Parallel Reed/Solomon Coding on Multicore Processors

Size: px
Start display at page:

Download "Parallel Reed/Solomon Coding on Multicore Processors"

Transcription

1 / 8 Parallel Reed/Solomon Coding on Multicore Processors Peter Sobe Institute of Computer Engineering University of Luebeck, Germany sobe@iti.uni-luebeck.de currently at Institute of Computer Science University of Potsdam, Germany SNAPI Workshop, May 3rd,

2 / 8 Contents Basics of Erasure-tolerant Coding Cauchy Reed/Solomon 3 Equation-based Coding Parallel Coding 5 Evaluation

3 3 / 8 Erasure-tolerant Codes k data storage resources, e.g. disks m redundant resources regular data striping across k resources encoding: calculation of m independent redundant blocks k : original data m : redundant data a code tolerates f failed storage resources: f m Criteria: Number tolerated faults: f = m as the optimum Flexibility, when choosing k, m Computational cost for en- and decoding

4 / 8 Cauchy Reed/Solomon Encoding: Multiplication of original data word o with a generator matrix G Example Reed/Solomon, 5+: operations +, within GF( 3 ) h o i» I a = = G o = c j 7 3 c = G sub ff o o as a Cauchy-Reed/Solomon code: projection to GF( ), binary logic operations XOR, AND o 5 storage resources with 3 partitions each ressources units u d u u u3 d u u5 u6 d u 7 u8 u9 d3 u u u d u 3 u a G sub a sub matrix of G XOR XOR XOR c redundant resources u5 d u 6 5 u7 u8 d 6 u 9 u

5 5 / 8 Cauchy Reed/Solomon Decoding: system used for data recalculation when nd and 3rd resource fail: operations +, within GF( 3 ) 8 >< o = >: o = G a >= >< >; >: d d5 d6 d3 d 9 >= >; by Cauchy-Reed/Solomon: projection to GF( ), binary logic operations XOR, AND a o d d d d3 d u u u u3 u u5 u6 u 7 u8 u9 u u u u 3 u c G u5 d u 6 5 u7 u8 d u 9 6 u * d d 5 d6 d 3 d = d d d d3 d

6 6 / 8 Cauchy Reed/Solomon: Equation-based definition Equations refer different bits within storage resources different bits units on resources partitions on disks Unit assignment for k=5, m= data parities resource r r r r 3 r r 5 r 6 units number of units per resource (ω) ω = 3, generally ω > k + m data 6 redundancy

7 7 / 8 Cauchy Reed/Solomon: Equation-based definition Coding algorithm is an execution of several : either: instant application on data or: store and transform, apply them on a sequence of code words Example of a 5+ Reed/Solomon code: direct encoding (5 XOR op.) 5 = XOR(, 3,, 5, 7, 9,, ) 6 = XOR(,, 3, 7, 8, 9,,, 3) 7 = XOR(, 3,, 6, 8,,, ) 8 = XOR(,,, 6, 7, 8,,, 3) 9 = XOR(,,,, 5, 6, 9,, ) = XOR(,, 3, 5, 6, 7,, ) encoding (33 XOR op.) 5 = XOR(B, C, D) 6 = XOR(D, E, F) 7 = XOR(3,, 8, E, H) 8 = XOR(,, 6, 7, C, F) 9 = XOR(,, 9,, B, H) = XOR(5, 7,,, A, G) A = XOR(, 3) E = XOR(, ) B = XOR(, 5) F = XOR(, 8, 3) C = XOR(, ) G = XOR(, 6) D = XOR(7, 9, A) H = XOR(, G) direct decoding ( XOR op.) 6 = XOR(, 5, 7, 8,, 3, ) 7 = XOR(, 3, 5, 5, 7, 8, 9,,, 3) 8 = XOR(,, 6, 9,,, 3, ) 9 = XOR(, 3,, 5, 6, 7, 9,, 3) = XOR(,, 5, 5, 9,, ) = XOR(, 3, 5, 6, 8,, ) decoding (9 XOR op.) 6 = XOR(B, C) 7 = XOR(5, C, D, F) 8 = XOR(9,, A, G) 9 = XOR(3, 7, 3, D, G) = XOR(,, B, D) = XOR(5, 6, 8,, F) A = XOR(, 3) D = XOR(5, 9) B = XOR(, 5, ) F = XOR(, 3, ) C = XOR(7, 8, A) G = XOR(,,, 6)

