Def.: a, b, and c are called the for the line L. x = y = z =

Size: px
Start display at page:

Download "Def.: a, b, and c are called the for the line L. x = y = z ="

Transcription

1 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed Lines in Space Eercise : Consider the vector v = Sketch and describe the following set: t v ta, tb, tc : t a, b, c. Let P =,,. Sketch and describe the following set: ta tb, tc : t, Def.: The vector v is called the for the line L. Def.: a, b, and c are called the for the line L. Parametric Equations and Smmetric Equations of a Line The line L (in the second graph) parallel to the vector v that passes through the point P =, is represented b the following set of parametric equations:, = = = If the direction numbers are all nonero, then ou can solve for the parameter to obtain the following smmetric equations of the line without the parameter:

2 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 2 Eercise 2: Determine a direction vector, parametric equations, and smmetric equations of the line that passes through the points P = (2, 0, 2) and Q = (, 4, -3). direction vector: PQ = parametric equations: Choose either one of the points; sa, P = (2, 0, 2). Then write = = = Note: t = 0 and t = smmetric equations: = 2 t 2 = -t = t = 0 + 4t = t = 2 5t = t Thus, smmetric equations are Note: We have seen that an equation of a line in space can be obtained from a and a

3 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 3 Planes in Space We will now see that an equation of a plane in space can be obtained from a and a Let P =,, be a point in the plane, and let n = a, b, c be a nonero normal vector to the plane. The plane consists of all points Q =,, for which the vector PQ is Equations of a Plane Let P =,, be a point in the plane, and let n = a, b, c be a nonero normal vector to the plane. The following are equations for the plane. Standard Form General Form Eercise 3: Determine an equation of the plane that passes through the points (2, 3, -2), (3, 4, 2), and (, -, 0). u = v = normal: n = = * using the point (2, 3, -2): 8( 2) 6( 3) 3( + 2) = 0 * using the point (3, 4, 2): 8( 3) 6( 4) 3( 2) = 0

4 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 4 Eercise 4a (Section.5 #66): Sketch a graph of the plane 2 + = 4 b determining the traces. -trace ( = 0) -trace ( = 0) -trace ( = 0) Note: The plane is not a triangle; the plane contains this triangle. Eercise 4b (Section.5 #66): Sketch a graph of the plane 2 + = 4 b determining the intercepts. -intercept: (, 0, 0) -intercept: (0,, 0) -intercept: (0, 0, )

5 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 5 Angle Between Planes Two distinct planes in three-dimensional space either are parallel or intersect in a line. If the planes intersect in a line, ou can determine the angle between the planes b determining the angle between their normal vectors. The value of the angle between two intersecting planes is equivalent to the value of the angle between their respective normal vectors and calculating the angle between two vectors in three-dimensional space is something that we alread know how to do. (See Handout.3, top of page 3.) Theorem: If n and n 2 are normal vectors to two intersecting planes, then the angle θ between the normal vectors is equal to the angle between the two planes, and the angle is given implicitl b The two planes are if The two planes are if Of course, it is possible that the two planes are neither perpendicular nor parallel. Eercise 5 (Section.5 #60): Determine the angle between the following two planes = 7 and = 0 Hint: Normal vectors for these planes are, respectivel, and

6 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 6 Verification of the Hint in Eercise 5 You ma have noticed in Eercise 5 the formulaic similarit between the equation of a plane and the components of its normal vector. That is no coincidence. How can we obtain a normal vector from the equation of the plane? Consider the plane = 7. First, since three points determine a plane, find three points in the plane. Secondl, those three points determine two vectors in the plane. Finall, the cross product of those two vectors is perpendicular to those two vectors and is, thus, normal to the plane. Note: Note that n = 3 i 2 j k is not the onl normal to the plane. An nonero scalar multiple of n is also normal to the plane, like, for eample,

