Bayesian Networks: Independencies and Inference. What Independencies does a Bayes Net Model?

Size: px
Start display at page:

Download "Bayesian Networks: Independencies and Inference. What Independencies does a Bayes Net Model?"

Transcription

1 Bayesan Networks: Indeendences and Inference Scott Daves and Andrew Moore Note to other teachers and users of these sldes. Andrew and Scott would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm or to modfy them to ft your own needs. oweront orgnals are avalable. If you make use of a sgnfcant orton of these sldes n your own lecture lease nclude ths message or the followng lnk to the source reostory of Andrew s tutorals: htt:// omments and correctons gratefully receved. What Indeendences does a Bayes Net Model? In order for a Bayesan network to model a robablty dstrbuton the followng must be true by defnton: ach varable s condtonally ndeendent of all ts nondescendants n the grah gven the value of all ts arents. Ths mles 1 K n arents 1 But what else does t mly? n 1

2 2 What Indeendences does a Bayes Net Model? xamle: Gven does learnng the value of tell us nothng new about? I.e. s equal to? es. Snce we know the value of all of s arents namely and s not a descendant of s condtonally ndeendent of. Also snce ndeendence s symmetrc. Quck roof that ndeendence s symmetrc Assume: Then: Bayes s Rule han Rule By Assumton Bayes s Rule

3 What Indeendences does a Bayes Net Model? Let I<> reresent and beng condtonally ndeendent gven. I<>? es ust as n revous examle: All s arents gven and s not a descendant. What Indeendences does a Bayes Net Model? U V I<{U}>? No. I<{UV}>? es. Maybe I< S > ff S acts a cutset between and n an undrected verson of the grah? 3

4 Thngs get a lttle more confusng has no arents so we re know all ts arents values trvally s not a descendant of So I<{}> even though there s a undrected ath from to through an unknown varable. What f we do know the value of though? Or one of ts descendants? The Burglar Alarm examle Burglar arthquake Alarm hone all our house has a twtchy burglar alarm that s also sometmes trggered by earthquakes. arth arguably doesn t care whether your house s currently beng burgled Whle you are on vacaton one of your neghbors calls and tells you your home s burglar alarm s rngng. Uh oh! 4

5 Thngs get a lot more confusng Burglar arthquake Alarm hone all But now suose you learn that there was a medum-szed earthquake n your neghborhood. Oh whew! robably not a burglar after all. arthquake exlans away the hyothetcal burglar. But then t must not be the case that I<Burglar{hone all} arthquake> even though I<Burglar{} arthquake>! d-searaton to the rescue Fortunately there s a relatvely smle algorthm for determnng whether two varables n a Bayesan network are condtonally ndeendent: d-searaton. Defnton: and are d-searated by a set of evdence varables ff every undrected ath from to s blocked where a ath s blocked ff one or more of the followng condtons s true:... 5

6 A ath s blocked when... There exsts a varable V on the ath such that t s n the evdence set the arcs uttng V n the ath are tal-to-tal Or there exsts a varable V on the ath such that t s n the evdence set the arcs uttng V n the ath are tal-to-head Or... V V A ath s blocked when the funky case Or there exsts a varable V on the ath such that t s NOT n the evdence set nether are any of ts descendants the arcs uttng V on the ath are head-to-head V 6

7 d-searaton to the rescue cont d Theorem [Verma & earl 1998]: If a set of evdence varables d-searates and n a Bayesan network s grah then I< >. d-searaton can be comuted n lnear tme usng a deth-frst-search-lke algorthm. Great! We now have a fast algorthm for automatcally nferrng whether learnng the value of one varable mght gve us any addtonal hnts about some other varable gven what we already know. Mght : Varables may actually be ndeendent when they re not d- searated deendng on the actual robabltes nvolved d-searaton examle A G B D F H I< {} D>? I< {A} D>? I< {A B} D>? I< {A B J} D>? I< {A B J} D>? I J 7

8 Bayesan Network Inference Inference: calculatng for some varables or sets of varables and. Inference n Bayesan networks s #-hard! Inuts: ror robabltes of.5 Reduces to I1 I2 I3 I4 I5 How many satsfyng assgnments? O O must be #sat. assgn.*.5^#nuts Bayesan Network Inference But nference s stll tractable n some cases. Let s look a secal class of networks: trees / forests n whch each node has at most one arent. 8

9 Decomosng the robabltes Suose we want where s some set of evdence varables. Let s slt nto two arts: - s the art consstng of assgnments to varables n the subtree rooted at s the rest of t Decomosng the robabltes cont d 9

10 10 Decomosng the robabltes cont d Decomosng the robabltes cont d

11 11 Decomosng the robabltes cont d? a Where: α s a constant ndeendent of π λ - Usng the decomoston for nference We can use ths decomoston to do nference as follows. Frst comute λ - for all recursvely usng the leaves of the tree as the base case. If s a leaf: If s n : λ 1 f matches 0 otherwse If s not n : - s the null set so - 1 constant

12 Quck asde: Vrtual evdence For theoretcal smlcty but wthout loss of generalty let s assume that all varables n the evdence set are leaves n the tree. Why can we do ths WLOG: quvalent to Observe Observe Where 1 f 0 otherwse alculatng λ for non-leaves Suose has one chld c. Then:? c 12

13 13 alculatng λ for non-leaves Suose has one chld c. Then: c? alculatng λ for non-leaves Suose has one chld c. Then: c?

