Hexa Meshing. Defining Surface Parameters for the Mesh Defining Edge Parameters to Adjust the Mesh Checking mesh quality for determinants and angle

Size: px
Start display at page:

Download "Hexa Meshing. Defining Surface Parameters for the Mesh Defining Edge Parameters to Adjust the Mesh Checking mesh quality for determinants and angle"

Transcription

1 4.2.6: Pipe Blade Overview This tutorial example uses the Collapse function to create a degenerate topology in a Conjugate Heat transfer problem around a blade located in the center of a cylindrical pipe. a) Summary of Steps The Blocking Strategy Starting the Project Creating Parts in the Mesh Editor Starting Blocking Using Prescribed Points to Fit the Blocking Splitting the Topology Using Prescribed Points Collapsing Blocks to Represent the Blade Material Edge to Curve Association on the Blade Moving the Vertices Generating the O-grid Defining Surface Parameters for the Mesh Defining Edge Parameters to Adjust the Mesh Checking mesh quality for determinants and angle 189

2 Saving before Quitting b) The Blocking Strategy In this lesson, the blade is regarded as a Solid region, while the region surrounding the blade is regarded as the Fluid region. Using Block Splitting at Prescribed point, the user will generate a Hexahedral Mesh for both of the regions, so that the topology of the solid region is a degenerate Hexahedral mesh. Before the user employs the Collapse function for his/her own applications, confirm that the solver accepts degenerated hexas (for a structured solver) or penta_6 elements (prism) for an unstructured solver. Note: Settings >Selection>Auto pick mode should be turned OFF for ANSYS ICEM CFD to behave exactly as this tutorial describes. c) Starting the Project The input files for this tutorial can be found in the Ansys installation directory, under../v110/docu/tutorials/cfd_tutorial_files>pipeblade. Copy and open the geometry.tin file in your working directory. d) Creating Parts in the Mesh Editor Right click in the Display Tree on Parts > Create Part to create different Parts and assign the different surface of the geometry to the appropriate part. Refer to the figure below for the Surface part assignments. 190

3 Figure The Pipe Blade configu ration e) Surface Parts After the Pipe Blade project is open, activate the Points and Surfaces from the Display Tree. Switch on Points > Show Points Names. Begin the Surface part reassignment by changing the region enclosed by GEOM/4 - GEOM/7 to the part OUTLET. The region that is denoted by GEOM/0 - GEOM/3 should be reassigned to the part INLET. The Surface defining the Cylinder pipe will be placed in the Surface part, CYL. The surfaces belonging to the solid blade in the middle of the cylinder should be classified as BLADE. When all of the Surface parts have been assigned (INLET, OUTLET, CYL, BLADE), press the middle mouse button to exit from continuous mode. f) Curve Parts and Point Parts For this tutorial, we will leave the curves and points assigned to the initial part GEOM. 191

4 g) Creating the Material Points Select G eometry > Create Body > Material Point Enter FLUID in the Create Body window that appears. The material point that will be created will help us to keep the FLUID region separate from the SOLID region, but is not necessary since blocks can simply be created in the FLUID part rather than creating a material point. With the left mouse button, select two locations on the opposite sides of the cylinder. Note that the FLUID material point should not be within the BLADE. If tetra meshing, this location would be important. With Hexa meshing, it is not. Press the middle mouse button to accept the selection, and press Apply and the Body name FLUID should appear within the geometry (midway between the selected locations). Rotate the model to confirm that FLUID is in an appropriate location. Now enter SOLID as the new Part Name in the Create Body window. P ress the location selection icon and select two locations on the blade surfaces so that the midpoint will be inside of the blade. Press the middle mouse button to accept, and press Apply. After accepting this Parts assignment, dynamically rotate the model to confirm that SOLID is inside the blade. When this is complete, all components of the Geometry should now have part name assignments. Delete any Empty Parts: From the Display Tree, right mouse select on Parts > Delete empty Parts. File > Save Project As to save the updated model before continuing on in this tutorial. Give the project any name you want. h) Blocking Initialize blocking, which will create the first block, by going to Blocking > Create Block > Initialize Block. The Create Block window will open. 192

5 Figure Create block window Select the block Type as 3D Bounding Box (default) from the pull down arrow. Name the Part as Fluid. Press Apply without selecting anything, and the initial block will be created around the whole model. i) Association of vertex to point To fit the Initialized Blocking more closely to the geometry, the user will associate vertices to points. Select Blocking > Associate > Associate Vertex and the window shown will open. Toggle ON Blocking > Vertices and right mouse click on Vertices > Numbers under Blocking in Display Tree. 193

6 Figure Associate vertex window Select Point under Entity. Press the vertex selection icon and select Vertex 42. Press the point selection icon and select Point GEOM/7 and press Apply to associate them as shown below. Similarly, associate the other vertices and points for the inlet and outlet so that after completion the geometry should look like below. 194

7 Figure Moving the vertices Figure Geometry after associating all vertices to corresponding points 195

8 Note: When possible, the Block vertices on any circular geometry should be placed so that edges are equal in length and the angles between edges are 90 degrees. This amounts to vertices being placed at 45, 135, 225, and 315 degrees around the circle. This results in the best mesh quality. j) Associating edges to curves Select Associate >Associate Edge to Curve. Press the edge selection icon then select the four edges shown in the figure below and press the middle mouse button. Then press the curve selection icon and select the four curves shown in the figure below and press the middle mouse button. Notice that the block edges then transform from white to green, confirming their association with the curve. Also notice that the four curves become one color, indicating that they have been grouped into one curve. Figure Association window 196

9 Figure Edges and Curve selection for association Similarly, associate the four edges on the other circle to the corresponding four curves. To see a confirmation of these associations, right mouse click on Blocking > Edges > Show Association in the Display Tree. 197