7 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 7 Distance Between a Point and a Plane Theorem: Let P be a point in the plane and n a normal vector to the plane. The distance between the plane and a point Q not in the plane is Eercise 6: (Compare with the work and solution found in Eample 5 on page 788 in the tetbook.) Determine the distance between Q = (, 5, -4) and the plane = 6. We know that n = The point P = is a normal vector to the plane. is a point in the plane because if ou (arbitraril) pick Thus, PQ = and, so, PQ n = 0,6, 5 3,, 2 = Also, n = Therefore, the distance between Q and the plane is

8 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 8 Distance Between a Point and a Line in Space sin(θ) = ( * ) d = Recall Handout.4, page 2, Geometric Propert 3: u v = Multipl both sides of ( * ) b u : d = PQ sin(θ) d u = d = Theorem: Let P be a point on a line L and let u be a direction vector for L. The distance between Q and L is

9 Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed 9 Eercise 7 (Section.5 #90): Determine the distance between Q = (, -2, 4) and the line given b the parametric equations = 2t, = t 3, = 2t + 2. A direction vector for the line is u = and, so, u = Note that the point Q is not on the line because To determine a point P on the line, take, for eample, t = P = (,, ) = Thus, PQ = Net, PQ u = 3,2,4 2,, 2 = Therefore, PQ u = Finall, the distance between Q and the line is

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines

Math (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines Math 18.02 (Spring 2009): Lecture 5 Planes. Parametric equations of curves and lines February 12 Reading Material: From Simmons: 17.1 and 17.2. Last time: Square Systems. Word problem. How many solutions?

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

(0, 2) y = x 1 2. y = x (2, 2) y = 2x + 2

(0, 2) y = x 1 2. y = x (2, 2) y = 2x + 2 .5 Equations of Parallel and Perpendicular Lines COMMON CORE Learning Standards HSG-GPE.B.5 HSG-GPE.B. Essential Question How can ou write an equation of a line that is parallel or perpendicular to a given

More information

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16.

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16. Section 4.2 Absolute Value 367 4.2 Eercises For each of the functions in Eercises 1-8, as in Eamples 7 and 8 in the narrative, mark the critical value on a number line, then mark the sign of the epression

More information

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes

Section 13.5: Equations of Lines and Planes. 1 Objectives. 2 Assignments. 3 Lecture Notes Section 13.5: Equations of Lines and Planes 1 Objectives 1. Find vector, symmetric, or parametric equations for a line in space given two points on the line, given a point on the line and a vector parallel

More information

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in R 3 In Section 8.1, we discussed vector and parametric equations of a line in. In this section, we will continue our discussion, but,

More information

Example 1: MATH is a parallelogram. Find the values of w, x, y, and z. Write an equation for each and write the property of parallelograms used.

Example 1: MATH is a parallelogram. Find the values of w, x, y, and z. Write an equation for each and write the property of parallelograms used. Name: Date: Period: Geometr Notes Parallelograms Fab Five Quadrilateral Parallelogram Diagonal Five Fabulous Facts about Parallelograms: ) ) 3) 4) 5) ***This is the Parallelogram Definition and Theorems!

More information

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009

3D Computer Vision II. Reminder Projective Geometry, Transformations. Nassir Navab. October 27, 2009 3D Computer Vision II Reminder Projective Geometr, Transformations Nassir Navab based on a course given at UNC b Marc Pollefes & the book Multiple View Geometr b Hartle & Zisserman October 27, 29 2D Transformations

More information

Applications of Differentiation

Applications of Differentiation Contents 1 Applications of Differentiation 1.1 Tangents and Normals 1. Maima and Minima 14 1. The Newton-Raphson Method 8 1.4 Curvature 47 1.5 Differentiation of Vectors 54 1.6 Case Stud: Comple Impedance

More information

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313 WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #11 SLOPE is a number that indicates the steepness (or flatness) of a line, as well as its direction (up or down) left to right. SLOPE is determined

