clustering) Selection of Algorithm Depends strongly on the structure of the data set and the expected results Some algorithms tend to separate outlayers in own clusters some large clusters and a lot of very small clusters (complete linkage) Only few algorithms are able to detect also branched, curved or cyclic clusters (single linkage) Some algorithms tend to return clusters with nearly equal size (K-means, Ward) Quality of clustering results The mean variance of the elements in each cluster (affinity parameter) is often used In general the homogeneity within clusters and the heterogeneity between clusters can be measured However, the quality prediction can be only as good as the quality of the used metric! 5

46 Branch and Bound with Underestimates Application of the A* algorithm to the scheduling problem Example: scheduling on a -processor system (processor A and B) Process graph communication processing f(x) = g(x) + h(x) g(x) exact value of partial schedule h(x) underestimate for remainder (min (altern.rem.proc, rem.comm. + rem.proc.) Legend: green: processing times blue: communication times Search is terminated when min {f(x)} is a terminal node (in the search tree) 6

47 Branch and Bound with Underestimates Example: computation of f() 5 5 -> A -> B f()=7 f()=7 8 6 case : path -- g(x) = = h(x) = f(x) = 6 case : path -- g(x) = 5 h(x) = f(x) = 9 A B A B -> A f()= -> > f(x) = g(x) + h(x) g(x) exact value of partial schedule h(x) underestimate for remainder

48 Branch and Bound with Underestimates Application of the A* algorithm to the scheduling problem Example: scheduling on a -processor system (processor A and B) Process graph Search Tree Legend: green: processing times blue: comm. times 9 -> A -> B 5 -> A 6 -> B f()= f()=8 f(5)=8 f(6)= f(x) = g(x) + h(x) g(x) exact value of partial schedule h(x) underestimate for remainder -> A -> B f()=7 f()=7 7 -> A 8 -> B f(7)=5 f(8)=8 9 -> A 0 -> B f(9)= f(0)=8 Search is terminated when min {f(x)} is a terminal node (in the search tree) 8

49 References A. Mitschele-Thiel: Systems Engineering with SDL Developing Performance- Critical Communication Systems. Wiley, 00. (section.5) C.R. Reeves (ed.): Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publications, 99. H.U. Heiss: Prozessorzuteilung in Parallelrechnern. BI-Wissenschaftsverlag, Reihe Informatik, Band 98, 99. M. Garey, D. Johnson: Computer and Intractability. W.H. Freeman, New York,

Evaluation of Temporal and Performance Aspects

Evaluation of Temporal and Performance Aspects TECHNISCHE UNIVERSITÄT ILMENAU Evaluation of Temporal and Performance Aspects Integrated Hard- and Software Systems http://www.tu-ilmenau.de/ihs Problem Statement Performance Modeling Performance Evaluation

More information

Optimization Techniques for Design Space Exploration

Optimization Techniques for Design Space Exploration 0-0-7 Optimization Techniques for Design Space Exploration Zebo Peng Embedded Systems Laboratory (ESLAB) Linköping University Outline Optimization problems in ERT system design Heuristic techniques Simulated

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Midterm Exam Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Covers topics through Decision Trees and Random Forests (does not include constraint satisfaction) Closed book 8.5 x 11 sheet with notes

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Hardware-Software Codesign

Hardware-Software Codesign Hardware-Software Codesign 4. System Partitioning Lothar Thiele 4-1 System Design specification system synthesis estimation SW-compilation intellectual prop. code instruction set HW-synthesis intellectual

More information

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22 INF4820 Clustering Erik Velldal University of Oslo Nov. 17, 2009 Erik Velldal INF4820 1 / 22 Topics for Today More on unsupervised machine learning for data-driven categorization: clustering. The task

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

ECS 234: Data Analysis: Clustering ECS 234

ECS 234: Data Analysis: Clustering ECS 234 : Data Analysis: Clustering What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

More information

Algorithms & Complexity

Algorithms & Complexity Algorithms & Complexity Nicolas Stroppa - nstroppa@computing.dcu.ie CA313@Dublin City University. 2006-2007. November 21, 2006 Classification of Algorithms O(1): Run time is independent of the size of