10 Figure The Edge Projection Note: If the edges lie on the geometry, as is the case with longitudinal edges, the projection arrows are not shown. By default, all external edges are surfaceassociated to the nearest active surface and appear as white. The association can be set to this default using Associate > Associate Edge to Surface. This operation is useful to correct any Edge to Curve Association mistakes. All internal edges, by default, have no association, and appear as blue. You can set this association, which is really deleting an association, by pressing. k) Grouping curves Note: This section does not need to be performed on the model, but it shows the user how to manually group curves. Select Blocking > Associate > Group curves. 198

11 Figure Group curve window Select the four curves corresponding to OUTLET as shown in the figure and press Apply to group them. l) Splitting the Topology Using Prescribed Points and Screen Select The following steps instruct the user to split the block in the k and j directions around the blade, thus creating further blocking topology for the blade. The k-direction splits will be created through the prescribed point method, while the j-direction splits will be made by visual judgment. Press View > Top, then Fit Window Turn off Vertices at this stage. Choose Blocking > Split Block >Split Block and it will open the window as shown in the figure below. Choose All visible and Split method as Prescribed Point. Select the edge selection icon then select 199

12 one of the edge which is along z-direction. After selecting the edge it will prompt you to select the point Select the Prescribe point, GEOM/9 and press middle click to accept the selection. Similarly, make another split using the same edge but through the Prescribed Point, GEOM/8. Similarly, make another horizontal split through the prescribed point GEOM/12. The final result will have three horizontal splits as shown in below. Note: Make sure that the Edge that is selected lies within the range of the Prescribed Point that will be selected. Figure Split block window 200

13 Figure Make the horizontal splits in the block These are the splits in the k -direction. The next set of splits will be in the i direction. Now select the Split method as Screen select. Press the edge selection icon and select any of the horizontal edges (which is along x- 201

14 direction) to create a vertical split. If Settings>Selection>Auto pick mode is OFF, press Apply, and it will ask for a location on the scre en to split through. Select on a curve or edge on any location that is vertically in line with the right side of the blade. If Auto pick mode is ON, you should left mouse click on the edge and hold the button while dragging the split to where you want it. Press the middle mouse button to complete the split operation. Then use the same method to create another vertical split on the left side of the blade. 202

15 Figure Horizontal splits on blade sides 203

16 Note: Every time a block Split is performed, the Index control is updated. After the splits are complete, the new range of the K index will be from 0-6. m) Collapsing Blocks to Display the Blade In this section, the Collapse feature is introduced to create degenerate blocks for the blade. For clarity in these operations, right mouse click in the Display tree on Blocking>Index Control. Change the Index control for the I dimension so that the Min is 2 and the Max is 3. Turn OFF the Points from the Display window. The restricted topology consists of four blocks, where the two center blocks belong to the blade. Before collapsing the blocks, change the Part family of the two center blocks to SOLID, the material representing the blade. Right mouse click on SOLID>Add to part underneath Parts in the Display Tree, and it will open the Add to Part window. Select Blocking Material, Add Blocks to Part, and select the blocks of the blade as shown below, then press the middle mouse button to complete the operation. Figure Assigning the blade blocks 204

17 Now select Blocking > Merge Vertices > Collapse Block. Choose the edge that should be collapsed. In this case it is the shortest edge of the selected blocks. Select the two blocks shown in the figure below. Press Apply to Collapse the blocks. Figure Collapsing the blade Blocks After collapsing we get the model as shown below. 205

18 Figure The Collapsed Blocking n) Edge to Curve Association on the Blade Choose Blocking> Associate >Associate Edge to Curve.The Associate edge to curve window will open as shown below. Note: Make sure Project Vertices is disabled. 206

19 Figure Association Edge to Curve Window You should associate the Edges and corresponding blade curves as shown below.do this to the top and bottom of the blade, on both sides. After associating, Switch on Blocking > Edge > Show Association from the Display Tree. The geometry should look as shown. 207

20 Figure Blade edges to be association to curves 208

21 Figure Blade edges Associated to curves o) Moving the Vertices This section shows the user how to move all the associated vertices onto the geometry in one step. Snap the appropriate block vertices onto the geometry by selecting Associate > Snap Project Vertices.All Visible should be toggled ON. Then Press Apply. Switch off Edges > Show Association. All the vertices belonging to blade, inlet and outlet are moved to the locations as shown below. 209

22 Figure The final positions of the vertices before the O grid p) Vertex Color Distinction Notice from this lesson and from previous lessons, that the movement of the vertices is restricted to the associated Curve. The colors of the vertices indicate their associations and degrees of freedom. Vertices associated with Prescribed Points are red and are fixed at a point. Vertices associated to a curve are green and can be moved on the associated curve. By default, all the vertices lying on the block material boundary are white and are free to move on any surface. Additionally, internal surfaces are blue and can be moved along the blue block edges to which they are connected. q) Generating the O-Grid If the pre-mesh is generated at this point, the existing blocking would result in skewed cells on the four corners of the pipe. Converting the existing H-Grid type topology to an O-grid type topology inside the pipe will produce a mesh that is low in skewness, with orthogonal grid on the pipe walls. The following steps will improve the overall mesh quality. 210

23 Press Blocking >Split Block > O grid Block Press and select all the Blocks of both the FLUID and SOLID regions since the O-grid will be added in the entire pipe as shown in below. Press the middle mouse button to accept. Similarly, press and select the two INLET faces and two OUTLET faces as shown. Press the middle mouse button to accept, and Press Apply to create the O-grid. Figure Add the faces of the outlet and inlet to O-grid After creating the O-Grid, the blocking will appear as shown. 211

24 Figure The O-grid r) Defining Surface Parameters for the Mesh In this step, the user will define node distributions on the blocking using surface parameters. Surfaces should be turned ON in the Display Tree so they can be selected from the screen. Select Mesh > Surface Mesh Setup and select the surface selection icon. Then select all the surfaces by box selecting the entire model or pressing a. Enter the Maximum Element size as 0.3, Height as 0.03 and Ratio as 1.25, as shown. 212

25 Figure Surface mesh size window Press Apply to assign the surface parameters. Display the surface parameters by right mouse clicking in the Display Tree on Geometry> Surface > Hexa Sizes. The surfaces will show hexa icons as shown. 213