More information

Grade 6 Math Circles February 29, D Geometry

Grade 6 Math Circles February 29, D Geometry 1 Universit of Waterloo Facult of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles Feruar 29, 2012 2D Geometr What is Geometr? Geometr is one of the oldest ranches in

More information

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1]

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D A vector is specified b its coordinates, so it is defined relative to a reference frame. The same vector will have different coordinates in

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

9.1 Exercises. Section 9.1 The Square Root Function 879. In Exercises 1-10, complete each of the following tasks.

9.1 Exercises. Section 9.1 The Square Root Function 879. In Exercises 1-10, complete each of the following tasks. Section 9. The Square Root Function 879 9. Eercises In Eercises -, complete each of the following tasks. i. Set up a coordinate sstem on a sheet of graph paper. Label and scale each ais. ii. Complete the

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Polynomials. Math 4800/6080 Project Course

Polynomials. Math 4800/6080 Project Course Polnomials. Math 4800/6080 Project Course 2. The Plane. Boss, boss, ze plane, ze plane! Tattoo, Fantas Island The points of the plane R 2 are ordered pairs (x, ) of real numbers. We ll also use vector

More information

C URVES AND V ECTORS

C URVES AND V ECTORS 96-ch- SB5-Ostebee June 6, 9:57 C H A P T E R O U T L I N E. Three-Dimensional Space. Curves and Parametric Equations. Polar Coordinates and Polar Curves.4 Vectors.5 Vector-Valued Functions, Derivatives,

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Parallel and Perpendicular Lines. What are the slope and y-intercept of each equation?

Parallel and Perpendicular Lines. What are the slope and y-intercept of each equation? 6 6-6 What You ll Learn To determine whether lines are parallel To determine whether lines are And Wh To use parallel and lines to plan a bike path, as in Eample Parallel Lines Parallel and Perpendicular

More information

Geometry CP Constructions Part I Page 1 of 4. Steps for copying a segment (TB 16): Copying a segment consists of making segments.

Geometry CP Constructions Part I Page 1 of 4. Steps for copying a segment (TB 16): Copying a segment consists of making segments. Geometry CP Constructions Part I Page 1 of 4 Steps for copying a segment (TB 16): Copying a segment consists of making segments. Geometry CP Constructions Part I Page 2 of 4 Steps for bisecting a segment

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 11, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Math 232 Calculus III Brian Veitch Fall 2015 Northern Illinois University 12.5 Equations of Lines and Planes Definition 1: Vector Equation of a Line L Let L be a line in three-dimensional space. P (x,

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

Systems of Linear Equations

Systems of Linear Equations Sstems of Linear Equations Gaussian Elimination Tpes of Solutions A linear equation is an equation that can be written in the form: a a a n n b The coefficients a i and the constant b can be real or comple

More information

2.5. Verifying Properties of Geometric Figures. LEARN ABOUT the Math. Proving a conjecture about a geometric figure

2.5. Verifying Properties of Geometric Figures. LEARN ABOUT the Math. Proving a conjecture about a geometric figure .5 Verifing Properties of Geometric Figures YOU WILL NEED grid paper and ruler, or dnamic geometr software P( 7, 9) Q(9, ) J - - M - R(9, ) - - - L - - S(, ) K GOAL Use analtic geometr to verif properties

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

5 and Parallel and Perpendicular Lines

5 and Parallel and Perpendicular Lines Ch 3: Parallel and Perpendicular Lines 3 1 Properties of Parallel Lines 3 Proving Lines Parallel 3 3 Parallel and Perpendicular Lines 3 Parallel Lines and the Triangle Angles Sum Theorem 3 5 The Polgon

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

EXPANDING THE CALCULUS HORIZON. Robotics

EXPANDING THE CALCULUS HORIZON. Robotics EXPANDING THE CALCULUS HORIZON Robotics Robin designs and sells room dividers to defra college epenses. She is soon overwhelmed with orders and decides to build a robot to spra paint her dividers. As in