8 8 / 8 Equations for coding Separation: equation preparation equation interpretation for coding equation generator written data encoding encoder failure description storage system decoding decoder read data

9 8 / 8 Equations for coding Separation: equation preparation equation interpretation for coding one time, a few milliseconds, kbytes written data encoding encoder equation generator failure description storage system decoding decoder read data

10 8 / 8 Equations for coding Separation: equation preparation equation interpretation for coding equation generator written data encoding encoder failure description storage system decoding decoder read data many times hours... days, MBytes... TBytes

11 8 / 8 Equations for coding Separation: equation preparation equation interpretation for coding equation generator written data encoding encoder failure description storage system decoding decoder read data many times hours... days MByte... TByte

12 Equations for coding Separation: equation preparation equation interpretation for coding equation generator written data encoding encoder failure description storage system triggered by fault detection decoding decoder read data 8 / 8

13 8 / 8 Equations for coding Separation: equation preparation equation interpretation for coding written data encoding encoder equation generator failure description storage system seldom a few millisec., kbytes decoding decoder read data

14 8 / 8 Equations for coding Separation: equation preparation equation interpretation for coding equation generator written data encoding encoder failure description storage system decoding decoder read data many times hours... days MByte... TByte

15 A 3 B 5 C A 3 7 D B 9 5 A E C 7 F D A G A E 6 3 H B F G C G B C D D H D E F 9 A G 7 E E H B C D F 6 7 C F D E F G B H 6 H 5 7 A G 6 G 9 B C D B H D E F 5 7 A G E H C F 9 9 B H 5 7 A G 9 / 8 Parallel Coding Obvious parallelism: block parallel coding same coding function on different data blocks a core interprets all a core streams only a part of the input data tile tile 6 computation on core 6 computation on core tile tile 6 original data storage resources redundancy storage resources

16 / 8 Parallel Coding - Equation oriented Equation-oriented coding a core interprets dedicated a core streams data which is refered by the dedicated on core (7),(),() on core (8),(),() on core 3 (3),(),(3) on core (9),() on core 5 (),(5) redundancy storage resources original data storage resources on core 6 equation (6)

17 / 8 Parallel Coding Schedules encoding and decoding extended to schedules schedule: assigned to cores XOR ops assigned to time steps data dependencies resolved cores steps B C D 7 9 A 3 F E D E H G C F 5 9 B H A G Schedule preparation: stacking of

18 / 8 Parallel Coding Schedules Stacking of Encoding, 33 XOR operations Terminal 5 = XOR(B,C,D) 6 = XOR(D,E,F) 7 = XOR(3,,8,E,H) 8 = XOR(,,6,7,C,F) 9 = XOR(,,9,,B,H) = XOR(5,7,,,A,G) Temporary A = XOR(,3) B = XOR(,5) C = XOR(,) D = XOR(7,9,A) E = XOR(,) F = XOR(,8,3) G = XOR(,6) H = XOR(,G) cores steps B C D 7 9 A 3 F E D E H G C F 5 9 B H A G temporary units required G A B,A, D,G, H F,C E temporary units available A,B, H D,F C,G,E

19 3 / 8 Evaluation Question: Is equation-oriented parallel coding beneficial? Criteria: accessed data per core number of referenced storage resources (input, output) number of referenced units per resource and per core multiplicity of references number of temporary results taken from other cores number of time steps of a schedule (under absence of access delays, and synchrony of XOR operations)

20 / 8 Evaluation.8.7 ratio: accessed data per core 7 6 # accessed input resources block parallel direct eqn. oriented.66 improved block parallel direct eqn. oriented improved Lower values are better

21 5 / 8 Evaluation 3.5 # accessed output resources 3.5 # refered units per resource, per core block parallel direct eqn. oriented improved block parallel direct eqn. oriented improved Lower values are better

22 6 / 8 Evaluation.5 # multiple accesses (local on core) 3.5 # acc. distant temporary units block parallel. direct.3 eqn. oriented.3 improved block parallel. direct.66 eqn. oriented.6 improved Lower values are better

23 7 / 8 Evaluation Equation-oriented parallel coding: only! 33 schedule length improve: selecting good Cauchy matrices Performance benefits: minimal schedule length multiple accesses reduced block parallel direct eqn. oriented improved locality of accesses (resources, units) Performance obstacles: access to temporary results from other cores