26 Figure The surface parameters Switch OFF Surface > Hexa Sizes. s) Defining Edge Parameters to Adjust the Mesh Although it may be enough to define the meshing with surface parameters, the mesh quality of more complex models can be improved by defining additional edge parameters. Perform these next steps to redistribute points along the diagonal (radial) edge of the O-grid. For the convenience of selecting the edges, right mouse click in the Display Tree to turn ON Vertices > Numbers and Edges > Bunching. Then make sure Vertices in ON. Zoom-in on the OUTLET area of the blocking. Select Blocking >Pre-mesh Params >Update Sizes.Make sure Update All is toggled on (default), and Press Apply. This will compute the node distributions on the blocking edges from the surface parameters. Turn ON Blocking > Pre-Mesh from the Display Tree. Press Yes, when it says, Mesh is currently out of date recompute? Right click on Blocking > Pre-Mesh > Solid and Wire in the Display Tree to display the mesh in Solid/Wire for better Visualization. The mesh will look like as shown below when viewing the OUTLET. 214

27 Figure Mesh before changing mesh parameters The mesh is denser at the walls. The near wall elements will have the same initial height that was set on the surface parameters, which was It may be desirable to have denser near-wall spacing. Select Blocking >Pre-mesh Params >Edge Params. Turn OFF Blocking > Pre-Mesh so the edges can be easily seen and selected. Select any of the radial edges. These are the edges created by the O-grid that are oriented radially in relation to the grid lines that run circumferentially around the tube. Or you can select the same edge shown in the figure below, which is the blocking Edge Set Spacing1 to 0.015, which is half the previous value. Set Spacing2 to 0, which will allow it to go as large as possible. Increase the number of nodes to 13 so the Ratio1 (1.25) can be met. Enable Copy Parameters and select Method Copy to Parallel edges to duplicate these settings on parallel edges in the blocking. Then press Apply. 215

28 Figure Setting edge meshing parameters 216

29 Figure Selection of edge for changing Parameters Note: Spacing1 is the first element size at vertex 118 while spacing2 is the first element size at vertex 196. Side 1 and Side 2 are indicated by the direction arrow that displays on the edge after it is selected. Switch OFF Edges > Bunching in the Display Tree. Switch ON Blocking > Pre-Mesh in the Display Tree. If you right click on Blocking > Pre-mesh, you should see Project faces checked ON by default. Choose Yes when asked to recompute the mesh. Switch OFF Geometry, Vertices and Edges in the Display Tree. Turn off the SOLID volume part name from the Display Tree and right click in the Display Tree to turn on Blocking > Pre-mesh > Solid and Wire if it is not already on. 217

30 Figure The final mesh displayed in Solid and Wire t) Checking mesh quality for determinants and angle To check the mesh quality, select Blocking >Pre-mesh Quality Histogram. Select the criterion as Determinant (2x2x2) and enter the Min-X value 0, Max-X value 1, Max-y height 12 and Num of bars 20. Press Apply. The histogram will be displayed in the lower right. A value of determinant greater than 0.2 is acceptable for most commercial solvers. 218

31 Figure Pre-mesh quality window while selecting Determinant 2x2x2 Figure Histogram showing Determinant 2x2x2 Then, in the Pre-Mesh Quality window at the upper left, select Angle from the Criterion pull down. Enter the values as shown below and press Apply. A new histogram will appear for the internal angles of elements as shown. 219

32 Figure Pre-mesh quality Window while selecting Angle An angle greater than 18 degrees solvers. is acceptable for most commercial Figure Histogram showing Angle Note: As taught in the 3DPipeJunct example, to display cells of a particular determinant or angle value, select a histogram bar and then select Show. Cells within that range will be highlighted. The user should then inspect the elements and decide on a solution. In most of the cases, block vertices can be moved or edge parameters can be changed to improve the area. 220

33 u) Running Pre-mesh smoother Before converting the Pre-mesh to an unstructured or structured mesh, the user may choose first to smooth the mesh. Select Blocking > Pre-mesh Smooth. The Pre-mesh smooth window will then appear. Select the Method as Quality. Select the Criterion as Angle and enter Smoothing iterations 3 and Up to quality 0.5 as shown. Figure Pre-mesh smooth window Press Apply to smooth mesh. Changes in the minimum angle of the mesh can be seen in the histogram as shown. The node position changes made by the pre-mesh smoother will not be saved to the blocking. So reloading the blocking and computing the mesh will always produced the mesh before smoothing. So at this point, you should not recompute the mesh. 221

34 Figure Histogram after running smoother v) Saving Select File > Blocking > Save blocking As and enter a name, such as b1.blk. Saving the blocking will allow the user to change any meshing parameters in the future by reloading the blocking onto the geometry. To write the mesh in an unstructured format, right mouse click in the Display Tree on Blocking > Pre-mesh > Convert to Unstruct Mesh. This will write the default name hex.uns to the working directory, and immediately load the mesh. To save the mesh to a different nam e, the user can then select File>Mesh>Save Mesh As. To write the mesh in a structured format, right mouse click in the Display Tree on Blocking > Pre-mesh > Convert to MultiBlock Mesh. Finally, save the project. 222

2. MODELING A MIXING ELBOW (2-D)

2. MODELING A MIXING ELBOW (2-D) MODELING A MIXING ELBOW (2-D) 2. MODELING A MIXING ELBOW (2-D) In this tutorial, you will use GAMBIT to create the geometry for a mixing elbow and then generate a mesh. The mixing elbow configuration is

More information

3. MODELING A THREE-PIPE INTERSECTION (3-D)

3. MODELING A THREE-PIPE INTERSECTION (3-D) 3. MODELING A THREE-PIPE INTERSECTION (3-D) This tutorial employs primitives that is, predefined GAMBIT modeling components and procedures. There are two types of GAMBIT primitives: Geometry Mesh Geometry

More information

Tutorial 2: Particles convected with the flow along a curved pipe.