14 14 alculatng λ for non-leaves Suose has one chld c. Then: c?? alculatng λ for non-leaves Now suose has a set of chldren. Snce d-searates each of ts subtrees the contrbuton of each subtree to λ s ndeendent:??? where λ s the contrbuton to - of the art of the evdence lyng n the subtree rooted at one of s chldren.

15 We are now λ-hay So now we have a way to recursvely comute all the λ s startng from the root and usng the leaves as the base case. If we want we can thnk of each node n the network as an autonomous rocessor that asses a lttle λ message to ts arent. λ λ λ λ λ λ The other half of the roblem Remember απ λ. Now that we have all the λ s what about the π s? π. What about the root of the tree r? In that case r s the null set so π r r. No sweat. Snce we also know λ r we can comute the fnal r. So for an arbtrary wth arent let s nductvely assume we know π and/or. How do we get π? 15

16 16 omutng π omutng π

17 17 omutng π omutng π

18 18 omutng π? omutng π Where π s defned as??

19 We re done. ay! Thus we can comute all the π s and n turn all the s. an thnk of nodes as autonomous rocessors assng λ and π messages to ther neghbors λ π π λ λ λ λ λ π π π π onunctve queres What f we want e.g. A B nstead of ust margnal dstrbutons A and B? Just use chan rule: A B A B A ach of the latter robabltes can be comuted usng the technque ust dscussed. 19

20 olytrees Technque can be generalzed to olytrees: undrected versons of the grahs are stll trees but nodes can have more than one arent Dealng wth cycles an deal wth undrected cycles n grah by clusterng varables together A A B D B D ondtonng Set to 0 Set to 1 20

21 Jon trees Arbtrary Bayesan network can be transformed va some evl grah-theoretc magc nto a on tree n whch a smlar method can be emloyed. B A D F G BD AB BD In the worst case the on tree nodes must take on exonentally many combnatons of values but often works well n ractce DF 21

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm, or to modfy them to ft your

More information

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.

Complex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following. Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal

More information

Overview. CSC 2400: Computer Systems. Pointers in C. Pointers - Variables that hold memory addresses - Using pointers to do call-by-reference in C

Overview. CSC 2400: Computer Systems. Pointers in C. Pointers - Variables that hold memory addresses - Using pointers to do call-by-reference in C CSC 2400: Comuter Systems Ponters n C Overvew Ponters - Varables that hold memory addresses - Usng onters to do call-by-reference n C Ponters vs. Arrays - Array names are constant onters Ponters and Strngs

More information

Region Segmentation Readings: Chapter 10: 10.1 Additional Materials Provided

Region Segmentation Readings: Chapter 10: 10.1 Additional Materials Provided Regon Segmentaton Readngs: hater 10: 10.1 Addtonal Materals Provded K-means lusterng tet EM lusterng aer Grah Parttonng tet Mean-Shft lusterng aer 1 Image Segmentaton Image segmentaton s the oeraton of

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 1 ata Structures and Algorthms Chapter 4: Trees BST Text: Read Wess, 4.3 Izmr Unversty of Economcs 1 The Search Tree AT Bnary Search Trees An mportant applcaton of bnary trees s n searchng. Let us assume

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,

More information

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.

Assignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009. Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton

More information

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1)

For instance, ; the five basic number-sets are increasingly more n A B & B A A = B (1) Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A

More information

Machine Learning: Algorithms and Applications

Machine Learning: Algorithms and Applications 14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of Bozen-Bolzano Faculty of Computer Scence Academc Year 011-01 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of

More information

Intro. Iterators. 1. Access

Intro. Iterators. 1. Access Intro Ths mornng I d lke to talk a lttle bt about s and s. We wll start out wth smlartes and dfferences, then we wll see how to draw them n envronment dagrams, and we wll fnsh wth some examples. Happy

More information

CS221: Algorithms and Data Structures. Priority Queues and Heaps. Alan J. Hu (Borrowing slides from Steve Wolfman)