More information

Parallel Computing in Combinatorial Optimization

Parallel Computing in Combinatorial Optimization Parallel Computing in Combinatorial Optimization Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Course Outline Objective: provide an overview of the current research on the design of parallel

More information

Using Penalties instead of Rewards: Solving OCST Problems with Problem-Specific Guided Local Search

Using Penalties instead of Rewards: Solving OCST Problems with Problem-Specific Guided Local Search Using Penalties instead of Rewards: Solving OCST Problems with Problem-Specific Guided Local Search Wolfgang Steitz, Franz Rothlauf Working Paper 01/2011 March 2011 Working Papers in Information Systems

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Revision Lecture Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation University

More information

Midterm Examination CS540-2: Introduction to Artificial Intelligence

Midterm Examination CS540-2: Introduction to Artificial Intelligence Midterm Examination CS540-2: Introduction to Artificial Intelligence March 15, 2018 LAST NAME: FIRST NAME: Problem Score Max Score 1 12 2 13 3 9 4 11 5 8 6 13 7 9 8 16 9 9 Total 100 Question 1. [12] Search

More information

Clustering. Informal goal. General types of clustering. Applications: Clustering in information search and analysis. Example applications in search

Clustering. Informal goal. General types of clustering. Applications: Clustering in information search and analysis. Example applications in search Informal goal Clustering Given set of objects and measure of similarity between them, group similar objects together What mean by similar? What is good grouping? Computation time / quality tradeoff 1 2

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

Unsupervised Learning Hierarchical Methods

Unsupervised Learning Hierarchical Methods Unsupervised Learning Hierarchical Methods Road Map. Basic Concepts 2. BIRCH 3. ROCK The Principle Group data objects into a tree of clusters Hierarchical methods can be Agglomerative: bottom-up approach

More information

New algorithm for analyzing performance of neighborhood strategies in solving job shop scheduling problems

New algorithm for analyzing performance of neighborhood strategies in solving job shop scheduling problems Journal of Scientific & Industrial Research ESWARAMURTHY: NEW ALGORITHM FOR ANALYZING PERFORMANCE OF NEIGHBORHOOD STRATEGIES 579 Vol. 67, August 2008, pp. 579-588 New algorithm for analyzing performance

More information

Lesson 3. Prof. Enza Messina

Lesson 3. Prof. Enza Messina Lesson 3 Prof. Enza Messina Clustering techniques are generally classified into these classes: PARTITIONING ALGORITHMS Directly divides data points into some prespecified number of clusters without a hierarchical

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

ACO and other (meta)heuristics for CO

ACO and other (meta)heuristics for CO ACO and other (meta)heuristics for CO 32 33 Outline Notes on combinatorial optimization and algorithmic complexity Construction and modification metaheuristics: two complementary ways of searching a solution

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 2 Outline Local search techniques and optimization Hill-climbing

More information

Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Information Retrieval and Web Search Engines Lecture 7: Document Clustering December 4th, 2014 Wolf-Tilo Balke and José Pinto Institut für Informationssysteme Technische Universität Braunschweig The Cluster

More information

Workload Characterization Techniques

Workload Characterization Techniques Workload Characterization Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/

More information

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld )

Local Search and Optimization Chapter 4. Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) Local Search and Optimization Chapter 4 Mausam (Based on slides of Padhraic Smyth, Stuart Russell, Rao Kambhampati, Raj Rao, Dan Weld ) 1 Outline Local search techniques and optimization Hill-climbing

More information

Clustering. Lecture 6, 1/24/03 ECS289A

Clustering. Lecture 6, 1/24/03 ECS289A Clustering Lecture 6, 1/24/03 What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Cluster Analysis. Angela Montanari and Laura Anderlucci

Cluster Analysis. Angela Montanari and Laura Anderlucci Cluster Analysis Angela Montanari and Laura Anderlucci 1 Introduction Clustering a set of n objects into k groups is usually moved by the aim of identifying internally homogenous groups according to a

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

HEURISTIC OPTIMIZATION USING COMPUTER SIMULATION: A STUDY OF STAFFING LEVELS IN A PHARMACEUTICAL MANUFACTURING LABORATORY