Tutorial 2: Particles convected with the flow along a curved pipe. Tutorial 2: Particles convected with the flow along a curved pipe. Part 1: Creating an elbow In part 1 of this tutorial, you will create a model of a 90 elbow featuring a long horizontal inlet and a short

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Repairing a Boundary Mesh

Repairing a Boundary Mesh Tutorial 1. Repairing a Boundary Mesh Introduction TGrid offers several tools for mesh repair. While there is no right or wrong way to repair a mesh, the goal is to improve the quality of the mesh with

More information

Workshop 1: Basic Skills

Workshop 1: Basic Skills Workshop 1: Basic Skills 14.5 Release Introduction to ANSYS Fluent Meshing 2011 ANSYS, Inc. December 21, 2012 1 I Introduction Workshop Description: This workshop shows some of the clean up tools in Tgrid

More information

Introduction to ANSYS

Introduction to ANSYS Lecture 1 Introduction to ANSYS ICEM CFD 14. 0 Release Introduction to ANSYS ICEM CFD 1 2011 ANSYS, Inc. March 22, 2015 Purpose/Goals Ansys ICEM CFD is a general purpose grid generating program Grids for

More information

Introduction to ANSYS ICEM CFD

Introduction to ANSYS ICEM CFD Lecture 1 Introduction to ANSYS ICEM CFD 14.5 Release Introduction to ANSYS ICEM CFD 2012 ANSYS, Inc. April 1, 2013 1 Release 14.5 Purpose/Goals Ansys ICEM CFD is a general purpose grid generating program

More information

Tutorial 3: Constructive Editing (2D-CAD)

Tutorial 3: Constructive Editing (2D-CAD) (2D-CAD) The editing done up to now is not much different from the normal drawing board techniques. This section deals with commands to copy items we have already drawn, to move them and to make multiple

More information

14. AIRPLANE GEOMETRY

14. AIRPLANE GEOMETRY 14. AIRPLANE GEOMETRY In this tutorial you will import a STEP file that describes the geometry of an airplane body, including the wing and nacelle that houses the engine. You will clean up the geometry

More information

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE

Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE Getting Started with Abaqus: Interactive Edition Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you

More information

Lecture 7: Mesh Quality & Advanced Topics. Introduction to ANSYS Meshing Release ANSYS, Inc. February 12, 2015

Lecture 7: Mesh Quality & Advanced Topics. Introduction to ANSYS Meshing Release ANSYS, Inc. February 12, 2015 Lecture 7: Mesh Quality & Advanced Topics 15.0 Release Introduction to ANSYS Meshing 1 2015 ANSYS, Inc. February 12, 2015 Overview In this lecture we will learn: Impact of the Mesh Quality on the Solution

More information

8. BASIC TURBO MODEL WITH UNSTRUCTURED MESH

8. BASIC TURBO MODEL WITH UNSTRUCTURED MESH 8. BASIC TURBO MODEL WITH UNSTRUCTURED MESH This tutorial employs a simple turbine blade configuration to illustrate the basic turbo modeling functionality available in GAMBIT. It illustrates the steps

More information

Computational Fluid Dynamics autumn, 1st week

Computational Fluid Dynamics autumn, 1st week Computational Fluid Dynamics 2016 autumn, 1st week 1 Tamás Benedek benedek [at] ara.bme.hu www.ara.bme.hu/~benedek/cfd/icem The most important rule: Dont use space or specific characters in: File names,

More information

Workshop 3: Cutcell Mesh Generation. Introduction to ANSYS Fluent Meshing Release. Release ANSYS, Inc.

Workshop 3: Cutcell Mesh Generation. Introduction to ANSYS Fluent Meshing Release. Release ANSYS, Inc. Workshop 3: Cutcell Mesh Generation 14.5 Release Introduction to ANSYS Fluent Meshing 1 2011 ANSYS, Inc. December 21, 2012 I Introduction Workshop Description: CutCell meshing is a general purpose meshing

More information

Piping Design. Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index

Piping Design. Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index Piping Design Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index Dassault Systèmes 1994-2001. All rights reserved. Site Map Piping Design member member

More information

5. Create two planes and split the outer cylinder volume into four quadrants using the menus

5. Create two planes and split the outer cylinder volume into four quadrants using the menus Generating a 3D GAMBIT grid for concentric rotating cylinders Prepared by: Jagannath R Nanduri (jaggu.nanduri@mail.wvu.edu) 304-293-3111x2348 1. In order to overcome the problem of generating small size

More information

Problem description. It is desired to analyze the cracked body shown using a 3D finite element mesh: Top view. 50 radius. Material properties:

Problem description. It is desired to analyze the cracked body shown using a 3D finite element mesh: Top view. 50 radius. Material properties: Problem description It is desired to analyze the cracked body shown using a 3D finite element mesh: Top view 30 50 radius 30 Material properties: 5 2 E = 2.07 10 N/mm = 0.29 All dimensions in mm Crack

More information

November c Fluent Inc. November 8,

November c Fluent Inc. November 8, MIXSIM 2.1 Tutorial November 2006 c Fluent Inc. November 8, 2006 1 Copyright c 2006 by Fluent Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 04 CAD Import and Meshing from Conformal Faceting Input 14.5 Release Introduction to ANSYS FLUENT Meshing 2011 ANSYS, Inc. December 21, 2012 1 I Introduction Workshop Description: CAD files will

More information

ANSYS FLUENT. Lecture 3. Basic Overview of Using the FLUENT User Interface L3-1. Customer Training Material

ANSYS FLUENT. Lecture 3. Basic Overview of Using the FLUENT User Interface L3-1. Customer Training Material Lecture 3 Basic Overview of Using the FLUENT User Interface Introduction to ANSYS FLUENT L3-1 Parallel Processing FLUENT can readily be run across many processors in parallel. This will greatly speed up

More information

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359 Laminar Mixer Tutorial for STAR-CCM+ ME 448/548 March 30, 2014 Gerald Recktenwald gerry@pdx.edu 1 Overview Imagine that you are part of a team developing a medical diagnostic device. The device has a millimeter

More information

Lesson 1: Creating T- Spline Forms. In Samples section of your Data Panel, browse to: Fusion 101 Training > 03 Sculpt > 03_Sculpting_Introduction.