CS221: Algorithms and Data Structures. Priority Queues and Heaps. Alan J. Hu (Borrowing slides from Steve Wolfman) CS: Algorthms and Data Structures Prorty Queues and Heaps Alan J. Hu (Borrowng sldes from Steve Wolfman) Learnng Goals After ths unt, you should be able to: Provde examples of approprate applcatons for

More information

Brave New World Pseudocode Reference

Brave New World Pseudocode Reference Brave New World Pseudocode Reference Pseudocode s a way to descrbe how to accomplsh tasks usng basc steps lke those a computer mght perform. In ths week s lab, you'll see how a form of pseudocode can be

More information

CMPS 10 Introduction to Computer Science Lecture Notes

CMPS 10 Introduction to Computer Science Lecture Notes CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not

More information

Solving Optimization Problems on Orthogonal Ray Graphs

Solving Optimization Problems on Orthogonal Ray Graphs Solvng Otmzaton Problems on Orthogonal Ray Grahs Steven Chalck 1, Phl Kndermann 2, Faban L 2, Alexander Wolff 2 1 Insttut für Mathematk, TU Berln, Germany chalck@math.tu-berln.de 2 Lehrstuhl für Informatk

More information

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions

Sorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions Sortng Revew Introducton to Algorthms Qucksort CSE 680 Prof. Roger Crawfs Inserton Sort T(n) = Θ(n 2 ) In-place Merge Sort T(n) = Θ(n lg(n)) Not n-place Selecton Sort (from homework) T(n) = Θ(n 2 ) In-place

More information

Hermite Splines in Lie Groups as Products of Geodesics

Hermite Splines in Lie Groups as Products of Geodesics Hermte Splnes n Le Groups as Products of Geodescs Ethan Eade Updated May 28, 2017 1 Introducton 1.1 Goal Ths document defnes a curve n the Le group G parametrzed by tme and by structural parameters n the

More information

THE CONDENSED FUZZY K-NEAREST NEIGHBOR RULE BASED ON SAMPLE FUZZY ENTROPY

THE CONDENSED FUZZY K-NEAREST NEIGHBOR RULE BASED ON SAMPLE FUZZY ENTROPY Proceedngs of the 20 Internatonal Conference on Machne Learnng and Cybernetcs, Guln, 0-3 July, 20 THE CONDENSED FUZZY K-NEAREST NEIGHBOR RULE BASED ON SAMPLE FUZZY ENTROPY JUN-HAI ZHAI, NA LI, MENG-YAO

More information

Harvard University CS 101 Fall 2005, Shimon Schocken. Assembler. Elements of Computing Systems 1 Assembler (Ch. 6)

Harvard University CS 101 Fall 2005, Shimon Schocken. Assembler. Elements of Computing Systems 1 Assembler (Ch. 6) Harvard Unversty CS 101 Fall 2005, Shmon Schocken Assembler Elements of Computng Systems 1 Assembler (Ch. 6) Why care about assemblers? Because Assemblers employ some nfty trcks Assemblers are the frst

More information

Machine Learning. K-means Algorithm

Machine Learning. K-means Algorithm Macne Learnng CS 6375 --- Sprng 2015 Gaussan Mture Model GMM pectaton Mamzaton M Acknowledgement: some sldes adopted from Crstoper Bsop Vncent Ng. 1 K-means Algortm Specal case of M Goal: represent a data

More information

Assembler. Shimon Schocken. Spring Elements of Computing Systems 1 Assembler (Ch. 6) Compiler. abstract interface.

Assembler. Shimon Schocken. Spring Elements of Computing Systems 1 Assembler (Ch. 6) Compiler. abstract interface. IDC Herzlya Shmon Schocken Assembler Shmon Schocken Sprng 2005 Elements of Computng Systems 1 Assembler (Ch. 6) Where we are at: Human Thought Abstract desgn Chapters 9, 12 abstract nterface H.L. Language

More information

Hierarchical clustering for gene expression data analysis

Hierarchical clustering for gene expression data analysis Herarchcal clusterng for gene expresson data analyss Gorgo Valentn e-mal: valentn@ds.unm.t Clusterng of Mcroarray Data. Clusterng of gene expresson profles (rows) => dscovery of co-regulated and functonally

More information

Parallel Numerics. 1 Preconditioning & Iterative Solvers (From 2016)

Parallel Numerics. 1 Preconditioning & Iterative Solvers (From 2016) Technsche Unverstät München WSe 6/7 Insttut für Informatk Prof. Dr. Thomas Huckle Dpl.-Math. Benjamn Uekermann Parallel Numercs Exercse : Prevous Exam Questons Precondtonng & Iteratve Solvers (From 6)

More information

5 The Primal-Dual Method

5 The Primal-Dual Method 5 The Prmal-Dual Method Orgnally desgned as a method for solvng lnear programs, where t reduces weghted optmzaton problems to smpler combnatoral ones, the prmal-dual method (PDM) has receved much attenton