More information

1. A(-2, 2), B(4, -2) 3 EXAMPLE. Graph the line y = Move up 3 units. Quick Check See left.

1. A(-2, 2), B(4, -2) 3 EXAMPLE. Graph the line y = Move up 3 units. Quick Check See left. -. Plan Objectives To graph lines given their equations To write equations of lines Eamples Graphing Lines in Slope- Intercept Form Graphing Lines Using Intercepts Transforming to Slope- Intercept Form

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

Elements of three dimensional geometry

Elements of three dimensional geometry Lecture No-3 Elements of three dimensional geometr Distance formula in three dimension Let P( x1, 1, z1) and Q( x2, 2, z 2) be two points such that PQ is not parallel to one of the 2 2 2 coordinate axis

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3)

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3) Co-ordinate Geometry Co-ordinates Every point has two co-ordinates. (3, 2) x co-ordinate y co-ordinate Plot the following points on the plane..(3, 2) A (4, 1) D (2, 5) G (6, 3) B (3, 3) E ( 4, 4) H (6,

More information

(0, 4) Figure 12. x + 3. d = c. = b. Figure 13

(0, 4) Figure 12. x + 3. d = c. = b. Figure 13 80 CHAPTER EQUATIONS AND INEQUALITIES Plot both points, and draw a line passing through them as in Figure. Tr It # _, 0 Figure Find the intercepts of the equation and sketch the graph: = _ +. (0, (This

More information

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity)

Math 26: Fall (part 1) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pythagorean Identity) Math : Fall 0 0. (part ) The Unit Circle: Cosine and Sine (Evaluating Cosine and Sine, and The Pthagorean Identit) Cosine and Sine Angle θ standard position, P denotes point where the terminal side of

More information

Lines and Planes in 3D

Lines and Planes in 3D Lines and Planes in 3D Philippe B. Laval KSU January 28, 2013 Philippe B. Laval (KSU) Lines and Planes in 3D January 28, 2013 1 / 20 Introduction Recall that given a point P = (a, b, c), one can draw a

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

1 EquationsofLinesandPlanesin 3-D

1 EquationsofLinesandPlanesin 3-D 1 EquationsofLinesandPlanesin 3-D Recall that given a point P (a, b, c), one can draw a vector from the origin to P. Such a vector is called the position vector of the point P and its coordinates are a,

More information

Problems of Plane analytic geometry

Problems of Plane analytic geometry 1) Consider the vectors u(16, 1) and v( 1, 1). Find out a vector w perpendicular (orthogonal) to v and verifies u w = 0. 2) Consider the vectors u( 6, p) and v(10, 2). Find out the value(s) of parameter

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

23.1 Perpendicular Bisectors of Triangles

23.1 Perpendicular Bisectors of Triangles Name lass Date 3.1 Perpendicular isectors of Triangles Essential Question: How can ou use perpendicular bisectors to find the point that is equidistant from all the vertices of a triangle? Resource Locker

More information

3.5 Day 1 Warm Up. Graph each line. 3.4 Proofs with Perpendicular Lines

3.5 Day 1 Warm Up. Graph each line. 3.4 Proofs with Perpendicular Lines 3.5 Day 1 Warm Up Graph each line. 1. y = 4x 2. y = 3x + 2 3. y = x 3 4. y = 4 x + 3 3 November 2, 2015 3.4 Proofs with Perpendicular Lines Geometry 3.5 Equations of Parallel and Perpendicular Lines Day

More information

Suggested problems - solutions

Suggested problems - solutions Suggested problems - solutions Writing equations of lines and planes Some of these are similar to ones you have examples for... most of them aren t. P1: Write the general form of the equation of the plane

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 0C. Lecture Eamples. (8/30/08) Section 14.1, Part 1. Functions of two variables Definition 1 A function f of the two variables and is a rule = f(,) that assigns a number denoted f(,), to each point

More information

TEST AND TEST ANSWER KEYS

TEST AND TEST ANSWER KEYS PART II TEST AND TEST ANSWER KEYS Houghton Mifflin Compan. All rights reserved. Test Bank.................................................... 6 Chapter P Preparation for Calculus............................