Lesson 1: Creating T- Spline Forms. In Samples section of your Data Panel, browse to: Fusion 101 Training > 03 Sculpt > 03_Sculpting_Introduction. 3.1: Sculpting Sculpting in Fusion 360 allows for the intuitive freeform creation of organic solid bodies and surfaces by leveraging the T- Splines technology. In the Sculpt Workspace, you can rapidly

More information

Appendix: To be performed during the lab session

Appendix: To be performed during the lab session Appendix: To be performed during the lab session Flow over a Cylinder Two Dimensional Case Using ANSYS Workbench Simple Mesh Latest revision: September 18, 2014 The primary objective of this Tutorial is

More information

Introduction to ANSYS Fluent Meshing

Introduction to ANSYS Fluent Meshing Workshop 06: Mesh Creation Including Removal of Gaps and Baffle Thickness 14.5 Release Introduction to ANSYS Fluent Meshing 1 2011 ANSYS, Inc. December 21, 2012 I Introduction Workshop Description: Fluent

More information

Autodesk Fusion 360: Model. Overview. Modeling techniques in Fusion 360

Autodesk Fusion 360: Model. Overview. Modeling techniques in Fusion 360 Overview Modeling techniques in Fusion 360 Modeling in Fusion 360 is quite a different experience from how you would model in conventional history-based CAD software. Some users have expressed that it

More information

1. CREATING AND MESHING BASIC GEOMETRY

1. CREATING AND MESHING BASIC GEOMETRY 1. CREATING AND MESHING BASIC GEOMETRY This tutorial illustrates geometry creation and mesh generation for a simple geometry using GAMBIT. In this tutorial you will learn how to: Start GAMBIT Use the Operation

More information

Introduction to ANSYS ICEM CFD

Introduction to ANSYS ICEM CFD Lecture 4 Volume Meshing 14. 0 Release Introduction to ANSYS ICEM CFD 1 2011 ANSYS, Inc. March 21, 2012 Introduction to Volume Meshing To automatically create 3D elements to fill volumetric domain Generally

More information

Viscous Hybrid Mesh Generation

Viscous Hybrid Mesh Generation Tutorial 4. Viscous Hybrid Mesh Generation Introduction In cases where you want to resolve the boundary layer, it is often more efficient to use prismatic cells in the boundary layer rather than tetrahedral

More information

Structural & Thermal Analysis Using the ANSYS Workbench Release 12.1 Environment

Structural & Thermal Analysis Using the ANSYS Workbench Release 12.1 Environment ANSYS Workbench Tutorial Structural & Thermal Analysis Using the ANSYS Workbench Release 12.1 Environment Kent L. Lawrence Mechanical and Aerospace Engineering University of Texas at Arlington SDC PUBLICATIONS

More information

Lesson 1 Parametric Modeling Fundamentals

Lesson 1 Parametric Modeling Fundamentals 1-1 Lesson 1 Parametric Modeling Fundamentals Create Simple Parametric Models. Understand the Basic Parametric Modeling Process. Create and Profile Rough Sketches. Understand the "Shape before size" approach.

More information

Reporting Mesh Statistics

Reporting Mesh Statistics Chapter 15. Reporting Mesh Statistics The quality of a mesh is determined more effectively by looking at various statistics, such as maximum skewness, rather than just performing a visual inspection. Unlike

More information

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options Chapter 10. Generating Prisms This chapter describes the automatic and manual procedure for creating prisms in TGrid. It also discusses the solution to some common problems that you may face while creating

More information

Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT

Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT Workbench Tutorial Minor Losses, Page 1 Tutorial Minor Losses using Pointwise and FLUENT Introduction This tutorial provides instructions for meshing two internal flows. Pointwise software will be used

More information

Ansoft HFSS Windows Screen Windows. Topics: Side Window. Go Back. Contents. Index

Ansoft HFSS Windows Screen Windows. Topics: Side Window. Go Back. Contents. Index Modifying Coordinates Entering Data in the Side Windows Modifying Snap To Absolute Relative Each screen in divided up into many windows. These windows can allow you to change the coordinates of the model,

More information

Geometry Clean-up in. Numerical Simulations

Geometry Clean-up in. Numerical Simulations Geometry Clean-up in Numerical Simulations Scope of the this Presentation The guidelines are very generic in nature and has been explained with examples. However, the users may need to check their software

More information

Exercise Guide. Published: August MecSoft Corpotation

Exercise Guide. Published: August MecSoft Corpotation VisualCAD Exercise Guide Published: August 2018 MecSoft Corpotation Copyright 1998-2018 VisualCAD 2018 Exercise Guide by Mecsoft Corporation User Notes: Contents 2 Table of Contents About this Guide 4

More information

ARCHITECTURE & GAMES. A is for Architect Simple Mass Modeling FORM & SPACE. Industry Careers Framework. Applied. Getting Started.

ARCHITECTURE & GAMES. A is for Architect Simple Mass Modeling FORM & SPACE. Industry Careers Framework. Applied. Getting Started. A is for Architect Simple Mass Modeling One of the first introductions to form and space usually comes at a very early age. As an infant, you might have played with building blocks to help hone your motor

More information

3 Polygonal Modeling. Getting Started with Maya 103

3 Polygonal Modeling. Getting Started with Maya 103 3 Polygonal Modeling In Maya, modeling refers to the process of creating virtual 3D surfaces for the characters and objects in the Maya scene. Surfaces play an important role in the overall Maya workflow

More information

SPACE - A Manifold Exploration Program

SPACE - A Manifold Exploration Program 1. Overview SPACE - A Manifold Exploration Program 1. Overview This appendix describes the manifold exploration program SPACE that is a companion to this book. Just like the GM program, the SPACE program

More information

HyperMesh - Fluent. An overall description of each main task is provided first, then a step-by-step description is provided using a simple example.