More information

Lecture Note 08 EECS 4101/5101 Instructor: Andy Mirzaian. All Nearest Neighbors: The Lifting Method

Lecture Note 08 EECS 4101/5101 Instructor: Andy Mirzaian. All Nearest Neighbors: The Lifting Method Lecture Note 08 EECS 4101/5101 Instructor: Andy Mrzaan Introducton All Nearest Neghbors: The Lftng Method Suose we are gven aset P ={ 1, 2,..., n }of n onts n the lane. The gven coordnates of the -th ont

More information

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example

News. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example Unversty of Brtsh Columba CPSC, Intro to Computaton Jan-Apr Tamara Munzner News Assgnment correctons to ASCIIArtste.java posted defntely read WebCT bboards Arrays Lecture, Tue Feb based on sldes by Kurt

More information

A NOTE ON FUZZY CLOSURE OF A FUZZY SET

A NOTE ON FUZZY CLOSURE OF A FUZZY SET (JPMNT) Journal of Process Management New Technologes, Internatonal A NOTE ON FUZZY CLOSURE OF A FUZZY SET Bhmraj Basumatary Department of Mathematcal Scences, Bodoland Unversty, Kokrajhar, Assam, Inda,

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Decson surface s a hyperplane (lne n 2D) n feature space (smlar to the Perceptron) Arguably, the most mportant recent dscovery n machne learnng In a nutshell: map the data to a predetermned

More information

1 Dynamic Connectivity

1 Dynamic Connectivity 15-850: Advanced Algorthms CMU, Sprng 2017 Lecture #3: Dynamc Graph Connectvty algorthms 01/30/17 Lecturer: Anupam Gupta Scrbe: Hu Han Chn, Jacob Imola Dynamc graph algorthms s the study of standard graph

More information

Searching & Sorting. Definitions of Search and Sort. Linear Search in C++ Linear Search. Week 11. index to the item, or -1 if not found.

Searching & Sorting. Definitions of Search and Sort. Linear Search in C++ Linear Search. Week 11. index to the item, or -1 if not found. Searchng & Sortng Wee 11 Gadds: 8, 19.6,19.8 CS 5301 Sprng 2014 Jll Seaman 1 Defntons of Search and Sort Search: fnd a gven tem n a lst, return the ndex to the tem, or -1 f not found. Sort: rearrange the

More information

Computer models of motion: Iterative calculations

Computer models of motion: Iterative calculations Computer models o moton: Iteratve calculatons OBJECTIVES In ths actvty you wll learn how to: Create 3D box objects Update the poston o an object teratvely (repeatedly) to anmate ts moton Update the momentum

More information

Solving two-person zero-sum game by Matlab

Solving two-person zero-sum game by Matlab Appled Mechancs and Materals Onlne: 2011-02-02 ISSN: 1662-7482, Vols. 50-51, pp 262-265 do:10.4028/www.scentfc.net/amm.50-51.262 2011 Trans Tech Publcatons, Swtzerland Solvng two-person zero-sum game by

More information

Undirected Graphical Models II

Undirected Graphical Models II Readngs: K&F 4.4, 4.5, 4.6 Undrected Graphcal Models II Lecture 5 pr, 20 S 55, Statstcal Methods, Sprng 20 Instructor: Su-In Lee Unversty of Washngton, Seattle Last tme Markov networks representaton Local

More information

Module Management Tool in Software Development Organizations

Module Management Tool in Software Development Organizations Journal of Computer Scence (5): 8-, 7 ISSN 59-66 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. Al-Rababah and Mohammad A. Al-Rababah Faculty of IT, Al-Ahlyyah Amman Unversty,

More information

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array

Insertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array Inserton Sort Dvde and Conquer Sortng CSE 6 Data Structures Lecture 18 What f frst k elements of array are already sorted? 4, 7, 1, 5, 1, 16 We can shft the tal of the sorted elements lst down and then

More information

Lecture #15 Lecture Notes

Lecture #15 Lecture Notes Lecture #15 Lecture Notes The ocean water column s very much a 3-D spatal entt and we need to represent that structure n an economcal way to deal wth t n calculatons. We wll dscuss one way to do so, emprcal

More information

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search

Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to

More information

A Topology-aware Random Walk

A Topology-aware Random Walk A Topology-aware Random Walk Inkwan Yu, Rchard Newman Dept. of CISE, Unversty of Florda, Ganesvlle, Florda, USA Abstract When a graph can be decomposed nto clusters of well connected subgraphs, t s possble

More information

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law)