More information

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples:

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples: Quadratic Functions ( ) = a + b + c Graphs o quadratics unctions are parabolas opening up i a > 0, and down i a < 0. Eamples: = = + = = 0 MATH 80 Lecture B o 5 Ronald Brent 07 All rights reserved. Notes:

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

Time To Hit The Slopes. Exploring Slopes with Similar Triangles

Time To Hit The Slopes. Exploring Slopes with Similar Triangles Time To Hit The Slopes Eploring Slopes with Similar Triangles Learning Goals In this lesson, ou will: Use an equation to complete a table of values. Graph an equation using a table of values. Use transformations

More information

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1 .7 Transformations.7. Eercises To see all of the help resources associated with this section, click OSttS Chapter b. Suppose (, ) is on the graph of = f(). In Eercises - 8, use Theorem.7 to find a point

More information

Implicit differentiation

Implicit differentiation Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 5 Implicit differentiation What ou need to know alread: Basic rules of differentiation, including the chain rule.

More information

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane.

10.2: Parabolas. Chapter 10: Conic Sections. Conic sections are plane figures formed by the intersection of a double-napped cone and a plane. Conic sections are plane figures formed b the intersection of a double-napped cone and a plane. Chapter 10: Conic Sections Ellipse Hperbola The conic sections ma be defined as the sets of points in the

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks)

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks) CHAPTER 3 REVIEW FOR SLs ONLY 1. Find the coordinates of the point on the graph of = 2 at which the tangent is parallel to the line = 5. (Total 4 marks) 2. Find the equation of the normal to the curve

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

Midpoint and Distance Formulas

Midpoint and Distance Formulas Midpoint and Distance Formulas Find the midpoint of a segment on the coordinate plane. Find the distance between two points on the coordinate plane. Fremont are the Midpoint and Distance Formulas used

More information

1.3. Equations and Graphs of Polynomial Functions. What is the connection between the factored form of a polynomial function and its graph?

1.3. Equations and Graphs of Polynomial Functions. What is the connection between the factored form of a polynomial function and its graph? 1.3 Equations and Graphs of Polnomial Functions A rollercoaster is designed so that the shape of a section of the ride can be modelled b the function f(x). 4x(x 15)(x 25)(x 45) 2 (x 6) 9, x [, 6], where

More information

Name: NOTES 5: LINEAR EQUATIONS AND THEIR GRAPHS. Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 RATE OF CHANGE AND SLOPE. A. Finding rates of change

Name: NOTES 5: LINEAR EQUATIONS AND THEIR GRAPHS. Date: Period: Mrs. Nguyen s Initial: LESSON 5.1 RATE OF CHANGE AND SLOPE. A. Finding rates of change NOTES : LINEAR EQUATIONS AND THEIR GRAPHS Name: Date: Period: Mrs. Nguen s Initial: LESSON. RATE OF CHANGE AND SLOPE A. Finding rates of change vertical change Rate of change = = change in x The rate of

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) x 3 5x 2 4x + 20.

More information

Section 1.4 Limits involving infinity

Section 1.4 Limits involving infinity Section. Limits involving infinit (/3/08) Overview: In later chapters we will need notation and terminolog to describe the behavior of functions in cases where the variable or the value of the function

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Foundations for Functions Knowledge and Skills: Foundations for Functions Knowledge and Skills:

Foundations for Functions Knowledge and Skills: Foundations for Functions Knowledge and Skills: Texas University Interscholastic League Contest Event: Mathematics The 40-minute, 60-question contest is designed to test knowledge and understanding in the areas of algebra I and II, geometry, trigonometry,

More information

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Section.6: Graphs of Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

4.6 Graphs of Other Trigonometric Functions

4.6 Graphs of Other Trigonometric Functions .6 Graphs of Other Trigonometric Functions Section.6 Graphs of Other Trigonometric Functions 09 Graph of the Tangent Function Recall that the tangent function is odd. That is, tan tan. Consequentl, the