HyperMesh - Fluent. An overall description of each main task is provided first, then a step-by-step description is provided using a simple example. HyperMesh - Fluent This document describes how to create individual collectors containing boundary zones needed to impose boundary conditions using FLUENT, and how to export mesh files using HyperMesh

More information

SETTLEMENT OF A CIRCULAR FOOTING ON SAND

SETTLEMENT OF A CIRCULAR FOOTING ON SAND 1 SETTLEMENT OF A CIRCULAR FOOTING ON SAND In this chapter a first application is considered, namely the settlement of a circular foundation footing on sand. This is the first step in becoming familiar

More information

Mesh Quality Tutorial

Mesh Quality Tutorial Mesh Quality Tutorial Figure 1: The MeshQuality model. See Figure 2 for close-up of bottom-right area This tutorial will illustrate the importance of Mesh Quality in PHASE 2. This tutorial will also show

More information

Simulation of Laminar Pipe Flows

Simulation of Laminar Pipe Flows Simulation of Laminar Pipe Flows 57:020 Mechanics of Fluids and Transport Processes CFD PRELAB 1 By Timur Dogan, Michael Conger, Maysam Mousaviraad, Tao Xing and Fred Stern IIHR-Hydroscience & Engineering

More information

SOLIDWORKS 2016 and Engineering Graphics

SOLIDWORKS 2016 and Engineering Graphics SOLIDWORKS 2016 and Engineering Graphics An Integrated Approach Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

AutoCAD 2009 Tutorial

AutoCAD 2009 Tutorial AutoCAD 2009 Tutorial Second Level: 3D Modeling Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Schroff Development Corporation www.schroff.com Better Textbooks. Lower Prices. AutoCAD 2009

More information

Workbench Tutorial Flow Over an Airfoil, Page 1 ANSYS Workbench Tutorial Flow Over an Airfoil

Workbench Tutorial Flow Over an Airfoil, Page 1 ANSYS Workbench Tutorial Flow Over an Airfoil Workbench Tutorial Flow Over an Airfoil, Page 1 ANSYS Workbench Tutorial Flow Over an Airfoil Authors: Scott Richards, Keith Martin, and John M. Cimbala, Penn State University Latest revision: 17 January

More information

Creating and Analyzing a Simple Model in Abaqus/CAE

Creating and Analyzing a Simple Model in Abaqus/CAE Appendix B: Creating and Analyzing a Simple Model in Abaqus/CAE The following section is a basic tutorial for the experienced Abaqus user. It leads you through the Abaqus/CAE modeling process by visiting

More information

Solid Conduction Tutorial

Solid Conduction Tutorial SECTION 1 1 SECTION 1 The following is a list of files that will be needed for this tutorial. They can be found in the Solid_Conduction folder. Exhaust-hanger.tdf Exhaust-hanger.ntl 1.0.1 Overview The

More information

Basic Modeling 1 Tekla Structures 12.0 Basic Training September 19, 2006

Basic Modeling 1 Tekla Structures 12.0 Basic Training September 19, 2006 Tekla Structures 12.0 Basic Training September 19, 2006 Copyright 2006 Tekla Corporation Contents Contents 3 1 5 1.1 Start Tekla Structures 6 1.2 Create a New Model BasicModel1 7 1.3 Create Grids 10 1.4

More information

Simulation and Validation of Turbulent Pipe Flows

Simulation and Validation of Turbulent Pipe Flows Simulation and Validation of Turbulent Pipe Flows ENGR:2510 Mechanics of Fluids and Transport Processes CFD LAB 1 (ANSYS 17.1; Last Updated: Oct. 10, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim,

More information

TGrid 5.0 Tutorial Guide

TGrid 5.0 Tutorial Guide TGrid 5.0 Tutorial Guide April 2008 Copyright c 2008 by ANSYS, Inc. All Rights Reserved. No part of this document may be reproduced or otherwise used in any form without express written permission from

More information

Publication Number spse01695

Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens

More information

v Mesh Editing SMS 11.2 Tutorial Requirements Mesh Module Time minutes Prerequisites None Objectives

v Mesh Editing SMS 11.2 Tutorial Requirements Mesh Module Time minutes Prerequisites None Objectives v. 11.2 SMS 11.2 Tutorial Objectives This tutorial lesson teaches manual mesh generation and editing techniques that can be performed using SMS. It should be noted that manual methods are NOT recommended.

More information

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 This document contains an Abaqus tutorial for performing a buckling analysis using the finite element program

More information

Introduction to MSC.Patran

Introduction to MSC.Patran Exercise 1 Introduction to MSC.Patran Objectives: Create geometry for a Beam. Add Loads and Boundary Conditions. Review analysis results. MSC.Patran 301 Exercise Workbook - Release 9.0 1-1 1-2 MSC.Patran

More information

ANSYS AIM Tutorial Flow over an Ahmed Body

ANSYS AIM Tutorial Flow over an Ahmed Body Author(s): Sebastian Vecchi Created using ANSYS AIM 18.1 ANSYS AIM Tutorial Flow over an Ahmed Body Problem Specification Start Up Geometry Import Geometry Enclose Suppress Mesh Set Mesh Controls Generate

More information

Problem description. The FCBI-C element is used in the fluid part of the model.

Problem description. The FCBI-C element is used in the fluid part of the model. Problem description This tutorial illustrates the use of ADINA for analyzing the fluid-structure interaction (FSI) behavior of a flexible splitter behind a 2D cylinder and the surrounding fluid in a channel.