HEURISTIC OPTIMIZATION USING COMPUTER SIMULATION: A STUDY OF STAFFING LEVELS IN A PHARMACEUTICAL MANUFACTURING LABORATORY Proceedings of the 1998 Winter Simulation Conference D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds. HEURISTIC OPTIMIZATION USING COMPUTER SIMULATION: A STUDY OF STAFFING LEVELS IN A

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 17: Coping With Intractability Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Branch-and-Bound (B&B) Variant of backtrack with costs

More information

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function Introduction METAHEURISTICS Some problems are so complicated that are not possible to solve for an optimal solution. In these problems, it is still important to find a good feasible solution close to the

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

x n+1 = x n f(x n) f (x n ), (1)

x n+1 = x n f(x n) f (x n ), (1) 1 Optimization The field of optimization is large and vastly important, with a deep history in computer science (among other places). Generally, an optimization problem is defined by having a score function

More information

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM.

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM. Center of Atmospheric Sciences, UNAM November 16, 2016 Cluster Analisis Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster)

More information

Administrative. Local Search!

Administrative. Local Search! Administrative Local Search! CS311 David Kauchak Spring 2013 Assignment 2 due Tuesday before class Written problems 2 posted Class participation http://www.youtube.com/watch? v=irhfvdphfzq&list=uucdoqrpqlqkvctckzqa

More information

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

More information

Multivariate Analysis

Multivariate Analysis Multivariate Analysis Cluster Analysis Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br anselmo.disciplinas@gmail.com Unsupervised Learning Cluster Analysis Natural grouping Patterns in the data

More information

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Unsupervised Learning Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Content Motivation Introduction Applications Types of clustering Clustering criterion functions Distance functions Normalization Which

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Unsupervised Learning : Clustering

Unsupervised Learning : Clustering Unsupervised Learning : Clustering Things to be Addressed Traditional Learning Models. Cluster Analysis K-means Clustering Algorithm Drawbacks of traditional clustering algorithms. Clustering as a complex

More information

A Genetic Algorithm for Multiprocessor Task Scheduling

A Genetic Algorithm for Multiprocessor Task Scheduling A Genetic Algorithm for Multiprocessor Task Scheduling Tashniba Kaiser, Olawale Jegede, Ken Ferens, Douglas Buchanan Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB,

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Murhaf Fares & Stephan Oepen Language Technology Group (LTG) September 27, 2017 Today 2 Recap Evaluation of classifiers Unsupervised

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Frank C. Langbein F.C.Langbein@cs.cf.ac.uk Department of Computer Science Cardiff University 13th February 2001 Constraint Satisfaction Problems (CSPs) A CSP is a high

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

B553 Lecture 12: Global Optimization

B553 Lecture 12: Global Optimization B553 Lecture 12: Global Optimization Kris Hauser February 20, 2012 Most of the techniques we have examined in prior lectures only deal with local optimization, so that we can only guarantee convergence

More information

3. Cluster analysis Overview

3. Cluster analysis Overview Université Laval Multivariate analysis - February 2006 1 3.1. Overview 3. Cluster analysis Clustering requires the recognition of discontinuous subsets in an environment that is sometimes discrete (as

More information

Contents. List of Figures. List of Tables. List of Algorithms. I Clustering, Data, and Similarity Measures 1

Contents. List of Figures. List of Tables. List of Algorithms. I Clustering, Data, and Similarity Measures 1 Contents List of Figures List of Tables List of Algorithms Preface xiii xv xvii xix I Clustering, Data, and Similarity Measures 1 1 Data Clustering 3 1.1 Definition of Data Clustering... 3 1.2 The Vocabulary

More information

Operations Research and Optimization: A Primer

Operations Research and Optimization: A Primer Operations Research and Optimization: A Primer Ron Rardin, PhD NSF Program Director, Operations Research and Service Enterprise Engineering also Professor of Industrial Engineering, Purdue University Introduction

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES

CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES 70 CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES 3.1 INTRODUCTION In medical science, effective tools are essential to categorize and systematically

More information

DERIVATIVE-FREE OPTIMIZATION

DERIVATIVE-FREE OPTIMIZATION DERIVATIVE-FREE OPTIMIZATION Main bibliography J.-S. Jang, C.-T. Sun and E. Mizutani. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, New Jersey,