24 8 / 8 Summary Cauchy-Reed/Solomon code: XOR based Decomposition of coding into several parts, described by Equations: parameterize the encoding and decoding function Schedules: pre-calculated placement of on cores Iterative schedules: concentration of data accesses of a core on local regions Advantage for software-based coding performance on multicore processors

Parallel Reed/Solomon Coding on Multicore Processors

Parallel Reed/Solomon Coding on Multicore Processors International Workshop on Storage Network rchitecture and Parallel I/Os Parallel Reed/Solomon oding on Multicore Processors Peter Sobe Institute of omputer ngineering University of Luebeck Luebeck, ermany

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 6 Coding I Chapter 3 Information Redundancy Part.6.1 Information Redundancy - Coding A data word with d bits is encoded

More information

Construction of Efficient OR-based Deletion tolerant Coding Schemes

Construction of Efficient OR-based Deletion tolerant Coding Schemes Construction of Efficient OR-based Deletion tolerant Coding Schemes Peter Sobe and Kathrin Peter University of Luebeck Institute of Computer Engineering {sobe peterka}@itiuni-luebeckde Abstract Fault tolerant

More information

Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques. Tianli Zhou & Chao Tian Texas A&M University

Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques. Tianli Zhou & Chao Tian Texas A&M University Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques Tianli Zhou & Chao Tian Texas A&M University 2 Contents Motivation Background and Review Evaluating Individual

More information

Performance improvements to peer-to-peer file transfers using network coding

Performance improvements to peer-to-peer file transfers using network coding Performance improvements to peer-to-peer file transfers using network coding Aaron Kelley April 29, 2009 Mentor: Dr. David Sturgill Outline Introduction Network Coding Background Contributions Precomputation

More information

So you think you can FEC?

So you think you can FEC? So you think you can FEC? Mikhail Misha Fludkov (fludkov) Pexip R&D Erlend Earl Graff (egraff) Pexip R&D 8 th GStreamer Conference 21 October 2017 Prague, Czech Republic Outline Introduction to FEC Designing

More information

A Performance Evaluation of Open Source Erasure Codes for Storage Applications

A Performance Evaluation of Open Source Erasure Codes for Storage Applications A Performance Evaluation of Open Source Erasure Codes for Storage Applications James S. Plank Catherine D. Schuman (Tennessee) Jianqiang Luo Lihao Xu (Wayne State) Zooko Wilcox-O'Hearn Usenix FAST February

More information

Fault Tolerance & Reliability CDA Chapter 2 Additional Interesting Codes

Fault Tolerance & Reliability CDA Chapter 2 Additional Interesting Codes Fault Tolerance & Reliability CDA 5140 Chapter 2 Additional Interesting Codes m-out-of-n codes - each binary code word has m ones in a length n non-systematic codeword - used for unidirectional errors

More information

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 CSE 30321 Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 Problem 1: (30 points) Background: One possible organization

More information

Guide to SATA Hard Disks Installation and RAID Configuration

Guide to SATA Hard Disks Installation and RAID Configuration Guide to SATA Hard Disks Installation and RAID Configuration 1. Guide to SATA Hard Disks Installation... 2 1.1 Serial ATA (SATA) Hard Disks Installation... 2 2. Guide to RAID Configurations... 3 2.1 Introduction

More information

Efficiency Considerations of Cauchy Reed-Solomon Implementations on Accelerator and Multi-Core Platforms

Efficiency Considerations of Cauchy Reed-Solomon Implementations on Accelerator and Multi-Core Platforms Efficiency Considerations of Cauchy Reed-Solomon Implementations on Accelerator and Multi-Core Platforms SAAHPC June 15 2010 Knoxville, TN Kathrin Peter Sebastian Borchert Thomas Steinke Zuse Institute

More information

Definition of RAID Levels

Definition of RAID Levels RAID The basic idea of RAID (Redundant Array of Independent Disks) is to combine multiple inexpensive disk drives into an array of disk drives to obtain performance, capacity and reliability that exceeds

More information

CSN Telecommunications. 5: Error Coding. Data, Audio, Video and Images Prof Bill Buchanan

CSN Telecommunications. 5: Error Coding. Data, Audio, Video and Images  Prof Bill Buchanan CSN874 Telecommunications 5: Error Coding Data, Audio, Video and Images http://asecuritysite.com/comms Prof Bill Buchanan CSN874 Telecommunications 5: Error Coding: Modulo-2 Data, Audio, Video and Images