More information

GraphWorX64 Productivity Tips

GraphWorX64 Productivity Tips Description: Overview of the most important productivity tools in GraphWorX64 General Requirement: Basic knowledge of GraphWorX64. Introduction GraphWorX64 has a very powerful development environment in

More information

ANSYS AIM Tutorial Steady Flow Past a Cylinder

ANSYS AIM Tutorial Steady Flow Past a Cylinder ANSYS AIM Tutorial Steady Flow Past a Cylinder Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Solution Domain Boundary Conditions Start-Up

More information

A Guide to Autodesk Maya 2015

A Guide to Autodesk Maya 2015 A Guide to Autodesk Maya 2015 Written by Mitchell Youngerman Table of Contents Layout of Toolbars...pg 1 Creating Objects...pg 2 Selecting & Deselecting Objects...pg 3 Changing Perspective... pg 4 Transforming

More information

Advanced Meshing Tools

Advanced Meshing Tools Page 1 Advanced Meshing Tools Preface Using This Guide More Information Conventions What's New? Getting Started Entering the Advanced Meshing Tools Workbench Defining the Surface Mesh Parameters Setting

More information

ANSYS ICEM CFD User's Manual

ANSYS ICEM CFD User's Manual ANSYS ICEM CFD User's Manual ANSYS, Inc. Southpointe 2600 ANSYS Drive Canonsburg, PA 15317 ansysinfo@ansys.com http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494 Release 17.0 January 2016 ANSYS, Inc.

More information

Doctor Walt s Solid Edge Version 19 Workbook 137

Doctor Walt s Solid Edge Version 19 Workbook 137 Still using the SMART DIMENSION Tool, click on the left vertical edge of the sketch. Move the cursor to the left and click to set the text position. Type 1.5 for the value and hit the ENTER Key. Next,

More information

Autodesk Inventor 2019 and Engineering Graphics

Autodesk Inventor 2019 and Engineering Graphics Autodesk Inventor 2019 and Engineering Graphics An Integrated Approach Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the

More information

Transforming Objects and Components

Transforming Objects and Components 4 Transforming Objects and Components Arrow selection Lasso selection Paint selection Move Rotate Scale Universal Manipulator Soft Modification Show Manipulator Last tool used Figure 4.1 Maya s manipulation

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

EXTERNAL AERODYNAMICS

EXTERNAL AERODYNAMICS Tutorial EXTERNAL AERODYNAMICS HYBRID VOLUME MESH Table of Contents 1. Introduction... 2 1.1. Prerequisites... 2 1.2. Case description... 2 1.3. Data files... 2 2. Read the ANSA database... 3 3. Create

More information

SolidWorks 2013 and Engineering Graphics

SolidWorks 2013 and Engineering Graphics SolidWorks 2013 and Engineering Graphics An Integrated Approach Randy H. Shih SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

ANSYS AIM Tutorial Thermal Stresses in a Bar

ANSYS AIM Tutorial Thermal Stresses in a Bar ANSYS AIM Tutorial Thermal Stresses in a Bar Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Pre-Analysis Start-Up Geometry Draw Geometry Create

More information

Animated Modifiers (Morphing Teapot) Richard J Lapidus

Animated Modifiers (Morphing Teapot) Richard J Lapidus Animated Modifiers (Morphing Teapot) Richard J Lapidus Learning Objectives After completing this chapter, you will be able to: Add and adjust a wide range of modifiers. Work in both object and world space

More information

Case Study 1: Piezoelectric Rectangular Plate

Case Study 1: Piezoelectric Rectangular Plate Case Study 1: Piezoelectric Rectangular Plate PROBLEM - 3D Rectangular Plate, k31 Mode, PZT4, 40mm x 6mm x 1mm GOAL Evaluate the operation of a piezoelectric rectangular plate having electrodes in the

More information

Free Convection Cookbook for StarCCM+

Free Convection Cookbook for StarCCM+ ME 448/548 February 28, 2012 Free Convection Cookbook for StarCCM+ Gerald Recktenwald gerry@me.pdx.edu 1 Overview Figure 1 depicts a two-dimensional fluid domain bounded by a cylinder of diameter D. Inside

More information

Lesson 5 Solid Modeling - Constructive Solid Geometry

Lesson 5 Solid Modeling - Constructive Solid Geometry AutoCAD 2000i Tutorial 5-1 Lesson 5 Solid Modeling - Constructive Solid Geometry Understand the Constructive Solid Geometry Concept. Create a Binary Tree. Understand the basic Boolean Operations. Create

More information

ANSYS AIM Tutorial Fluid Flow Through a Transition Duct

ANSYS AIM Tutorial Fluid Flow Through a Transition Duct ANSYS AIM Tutorial Fluid Flow Through a Transition Duct Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Start Up Geometry Import Geometry Extracting Volume Suppress

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 02 Volume Fill Methods Introduction to ANSYS FLUENT Meshing 1 2011 ANSYS, Inc. December 21, 2012 I Introduction Workshop Description: Mesh files will be read into the Fluent Meshing software ready

More information

TRAINING GUIDE LATHE-LESSON-1 FACE, ROUGH, FINISH AND CUTOFF

TRAINING GUIDE LATHE-LESSON-1 FACE, ROUGH, FINISH AND CUTOFF TRAINING GUIDE LATHE-LESSON-1 FACE, ROUGH, FINISH AND CUTOFF Mastercam Training Guide Objectives You will create the geometry for Lathe-Lesson-1, and then generate a toolpath to machine the part on a CNC

More information

iric Software Changing River Science River2D Tutorials

iric Software Changing River Science River2D Tutorials iric Software Changing River Science River2D Tutorials iric Software Changing River Science Confluence of the Colorado River, Blue River and Indian Creek, Colorado, USA 1 TUTORIAL 1: RIVER2D STEADY SOLUTION

More information

Publication Number spse01695

Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

GEOMETRY MODELING & GRID GENERATION

GEOMETRY MODELING & GRID GENERATION GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur OBJECTIVE The objectives of this discussion are to relate experiences

More information

4) Finish the spline here. To complete the spline, double click the last point or select the spline tool again.