More information

Graphing Cubic Functions

Graphing Cubic Functions Locker 8 - - - - - -8 LESSON. Graphing Cubic Functions Name Class Date. Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) + k and f () = ( related to the graph of f ()

More information

13 Trigonometric Graphs

13 Trigonometric Graphs Trigonometric Graphs Concepts: Period The Graph of the sin, cos, tan, csc, sec, and cot Functions Appling Graph Transformations to the Graphs of the sin, cos, tan, csc, sec, and cot Functions Using Graphical

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

Graphing Method. Graph of x + y < > y 10. x

Graphing Method. Graph of x + y < > y 10. x Graphing Method Eample: Graph the inequalities on the same plane: + < 6 and 2 - > 4. Before we graph them simultaneousl, let s look at them separatel. 10-10 10 Graph of + < 6. ---> -10 Graphing Method

More information

Are You Ready? Triangle Sum Theorem

Are You Ready? Triangle Sum Theorem SKILL 30 Triangle Sum Theorem Teaching Skill 30 Objective Use the Triangle Sum Theorem to find the measures of missing angles. Have students read the Triangle Sum Theorem. Point out that the theorem is

More information

Table of Contents. Unit 5: Trigonometric Functions. Answer Key...AK-1. Introduction... v

Table of Contents. Unit 5: Trigonometric Functions. Answer Key...AK-1. Introduction... v These materials ma not be reproduced for an purpose. The reproduction of an part for an entire school or school sstem is strictl prohibited. No part of this publication ma be transmitted, stored, or recorded

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

Did You Find a Parking Space?

Did You Find a Parking Space? Lesson.4 Skills Practice Name Date Did You Find a Parking Space? Parallel and Perpendicular Lines on the Coordinate Plane Vocabulary Complete the sentence. 1. The point-slope form of the equation of the

More information

Point-Slope Form of an Equation

Point-Slope Form of an Equation Name: Date: Page 1 of 9 Point-Slope Form of an Equation 1. Graph the equation = + 4 b starting at (0,4) and moving to another point on the line using the slope. 2. Now draw another graph of = + 4. This

More information

SECTION 8.2 the hyperbola Wake created from shock wave. Portion of a hyperbola

SECTION 8.2 the hyperbola Wake created from shock wave. Portion of a hyperbola SECTION 8. the hperola 6 9 7 learning OjeCTIveS In this section, ou will: Locate a hperola s vertices and foci. Write equations of hperolas in standard form. Graph hperolas centered at the origin. Graph

More information

Graphs, Linear Equations, and Functions

Graphs, Linear Equations, and Functions Graphs, Linear Equations, and Functions. The Rectangular R. Coordinate Fractions Sstem bjectives. Interpret a line graph.. Plot ordered pairs.. Find ordered pairs that satisf a given equation. 4. Graph

More information

1.5 LIMITS. The Limit of a Function

1.5 LIMITS. The Limit of a Function 60040_005.qd /5/05 :0 PM Page 49 SECTION.5 Limits 49.5 LIMITS Find its of functions graphicall and numericall. Use the properties of its to evaluate its of functions. Use different analtic techniques to

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Mathematics Stage 5 PAS5.1.2 Coordinate geometry

Mathematics Stage 5 PAS5.1.2 Coordinate geometry Mathematics Stage PAS.. Coordinate geometr Part Graphing lines Acknowledgments This publication is copright New South Wales Department of Education and Training (DET), however it ma contain material from

More information

CHAPTER 5: LINEAR EQUATIONS AND THEIR GRAPHS Notes#26: Section 5-1: Rate of Change and Slope

CHAPTER 5: LINEAR EQUATIONS AND THEIR GRAPHS Notes#26: Section 5-1: Rate of Change and Slope Name: Date: Period: CHAPTER : LINEAR EQUATIONS AND THEIR GRAPHS Notes#: Section -: Rate of Change and Slope A. Finding rates of change vertical change Rate of change change in x The rate of change is constant

More information

Lesson 15 Trigonometric Laws Unit 2 Review Unit 2 Performance Task

Lesson 15 Trigonometric Laws Unit 2 Review Unit 2 Performance Task Contents Unit 1 Congruence, Proof, and Constructions.......... Lesson 1 Transformations and Congruence................... Lesson Translations.................................... 1 Lesson Reflections....................................