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law) Machne Learnng Support Vector Machnes (contans materal adapted from talks by Constantn F. Alfers & Ioanns Tsamardnos, and Martn Law) Bryan Pardo, Machne Learnng: EECS 349 Fall 2014 Support Vector Machnes

More information

Cluster Analysis of Electrical Behavior

Cluster Analysis of Electrical Behavior Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

More information

such that is accepted of states in , where Finite Automata Lecture 2-1: Regular Languages be an FA. A string is the transition function,

such that is accepted of states in , where Finite Automata Lecture 2-1: Regular Languages be an FA. A string is the transition function, * Lecture - Regular Languages S Lecture - Fnte Automata where A fnte automaton s a -tuple s a fnte set called the states s a fnte set called the alphabet s the transton functon s the ntal state s the set

More information

Ramsey numbers of cubes versus cliques

Ramsey numbers of cubes versus cliques Ramsey numbers of cubes versus clques Davd Conlon Jacob Fox Choongbum Lee Benny Sudakov Abstract The cube graph Q n s the skeleton of the n-dmensonal cube. It s an n-regular graph on 2 n vertces. The Ramsey

More information

Report on On-line Graph Coloring

Report on On-line Graph Coloring 2003 Fall Semester Comp 670K Onlne Algorthm Report on LO Yuet Me (00086365) cndylo@ust.hk Abstract Onlne algorthm deals wth data that has no future nformaton. Lots of examples demonstrate that onlne algorthm

More information

Priority queues and heaps Professors Clark F. Olson and Carol Zander

Priority queues and heaps Professors Clark F. Olson and Carol Zander Prorty queues and eaps Professors Clark F. Olson and Carol Zander Prorty queues A common abstract data type (ADT) n computer scence s te prorty queue. As you mgt expect from te name, eac tem n te prorty

More information

1 Introducton Effcent and speedy recovery of electrc power networks followng a major outage, caused by a dsaster such as extreme weather or equpment f

1 Introducton Effcent and speedy recovery of electrc power networks followng a major outage, caused by a dsaster such as extreme weather or equpment f Effcent Recovery from Power Outage (Extended Summary) Sudpto Guha Λ Anna Moss y Joseph (Seff) Naor z Baruch Scheber x Abstract We study problems that are motvated by the real-lfe problem of effcent recovery

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

Wightman. Mobility. Quick Reference Guide THIS SPACE INTENTIONALLY LEFT BLANK

Wightman. Mobility. Quick Reference Guide THIS SPACE INTENTIONALLY LEFT BLANK Wghtman Moblty Quck Reference Gude THIS SPACE INTENTIONALLY LEFT BLANK WIGHTMAN MOBILITY BASICS How to Set Up Your Vocemal 1. On your phone s dal screen, press and hold 1 to access your vocemal. If your

More information

CS1100 Introduction to Programming

CS1100 Introduction to Programming Factoral (n) Recursve Program fact(n) = n*fact(n-) CS00 Introducton to Programmng Recurson and Sortng Madhu Mutyam Department of Computer Scence and Engneerng Indan Insttute of Technology Madras nt fact

More information

Lecture 5: Probability Distributions. Random Variables

Lecture 5: Probability Distributions. Random Variables Lecture 5: Probablty Dstrbutons Random Varables Probablty Dstrbutons Dscrete Random Varables Contnuous Random Varables and ther Dstrbutons Dscrete Jont Dstrbutons Contnuous Jont Dstrbutons Independent

More information

Math Homotopy Theory Additional notes

Math Homotopy Theory Additional notes Math 527 - Homotopy Theory Addtonal notes Martn Frankland February 4, 2013 The category Top s not Cartesan closed. problem. In these notes, we explan how to remedy that 1 Compactly generated spaces Ths

More information

Array transposition in CUDA shared memory

Array transposition in CUDA shared memory Array transposton n CUDA shared memory Mke Gles February 19, 2014 Abstract Ths short note s nspred by some code wrtten by Jeremy Appleyard for the transposton of data through shared memory. I had some

More information

Announcements. Supervised Learning

Announcements. Supervised Learning Announcements See Chapter 5 of Duda, Hart, and Stork. Tutoral by Burge lnked to on web page. Supervsed Learnng Classfcaton wth labeled eamples. Images vectors n hgh-d space. Supervsed Learnng Labeled eamples

More information

ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE

ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE Yordzhev K., Kostadnova H. Інформаційні технології в освіті ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE Yordzhev K., Kostadnova H. Some aspects of programmng educaton

More information

Expectation Maximization (EM). Mixtures of Gaussians. Learning probability distribution

Expectation Maximization (EM). Mixtures of Gaussians. Learning probability distribution S 2750 Macne Learnng Lecture 7 ectaton Mamzaton M. Mtures of Gaussans. Mos auskrect mos@cs.tt.edu 5329 Sennott Square S 2750 Macne Learnng Learnng robabty dstrbuton Basc earnng settngs: A set of random