4) Finish the spline here. To complete the spline, double click the last point or select the spline tool again. 1) Select the line tool 3) Move the cursor along the X direction (be careful to stay on the X axis alignment so that the line is perpendicular) and click for the second point of the line. Type 0.5 for

More information

Webinar: TwinMesh for Reliable CFD Analysis of Rotating Positive Displacement Machines

Webinar: TwinMesh for Reliable CFD Analysis of Rotating Positive Displacement Machines Webinar: TwinMesh for Reliable CFD Analysis of Rotating Positive Displacement Machines 14.07.2015 Dipl.-Ing. Jan Hesse Jan.hesse@cfx-berlin.de CFX Berlin Software GmbH Karl-Marx-Allee 90 A 10243 Berlin

More information

and to the following students who assisted in the creation of the Fluid Dynamics tutorials:

and to the following students who assisted in the creation of the Fluid Dynamics tutorials: Fluid Dynamics CAx Tutorial: Channel Flow Basic Tutorial # 4 Deryl O. Snyder C. Greg Jensen Brigham Young University Provo, UT 84602 Special thanks to: PACE, Fluent, UGS Solutions, Altair Engineering;

More information

Solidworks 2006 Surface-modeling

Solidworks 2006 Surface-modeling Solidworks 2006 Surface-modeling (Tutorial 2-Mouse) Surface-modeling Solid-modeling A- 1 Assembly Design Design with a Master Model Surface-modeling Tutorial 2A Import 2D outline drawing into Solidworks2006

More information

User Guide. for. JewelCAD Professional Version 2.0

User Guide. for. JewelCAD Professional Version 2.0 User Guide Page 1 of 121 User Guide for JewelCAD Professional Version 2.0-1 - User Guide Page 2 of 121 Table of Content 1. Introduction... 7 1.1. Purpose of this document... 7 2. Launch JewelCAD Professional

More information

SURFACE WATER MODELING SYSTEM. 2. Change to the Data Files Folder and open the file poway1.xyz.

SURFACE WATER MODELING SYSTEM. 2. Change to the Data Files Folder and open the file poway1.xyz. SURFACE WATER MODELING SYSTEM Mesh Editing This tutorial lesson teaches manual finite element mesh generation techniques that can be performed using SMS. It gives a brief introduction to tools in SMS that

More information

Quick Tips to Using I-DEAS. Learn about:

Quick Tips to Using I-DEAS. Learn about: Learn about: Quick Tips to Using I-DEAS I-DEAS Tutorials: Fundamental Skills windows mouse buttons applications and tasks menus icons part modeling viewing selecting data management using the online tutorials

More information

Pump Modeler Template Documentation

Pump Modeler Template Documentation Pump Modeler Template Documentation 2015 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited CONTENTS USER INTERFACE AND WORKFLOW... 4 STEP 1: IMPORT GEOMETRY...

More information

3D Design with 123D Design

3D Design with 123D Design 3D Design with 123D Design Introduction: 3D Design involves thinking and creating in 3 dimensions. x, y and z axis Working with 123D Design 123D Design is a 3D design software package from Autodesk. A

More information

Geometric Entities for Pilot3D. Copyright 2001 by New Wave Systems, Inc. All Rights Reserved

Geometric Entities for Pilot3D. Copyright 2001 by New Wave Systems, Inc. All Rights Reserved Geometric Entities for Pilot3D Copyright 2001 by New Wave Systems, Inc. All Rights Reserved Introduction on Geometric Entities for Pilot3D The best way to develop a good understanding of any Computer-Aided

More information

Structural & Thermal Analysis using the ANSYS Workbench Release 11.0 Environment. Kent L. Lawrence

Structural & Thermal Analysis using the ANSYS Workbench Release 11.0 Environment. Kent L. Lawrence ANSYS Workbench Tutorial Structural & Thermal Analysis using the ANSYS Workbench Release 11.0 Environment Kent L. Lawrence Mechanical and Aerospace Engineering University of Texas at Arlington SDC PUBLICATIONS

More information

Meshing of flow and heat transfer problems

Meshing of flow and heat transfer problems Meshing of flow and heat transfer problems Luyao Zou a, Zhe Li b, Qiqi Fu c and Lujie Sun d School of, Shandong University of science and technology, Shandong 266590, China. a zouluyaoxf@163.com, b 1214164853@qq.com,

More information

Objectives This tutorial demonstrates how to use feature objects points, arcs and polygons to make grid independent conceptual models.

Objectives This tutorial demonstrates how to use feature objects points, arcs and polygons to make grid independent conceptual models. v. 9.0 GMS 9.0 Tutorial Use points, arcs and polygons to make grid independent conceptual models Objectives This tutorial demonstrates how to use feature objects points, arcs and polygons to make grid

More information

Controlling the Drawing Display

Controlling the Drawing Display Controlling the Drawing Display In This Chapter 8 AutoCAD provides many ways to display views of your drawing. As you edit your drawing, you can control the drawing display and move quickly to different

More information

15. SAILBOAT GEOMETRY

15. SAILBOAT GEOMETRY SAILBOAT GEOMETRY 15. SAILBOAT GEOMETRY In this tutorial you will import a STEP file that describes the geometry of a sailboat hull. You will split the hull along the symmetry plane, create a flow volume

More information

Lesson 5: Board Design Files

Lesson 5: Board Design Files 5 Lesson 5: Board Design Files Learning Objectives In this lesson you will: Use the Mechanical Symbol Editor to create a mechanical board symbol Use the PCB Design Editor to create a master board design

More information

StickFont Editor v1.01 User Manual. Copyright 2012 NCPlot Software LLC

StickFont Editor v1.01 User Manual. Copyright 2012 NCPlot Software LLC StickFont Editor v1.01 User Manual Copyright 2012 NCPlot Software LLC StickFont Editor Manual Table of Contents Welcome... 1 Registering StickFont Editor... 3 Getting Started... 5 Getting Started...

More information

SOLIDWORKS: Lesson III Patterns & Mirrors. UCF Engineering

SOLIDWORKS: Lesson III Patterns & Mirrors. UCF Engineering SOLIDWORKS: Lesson III Patterns & Mirrors UCF Engineering Solidworks Review Last lesson we discussed several more features that can be added to models in order to increase their complexity. We are now

More information