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

Hardware/Software Codesign

Hardware/Software Codesign Hardware/Software Codesign 3. Partitioning Marco Platzner Lothar Thiele by the authors 1 Overview A Model for System Synthesis The Partitioning Problem General Partitioning Methods HW/SW-Partitioning Methods

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Genetic Algorithm for Circuit Partitioning

Genetic Algorithm for Circuit Partitioning Genetic Algorithm for Circuit Partitioning ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Cluster analysis. Agnieszka Nowak - Brzezinska

Cluster analysis. Agnieszka Nowak - Brzezinska Cluster analysis Agnieszka Nowak - Brzezinska Outline of lecture What is cluster analysis? Clustering algorithms Measures of Cluster Validity What is Cluster Analysis? Finding groups of objects such that

More information

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample Lecture 9 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem: distribute data into k different groups

More information

Hierarchical Clustering

Hierarchical Clustering Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree like diagram that records the sequences of merges or splits 0 0 0 00

More information

N-Queens problem. Administrative. Local Search

N-Queens problem. Administrative. Local Search Local Search CS151 David Kauchak Fall 2010 http://www.youtube.com/watch?v=4pcl6-mjrnk Some material borrowed from: Sara Owsley Sood and others Administrative N-Queens problem Assign 1 grading Assign 2

More information

Monte Carlo Methods; Combinatorial Search

Monte Carlo Methods; Combinatorial Search Monte Carlo Methods; Combinatorial Search Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 22, 2012 CPD (DEI / IST) Parallel and

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms

March 19, Heuristics for Optimization. Outline. Problem formulation. Genetic algorithms Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland March 19, 2014

More information

Overview of Tabu Search

Overview of Tabu Search Overview of Tabu Search The word tabu (or taboo) comes from Tongan, a language of Polynesia, where it was used by the aborigines of Tonga island to indicate things that cannot be touched because they are

More information

Interactive segmentation, Combinatorial optimization. Filip Malmberg

Interactive segmentation, Combinatorial optimization. Filip Malmberg Interactive segmentation, Combinatorial optimization Filip Malmberg But first... Implementing graph-based algorithms Even if we have formulated an algorithm on a general graphs, we do not neccesarily have

More information

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis Application of fuzzy set theory in image analysis Nataša Sladoje Centre for Image Analysis Our topics for today Crisp vs fuzzy Fuzzy sets and fuzzy membership functions Fuzzy set operators Approximate

More information

3. Cluster analysis Overview

3. Cluster analysis Overview Université Laval Analyse multivariable - mars-avril 2008 1 3.1. Overview 3. Cluster analysis Clustering requires the recognition of discontinuous subsets in an environment that is sometimes discrete (as

More information

INTRODUCTION TO HEURISTIC SEARCH

INTRODUCTION TO HEURISTIC SEARCH INTRODUCTION TO HEURISTIC SEARCH What is heuristic search? Given a problem in which we must make a series of decisions, determine the sequence of decisions which provably optimizes some criterion. What

More information

Complete Local Search with Memory

Complete Local Search with Memory Complete Local Search with Memory Diptesh Ghosh Gerard Sierksma SOM-theme A Primary Processes within Firms Abstract Neighborhood search heuristics like local search and its variants are some of the most

More information

Midterm Examination CS 540-2: Introduction to Artificial Intelligence

Midterm Examination CS 540-2: Introduction to Artificial Intelligence Midterm Examination CS 54-2: Introduction to Artificial Intelligence March 9, 217 LAST NAME: FIRST NAME: Problem Score Max Score 1 15 2 17 3 12 4 6 5 12 6 14 7 15 8 9 Total 1 1 of 1 Question 1. [15] State

More information

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE

PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Artificial Intelligence, Computational Logic PROBLEM SOLVING AND SEARCH IN ARTIFICIAL INTELLIGENCE Lecture 10 Tree Decompositions Sarah Gaggl Dresden, 30th June 2015 Agenda 1 Introduction 2 Uninformed

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Erik Velldal & Stephan Oepen Language Technology Group (LTG) September 23, 2015 Agenda Last week Supervised vs unsupervised learning.