More information

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE

RAID SEMINAR REPORT /09/2004 Asha.P.M NO: 612 S7 ECE RAID SEMINAR REPORT 2004 Submitted on: Submitted by: 24/09/2004 Asha.P.M NO: 612 S7 ECE CONTENTS 1. Introduction 1 2. The array and RAID controller concept 2 2.1. Mirroring 3 2.2. Parity 5 2.3. Error correcting

More information

Explain Various Error Corrections To Detection Codes And Their Function In Detail

Explain Various Error Corrections To Detection Codes And Their Function In Detail Explain Various Error Corrections To Detection Codes And Their Function In Detail Explain how SEC code will detect and correct - IGNOU MCA Assignment 2014 15. This if found in Hamming Error Correction

More information

Computing Science 300 Sample Final Examination

Computing Science 300 Sample Final Examination Computing Science 300 Sample Final Examination 1. [10 points] Generally speaking, input and output operations can be done using two different methods, busy-waiting and interrupt-driven (using DMA or single

More information

J. Manikandan Research scholar, St. Peter s University, Chennai, Tamilnadu, India.

J. Manikandan Research scholar, St. Peter s University, Chennai, Tamilnadu, India. Design of Single Correction-Double -Triple -Tetra (Sec-Daed-Taed- Tetra Aed) Codes J. Manikandan Research scholar, St. Peter s University, Chennai, Tamilnadu, India. Dr. M. Manikandan Associate Professor,

More information

On the Speedup of Single-Disk Failure Recovery in XOR-Coded Storage Systems: Theory and Practice

On the Speedup of Single-Disk Failure Recovery in XOR-Coded Storage Systems: Theory and Practice On the Speedup of Single-Disk Failure Recovery in XOR-Coded Storage Systems: Theory and Practice Yunfeng Zhu, Patrick P. C. Lee, Yuchong Hu, Liping Xiang, and Yinlong Xu University of Science and Technology

More information

Associate Professor Dr. Raed Ibraheem Hamed

Associate Professor Dr. Raed Ibraheem Hamed Associate Professor Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Computer Science Department 2015 2016 1 Points to Cover Storing Data in a DBMS Primary Storage

More information

The term "physical drive" refers to a single hard disk module. Figure 1. Physical Drive

The term physical drive refers to a single hard disk module. Figure 1. Physical Drive HP NetRAID Tutorial RAID Overview HP NetRAID Series adapters let you link multiple hard disk drives together and write data across them as if they were one large drive. With the HP NetRAID Series adapter,

More information

Ed D Azevedo Oak Ridge National Laboratory Piotr Luszczek University of Tennessee

Ed D Azevedo Oak Ridge National Laboratory Piotr Luszczek University of Tennessee A Framework for Check-Pointed Fault-Tolerant Out-of-Core Linear Algebra Ed D Azevedo (e6d@ornl.gov) Oak Ridge National Laboratory Piotr Luszczek (luszczek@cs.utk.edu) University of Tennessee Acknowledgement

More information

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by:

T325 Summary T305 T325 B BLOCK 4 T325. Session 3. Dr. Saatchi, Seyed Mohsen. Prepared by: T305 T325 B BLOCK 4 T325 Summary Prepared by: Session 3 [Type Dr. Saatchi, your address] Seyed Mohsen [Type your phone number] [Type your e-mail address] Dr. Saatchi, Seyed Mohsen T325 Error Control Coding

More information

Hamming Codes. s 0 s 1 s 2 Error bit No error has occurred c c d3 [E1] c0. Topics in Computer Mathematics

Hamming Codes. s 0 s 1 s 2 Error bit No error has occurred c c d3 [E1] c0. Topics in Computer Mathematics Hamming Codes Hamming codes belong to the class of codes known as Linear Block Codes. We will discuss the generation of single error correction Hamming codes and give several mathematical descriptions

More information

High Performance Computing Course Notes High Performance Storage

High Performance Computing Course Notes High Performance Storage High Performance Computing Course Notes 2008-2009 2009 High Performance Storage Storage devices Primary storage: register (1 CPU cycle, a few ns) Cache (10-200 cycles, 0.02-0.5us) Main memory Local main

More information

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016)

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016) UCSD ECE54C Handout #2 Prof. Young-Han Kim Thursday, June 8, 27 Solutions to Practice Final Examination (Spring 26) There are 4 problems, each problem with multiple parts, each part worth points. Your