More information

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe

CSCI 104 Sorting Algorithms. Mark Redekopp David Kempe CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal

More information

Broadcast Time Synchronization Algorithm for Wireless Sensor Networks Chaonong Xu 1)2)3), Lei Zhao 1)2), Yongjun Xu 1)2) and Xiaowei Li 1)2)

Broadcast Time Synchronization Algorithm for Wireless Sensor Networks Chaonong Xu 1)2)3), Lei Zhao 1)2), Yongjun Xu 1)2) and Xiaowei Li 1)2) Broadcast Tme Synchronzaton Algorthm for Wreless Sensor Networs Chaonong Xu )2)3), Le Zhao )2), Yongun Xu )2) and Xaowe L )2) ) Key Laboratory of Comuter Archtecture, Insttute of Comutng Technology Chnese

More information

On Some Entertaining Applications of the Concept of Set in Computer Science Course

On Some Entertaining Applications of the Concept of Set in Computer Science Course On Some Entertanng Applcatons of the Concept of Set n Computer Scence Course Krasmr Yordzhev *, Hrstna Kostadnova ** * Assocate Professor Krasmr Yordzhev, Ph.D., Faculty of Mathematcs and Natural Scences,

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15 CS434a/541a: Pattern Recognton Prof. Olga Veksler Lecture 15 Today New Topc: Unsupervsed Learnng Supervsed vs. unsupervsed learnng Unsupervsed learnng Net Tme: parametrc unsupervsed learnng Today: nonparametrc

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information

ELEC 377 Operating Systems. Week 6 Class 3

ELEC 377 Operating Systems. Week 6 Class 3 ELEC 377 Operatng Systems Week 6 Class 3 Last Class Memory Management Memory Pagng Pagng Structure ELEC 377 Operatng Systems Today Pagng Szes Vrtual Memory Concept Demand Pagng ELEC 377 Operatng Systems

More information

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes SPH3UW Unt 7.3 Sphercal Concave Mrrors Page 1 of 1 Notes Physcs Tool box Concave Mrror If the reflectng surface takes place on the nner surface of the sphercal shape so that the centre of the mrror bulges

More information

CHAPTER 2 DECOMPOSITION OF GRAPHS

CHAPTER 2 DECOMPOSITION OF GRAPHS CHAPTER DECOMPOSITION OF GRAPHS. INTRODUCTION A graph H s called a Supersubdvson of a graph G f H s obtaned from G by replacng every edge uv of G by a bpartte graph,m (m may vary for each edge by dentfyng

More information

Fitting: Deformable contours April 26 th, 2018

Fitting: Deformable contours April 26 th, 2018 4/6/08 Fttng: Deformable contours Aprl 6 th, 08 Yong Jae Lee UC Davs Recap so far: Groupng and Fttng Goal: move from array of pxel values (or flter outputs) to a collecton of regons, objects, and shapes.

More information

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap

Empirical Distributions of Parameter Estimates. in Binary Logistic Regression Using Bootstrap Int. Journal of Math. Analyss, Vol. 8, 4, no. 5, 7-7 HIKARI Ltd, www.m-hkar.com http://dx.do.org/.988/jma.4.494 Emprcal Dstrbutons of Parameter Estmates n Bnary Logstc Regresson Usng Bootstrap Anwar Ftranto*

More information

A fault tree analysis strategy using binary decision diagrams

A fault tree analysis strategy using binary decision diagrams Loughborough Unversty Insttutonal Repostory A fault tree analyss strategy usng bnary decson dagrams Ths tem was submtted to Loughborough Unversty's Insttutonal Repostory by the/an author. Addtonal Informaton:

More information

Sorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort

Sorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort Sortng: The Bg Pcture Gven n comparable elements n an array, sort them n an ncreasng (or decreasng) order. Smple algorthms: O(n ) Inserton sort Selecton sort Bubble sort Shell sort Fancer algorthms: O(n

More information

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss.

Today s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss. Today s Outlne Sortng Chapter 7 n Wess CSE 26 Data Structures Ruth Anderson Announcements Wrtten Homework #6 due Frday 2/26 at the begnnng of lecture Proect Code due Mon March 1 by 11pm Today s Topcs:

More information

GSLM Operations Research II Fall 13/14

GSLM Operations Research II Fall 13/14 GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are

More information

CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Quicksort Comparison Sorting Bound CSE 326: Data Structures Qucksort Comparson Sortng Bound Bran Curless Sprng 2008 Announcements (5/14/08) Homework due at begnnng of class on Frday. Secton tomorrow: Graded homeworks returned More dscusson