More information

EXECUTION PLAN OPTIMIZATION TECHNIQUES

EXECUTION PLAN OPTIMIZATION TECHNIQUES EXECUTION PLAN OPTIMIZATION TECHNIQUES Július Štroffek Database Sustaining Engineer Sun Microsystems, Inc. Tomáš Kovařík Faculty of Mathematics and Physics, Charles University, Prague PostgreSQL Conference,

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

SUITABLE CONFIGURATION OF EVOLUTIONARY ALGORITHM AS BASIS FOR EFFICIENT PROCESS PLANNING TOOL

SUITABLE CONFIGURATION OF EVOLUTIONARY ALGORITHM AS BASIS FOR EFFICIENT PROCESS PLANNING TOOL DAAAM INTERNATIONAL SCIENTIFIC BOOK 2015 pp. 135-142 Chapter 12 SUITABLE CONFIGURATION OF EVOLUTIONARY ALGORITHM AS BASIS FOR EFFICIENT PROCESS PLANNING TOOL JANKOWSKI, T. Abstract: The paper presents

More information

Simulated Annealing. Slides based on lecture by Van Larhoven

Simulated Annealing. Slides based on lecture by Van Larhoven Simulated Annealing Slides based on lecture by Van Larhoven Iterative Improvement 1 General method to solve combinatorial optimization problems Principle: Start with initial configuration Repeatedly search

More information

Lecture 9: Load Balancing & Resource Allocation

Lecture 9: Load Balancing & Resource Allocation Lecture 9: Load Balancing & Resource Allocation Introduction Moler s law, Sullivan s theorem give upper bounds on the speed-up that can be achieved using multiple processors. But to get these need to efficiently

More information

Combinatorial Search; Monte Carlo Methods

Combinatorial Search; Monte Carlo Methods Combinatorial Search; Monte Carlo Methods Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico May 02, 2016 CPD (DEI / IST) Parallel and Distributed

More information

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval

Task Description: Finding Similar Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Task Description: Finding Similar Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 11, 2017 Sham Kakade 2017 1 Document

More information

Unsupervised Learning. Supervised learning vs. unsupervised learning. What is Cluster Analysis? Applications of Cluster Analysis

Unsupervised Learning. Supervised learning vs. unsupervised learning. What is Cluster Analysis? Applications of Cluster Analysis 7 Supervised learning vs unsupervised learning Unsupervised Learning Supervised learning: discover patterns in the data that relate data attributes with a target (class) attribute These patterns are then

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information

A Two-Dimensional Mapping for the Traveling Salesman Problem

A Two-Dimensional Mapping for the Traveling Salesman Problem Computers Math. Apphc. Vol. 26, No. 12, pp. 65-73, 1993 0898-1221/93 $6.00 + 0.00 Printed in Great Britain. All rights reserved Copyright 1993 Pergarnon Press Ltd A Two-Dimensional Mapping for the Traveling

More information

University of Florida CISE department Gator Engineering. Clustering Part 4

University of Florida CISE department Gator Engineering. Clustering Part 4 Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Chapter 14 Global Search Algorithms

Chapter 14 Global Search Algorithms Chapter 14 Global Search Algorithms An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Introduction We discuss various search methods that attempts to search throughout the entire feasible set.

More information

University of Florida CISE department Gator Engineering. Clustering Part 2

University of Florida CISE department Gator Engineering. Clustering Part 2 Clustering Part 2 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Partitional Clustering Original Points A Partitional Clustering Hierarchical

More information

A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS

A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS A GENETIC ALGORITHM APPROACH TO OPTIMAL TOPOLOGICAL DESIGN OF ALL TERMINAL NETWORKS BERNA DENGIZ AND FULYA ALTIPARMAK Department of Industrial Engineering Gazi University, Ankara, TURKEY 06570 ALICE E.

More information

The Algorithm Design Manual

The Algorithm Design Manual Steven S. Skiena The Algorithm Design Manual With 72 Figures Includes CD-ROM THE ELECTRONIC LIBRARY OF SCIENCE Contents Preface vii I TECHNIQUES 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 2 2.1 2.2 2.3

More information