More information

Forward Error Correction Codes

Forward Error Correction Codes Appendix 6 Wireless Access Networks: Fixed Wireless Access and WLL Networks Ð Design and Operation. Martin P. Clark Copyright & 000 John Wiley & Sons Ltd Print ISBN 0-471-4998-1 Online ISBN 0-470-84151-6

More information

It is well understood that the minimum number of check bits required for single bit error correction is specified by the relationship: D + P P

It is well understood that the minimum number of check bits required for single bit error correction is specified by the relationship: D + P P October 2012 Reference Design RD1025 Introduction This reference design implements an Error Correction Code (ECC) module for the LatticeEC and LatticeSC FPGA families that can be applied to increase memory

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 3, 2015 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 3, 2015 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

All About Erasure Codes: - Reed-Solomon Coding - LDPC Coding. James S. Plank. ICL - August 20, 2004

All About Erasure Codes: - Reed-Solomon Coding - LDPC Coding. James S. Plank. ICL - August 20, 2004 All About Erasure Codes: - Reed-Solomon Coding - LDPC Coding James S. Plank Logistical Computing and Internetworking Laboratory Department of Computer Science University of Tennessee ICL - August 2, 24

More information

Chapter 2 Instruction Set Architecture

Chapter 2 Instruction Set Architecture Chapter 2 Instruction Set Architecture Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering

More information

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016

CS 31: Intro to Systems Digital Logic. Kevin Webb Swarthmore College February 2, 2016 CS 31: Intro to Systems Digital Logic Kevin Webb Swarthmore College February 2, 2016 Reading Quiz Today Hardware basics Machine memory models Digital signals Logic gates Circuits: Borrow some paper if

More information

A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors

A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors A Software LDPC Decoder Implemented on a Many-Core Array of Programmable Processors Brent Bohnenstiehl and Bevan Baas Department of Electrical and Computer Engineering University of California, Davis {bvbohnen,

More information

Store, Forget & Check: Using Algebraic Signatures to Check Remotely Administered Storage

Store, Forget & Check: Using Algebraic Signatures to Check Remotely Administered Storage Store, Forget & Check: Using Algebraic Signatures to Check Remotely Administered Storage Ethan L. Miller & Thomas J. E. Schwarz Storage Systems Research Center University of California, Santa Cruz What

More information

Distributed Systems 24. Fault Tolerance

Distributed Systems 24. Fault Tolerance Distributed Systems 24. Fault Tolerance Paul Krzyzanowski pxk@cs.rutgers.edu 1 Faults Deviation from expected behavior Due to a variety of factors: Hardware failure Software bugs Operator errors Network

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Lecture 22: File system optimizations and advanced topics There s more to filesystems J Standard Performance improvement techniques Alternative important

More information

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 19. Fault Tolerance Paul Krzyzanowski Rutgers University Fall 2013 November 27, 2013 2013 Paul Krzyzanowski 1 Faults Deviation from expected behavior Due to a variety of factors: Hardware

More information

Reed-Solomon Decoder Group 3

Reed-Solomon Decoder Group 3 Reed-Solomon Decoder Group 3 Report 5 Abhinav Agarwal Final Report Grant Elliott 17 th May 2007 S. R. K. Branavan The objective of this project is to design & implement a Reed-Solomon decoder for GF(256)

More information

Guide to SATA Hard Disks Installation and RAID Configuration

Guide to SATA Hard Disks Installation and RAID Configuration Guide to SATA Hard Disks Installation and RAID Configuration 1. Guide to SATA Hard Disks Installation...2 1.1 Serial ATA (SATA) Hard Disks Installation...2 2. Guide to RAID Configurations...3 2.1 Introduction

More information

Comparison of RAID-6 Erasure Codes

Comparison of RAID-6 Erasure Codes Comparison of RAID-6 Erasure Codes Dimitri Pertin, Alexandre Van Kempen, Benoît Parrein, Nicolas Normand To cite this version: Dimitri Pertin, Alexandre Van Kempen, Benoît Parrein, Nicolas Normand. Comparison

More information

1. Draw general diagram of computer showing different logical components (3)

1. Draw general diagram of computer showing different logical components (3) Tutorial 1 1. Draw general diagram of computer showing different logical components (3) 2. List at least three input devices (1.5) 3. List any three output devices (1.5) 4. Fill the blank cells of the

More information

Redundancy in fault tolerant computing. D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992