More information

Monte Carlo inference

Monte Carlo inference CS 3750 achne Learnng Lecture 0 onte Carlo nerence los Hauskrecht los@cs.ptt.edu 539 Sennott Square Iportance Saplng an approach or estatng the epectaton o a uncton relatve to soe dstrbuton target dstrbuton

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms Heaps and Heapsort Reference: CLRS Chapter 6 Topcs: Heaps Heapsort Prorty queue Huo Hongwe Recap and overvew The story so far... Inserton sort runnng tme of Θ(n 2 ); sorts

More information

CRF -session 2. Formal introduction Amir Ghodrati August 2013

CRF -session 2. Formal introduction Amir Ghodrati August 2013 CRF -eon 2 Formal ntroducton Amr Ghodrat Augut 203 Agenda Introducton Grahcal Model Naïve-Bae Logtc Regreon Hdden Markov Model Condtonal Random Feld Real Introducton longet one ever n the world Htorcal

More information

Midterms Save the Dates!

Midterms Save the Dates! Unversty of Brtsh Columba CPSC, Intro to Computaton Alan J. Hu Readngs Ths Week: Ch 6 (Ch 7 n old 2 nd ed). (Remnder: Readngs are absolutely vtal for learnng ths stuff!) Thnkng About Loops Lecture 9 Some

More information

Improving Low Density Parity Check Codes Over the Erasure Channel. The Nelder Mead Downhill Simplex Method. Scott Stransky

Improving Low Density Parity Check Codes Over the Erasure Channel. The Nelder Mead Downhill Simplex Method. Scott Stransky Improvng Low Densty Party Check Codes Over the Erasure Channel The Nelder Mead Downhll Smplex Method Scott Stransky Programmng n conjuncton wth: Bors Cukalovc 18.413 Fnal Project Sprng 2004 Page 1 Abstract

More information

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification Introducton to Artfcal Intellgence V22.0472-001 Fall 2009 Lecture 24: Nearest-Neghbors & Support Vector Machnes Rob Fergus Dept of Computer Scence, Courant Insttute, NYU Sldes from Danel Yeung, John DeNero

More information

Optimization Methods: Integer Programming Integer Linear Programming 1. Module 7 Lecture Notes 1. Integer Linear Programming

Optimization Methods: Integer Programming Integer Linear Programming 1. Module 7 Lecture Notes 1. Integer Linear Programming Optzaton Methods: Integer Prograng Integer Lnear Prograng Module Lecture Notes Integer Lnear Prograng Introducton In all the prevous lectures n lnear prograng dscussed so far, the desgn varables consdered

More information

Human Action Recognition Using Discriminative Models in the Learned Hierarchical Manifold Space

Human Action Recognition Using Discriminative Models in the Learned Hierarchical Manifold Space Human Acton Recognton Usng Dscrmnatve Models n the Learned Herarchcal Manfold Sace Le Han, We Lang*, nxao Wu and Yunde Ja School of Comuter Scence and Technology, Beng Insttute of Technology 5 South Zhongguancun

More information

Reading. 14. Subdivision curves. Recommended:

Reading. 14. Subdivision curves. Recommended: eadng ecommended: Stollntz, Deose, and Salesn. Wavelets for Computer Graphcs: heory and Applcatons, 996, secton 6.-6., A.5. 4. Subdvson curves Note: there s an error n Stollntz, et al., secton A.5. Equaton

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 31, No. 3, pp. 1382 1411 c 2009 Socety for Industral and Appled Mathematcs SUPERFAST MULTIFRONTAL METHOD FOR LARGE STRUCTURED LINEAR SYSTEMS OF EQUATIONS JIANLIN XIA, SHIVKUMAR

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

UB at GeoCLEF Department of Geography Abstract

UB at GeoCLEF Department of Geography   Abstract UB at GeoCLEF 2006 Mguel E. Ruz (1), Stuart Shapro (2), June Abbas (1), Slva B. Southwck (1) and Davd Mark (3) State Unversty of New York at Buffalo (1) Department of Lbrary and Informaton Studes (2) Department

More information

An Entropy-Based Approach to Integrated Information Needs Assessment

An Entropy-Based Approach to Integrated Information Needs Assessment Dstrbuton Statement A: Approved for publc release; dstrbuton s unlmted. An Entropy-Based Approach to ntegrated nformaton Needs Assessment June 8, 2004 Wllam J. Farrell Lockheed Martn Advanced Technology

More information

Learning the Kernel Parameters in Kernel Minimum Distance Classifier

Learning the Kernel Parameters in Kernel Minimum Distance Classifier Learnng the Kernel Parameters n Kernel Mnmum Dstance Classfer Daoqang Zhang 1,, Songcan Chen and Zh-Hua Zhou 1* 1 Natonal Laboratory for Novel Software Technology Nanjng Unversty, Nanjng 193, Chna Department