More information

Tubes are Fun. By: Douglas A. Ruby Date: 6/9/2003 Class: Geometry or Trigonometry Grades: 9-12 INSTRUCTIONAL OBJECTIVES:

Tubes are Fun. By: Douglas A. Ruby Date: 6/9/2003 Class: Geometry or Trigonometry Grades: 9-12 INSTRUCTIONAL OBJECTIVES: Tubes are Fun B: Douglas A. Rub Date: 6/9/2003 Class: Geometr or Trigonometr Grades: 9-2 INSTRUCTIONAL OBJECTIVES: Using a view tube students will conduct an eperiment involving variation of the viewing

More information

The Graph of an Equation

The Graph of an Equation 60_0P0.qd //0 :6 PM Page CHAPTER P Preparation for Calculus Archive Photos Section P. RENÉ DESCARTES (96 60) Descartes made man contributions to philosoph, science, and mathematics. The idea of representing

More information

1) y = 2x 7 2) (-2, 3) ( 3, -1) 3) table. 4) y 5 = ½ ( x 4) 5) 2x + 4y = 7 6) y = 5 7) 8) 9) (-1, 5) (0, 4) 10) y = -3x 7. 11) 2y = -3x 5 12) x = 5

1) y = 2x 7 2) (-2, 3) ( 3, -1) 3) table. 4) y 5 = ½ ( x 4) 5) 2x + 4y = 7 6) y = 5 7) 8) 9) (-1, 5) (0, 4) 10) y = -3x 7. 11) 2y = -3x 5 12) x = 5 I SPY Slope! Geometr tetbook 3-6, pg 165 (), pg 172 (calculator) Name: Date: _ Period: Strategies: On a graph or a table rise ( Δ) Slope = run Δ ( ) Given 2 points Slope = 2 2 In an equation 1 1 1) = 2

More information

Appendix C: Review of Graphs, Equations, and Inequalities

Appendix C: Review of Graphs, Equations, and Inequalities Appendi C: Review of Graphs, Equations, and Inequalities C. What ou should learn Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs of real numbers b points

More information

Graphing Equations Case 1: The graph of x = a, where a is a constant, is a vertical line. Examples a) Graph: x = x

Graphing Equations Case 1: The graph of x = a, where a is a constant, is a vertical line. Examples a) Graph: x = x 06 CHAPTER Algebra. GRAPHING EQUATIONS AND INEQUALITIES Tetbook Reference Section 6. &6. CLAST OBJECTIVE Identif regions of the coordinate plane that correspond to specific conditions and vice-versa Graphing

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 20C. Lecture Eamples. (8/7/0) Section 4.4. Linear approimations and tangent planes A function z = f(,) of two variables is linear if its graph in z-space is a plane. Equations of planes were found

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267 Slide / 67 Slide / 67 lgebra I Graphing Linear Equations -- www.njctl.org Slide / 67 Table of ontents Slide () / 67 Table of ontents Linear Equations lick on the topic to go to that section Linear Equations

More information

Date Lesson TOPIC Homework. The Intersection of a Line with a Plane and the Intersection of Two Lines

Date Lesson TOPIC Homework. The Intersection of a Line with a Plane and the Intersection of Two Lines UNIT 4 - RELATIONSHIPS BETWEEN LINES AND PLANES Date Lesson TOPIC Homework Oct. 4. 9. The Intersection of a Line with a Plane and the Intersection of Two Lines Pg. 496 # (4, 5)b, 7, 8b, 9bd, Oct. 6 4.

More information