More information

Solitary and Traveling Wave Solutions to a Model. of Long Range Diffusion Involving Flux with. Stability Analysis

Solitary and Traveling Wave Solutions to a Model. of Long Range Diffusion Involving Flux with. Stability Analysis Internatonal Mathematcal Forum, Vol. 6,, no. 7, 8 Soltary and Travelng Wave Solutons to a Model of Long Range ffuson Involvng Flux wth Stablty Analyss Manar A. Al-Qudah Math epartment, Rabgh Faculty of

More information

CSE 326: Data Structures Quicksort Comparison Sorting Bound

CSE 326: Data Structures Quicksort Comparison Sorting Bound CSE 326: Data Structures Qucksort Comparson Sortng Bound Steve Setz Wnter 2009 Qucksort Qucksort uses a dvde and conquer strategy, but does not requre the O(N) extra space that MergeSort does. Here s the

More information

F Geometric Mean Graphs

F Geometric Mean Graphs Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 2 (December 2015), pp. 937-952 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) F Geometrc Mean Graphs A.

More information

Machine Learning 9. week

Machine Learning 9. week Machne Learnng 9. week Mappng Concept Radal Bass Functons (RBF) RBF Networks 1 Mappng It s probably the best scenaro for the classfcaton of two dataset s to separate them lnearly. As you see n the below

More information

Load Balancing for Hex-Cell Interconnection Network

Load Balancing for Hex-Cell Interconnection Network Int. J. Communcatons, Network and System Scences,,, - Publshed Onlne Aprl n ScRes. http://www.scrp.org/journal/jcns http://dx.do.org/./jcns.. Load Balancng for Hex-Cell Interconnecton Network Saher Manaseer,

More information

Active Contours/Snakes

Active Contours/Snakes Actve Contours/Snakes Erkut Erdem Acknowledgement: The sldes are adapted from the sldes prepared by K. Grauman of Unversty of Texas at Austn Fttng: Edges vs. boundares Edges useful sgnal to ndcate occludng

More information

Line geometry, according to the principles of Grassmann s theory of extensions. By E. Müller in Vienna.

Line geometry, according to the principles of Grassmann s theory of extensions. By E. Müller in Vienna. De Lnengeometre nach den Prnzpen der Grassmanschen Ausdehnungslehre, Monastshefte f. Mathematk u. Physk, II (89), 67-90. Lne geometry, accordng to the prncples of Grassmann s theory of extensons. By E.

More information

Programming in Fortran 90 : 2017/2018

Programming in Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values

More information

Measuring Integration in the Network Structure: Some Suggestions on the Connectivity Index

Measuring Integration in the Network Structure: Some Suggestions on the Connectivity Index Measurng Integraton n the Network Structure: Some Suggestons on the Connectvty Inde 1. Measures of Connectvty The connectvty can be dvded nto two levels, one s domestc connectvty, n the case of the physcal

More information

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics

NAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics Introducton G10 NAG Fortran Lbrary Chapter Introducton G10 Smoothng n Statstcs Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Smoothng Methods... 2 2.2 Smoothng Splnes and Regresson

More information

Speed of price adjustment with price conjectures

Speed of price adjustment with price conjectures Seed of rce adustment wh rce conectures Mchael Olve Macquare Unversy, Sydney, Australa Emal: molve@efs.mq.edu.au Abstract We derve a measure of frm seed of rce adustment that s drectly nversely related

More information

Query Clustering Using a Hybrid Query Similarity Measure

Query Clustering Using a Hybrid Query Similarity Measure Query clusterng usng a hybrd query smlarty measure Fu. L., Goh, D.H., & Foo, S. (2004). WSEAS Transacton on Computers, 3(3), 700-705. Query Clusterng Usng a Hybrd Query Smlarty Measure Ln Fu, Don Hoe-Lan

More information

User Authentication Based On Behavioral Mouse Dynamics Biometrics

User Authentication Based On Behavioral Mouse Dynamics Biometrics User Authentcaton Based On Behavoral Mouse Dynamcs Bometrcs Chee-Hyung Yoon Danel Donghyun Km Department of Computer Scence Department of Computer Scence Stanford Unversty Stanford Unversty Stanford, CA

More information

Metric Characteristics. Matrix Representations of Graphs.

Metric Characteristics. Matrix Representations of Graphs. Graph Theory Metrc Characterstcs. Matrx Representatons of Graphs. Lecturer: PhD, Assocate Professor Zarpova Elvra Rnatovna, Department of Appled Probablty and Informatcs, RUDN Unversty ezarp@mal.ru Translated

More information

Lecture 5: Multilayer Perceptrons

Lecture 5: Multilayer Perceptrons Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information