Redundancy in fault tolerant computing. D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992 Redundancy in fault tolerant computing D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992 1 Redundancy Fault tolerance computing is based on redundancy HARDWARE REDUNDANCY Physical

More information

Efficient Load Balancing and Disk Failure Avoidance Approach Using Restful Web Services

Efficient Load Balancing and Disk Failure Avoidance Approach Using Restful Web Services Efficient Load Balancing and Disk Failure Avoidance Approach Using Restful Web Services Neha Shiraz, Dr. Parikshit N. Mahalle Persuing M.E, Department of Computer Engineering, Smt. Kashibai Navale College

More information

Majority Logic Decoding Of Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes

Majority Logic Decoding Of Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes Majority Logic Decoding Of Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes P. Kalai Mani, V. Vishnu Prasath PG Student, Department of Applied Electronics, Sri Subramanya College of Engineering

More information

SiPass Software. Fire & Security Products. SiPass integrated

SiPass Software. Fire & Security Products. SiPass integrated SiPass Software SiPass integrated Flexible structure for each demand Easy installation and administration Expansion modules optionally available High operational ease by Graphic User Interface Access control

More information

Cache Memory Part 1. Cache Memory Part 1 1

Cache Memory Part 1. Cache Memory Part 1 1 Cache Memory Part 1 Cache Memory Part 1 1 - Definition: Cache (Pronounced as cash ) is a small and very fast temporary storage memory. It is designed to speed up the transfer of data and instructions.

More information

International Journal of Innovations in Engineering and Technology (IJIET)

International Journal of Innovations in Engineering and Technology (IJIET) RTL Design and Implementation of Erasure Code for RAID system Chethan.K 1, Dr.Srividya.P 2, Mr.Sivashanmugam Krishnan 3 1 PG Student, Department Of ECE, R. V. College Engineering, Bangalore, India. 2 Associate

More information

NETWORK CODED STORAGE I/O SUBSYSTEM FOR HPC EXASCALE APPLICATIONS

NETWORK CODED STORAGE I/O SUBSYSTEM FOR HPC EXASCALE APPLICATIONS NETWORK CODED STORAGE I/O SUBSYSTEM FOR HPC EXASCALE APPLICATIONS 1 INTRODUCTION Intel predicts 10 times (4.4ZB to 44 ZB ) data explosion between 2013-2020. Massive data explosion makes legacy storage

More information

VHDL 2 Combinational Logic Circuits. Reference: Roth/John Text: Chapter 2

VHDL 2 Combinational Logic Circuits. Reference: Roth/John Text: Chapter 2 VHDL 2 Combinational Logic Circuits Reference: Roth/John Text: Chapter 2 Combinational logic -- Behavior can be specified as concurrent signal assignments -- These model concurrent operation of hardware

More information

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura

CSE 451: Operating Systems Winter Redundant Arrays of Inexpensive Disks (RAID) and OS structure. Gary Kimura CSE 451: Operating Systems Winter 2013 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Gary Kimura The challenge Disk transfer rates are improving, but much less fast than CPU performance

More information

Pregel: A System for Large-Scale Graph Proces sing

Pregel: A System for Large-Scale Graph Proces sing Pregel: A System for Large-Scale Graph Proces sing Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkwoski Google, Inc. SIGMOD July 20 Taewhi

More information

Optimizing Joint Erasure- and Error-Correction Coding for Wireless Packet Transmissions

Optimizing Joint Erasure- and Error-Correction Coding for Wireless Packet Transmissions Optimizing Joint Erasure- and Error-Correction Coding for Wireless Packet Transmissions 2007 IEEE Communication Theory Workshop Christian R. Berger 1, Shengli Zhou 1, Yonggang Wen 2, Peter Willett 1 and

More information

Outcomes. Unit 9. Logic Function Synthesis KARNAUGH MAPS. Implementing Combinational Functions with Karnaugh Maps

Outcomes. Unit 9. Logic Function Synthesis KARNAUGH MAPS. Implementing Combinational Functions with Karnaugh Maps .. Outcomes Unit I can use Karnaugh maps to synthesize combinational functions with several outputs I can determine the appropriate size and contents of a memory to implement any logic function (i.e. truth

More information

I/O Management and Disk Scheduling. Chapter 11

I/O Management and Disk Scheduling. Chapter 11 I/O Management and Disk Scheduling Chapter 11 Categories of I/O Devices Human readable used to communicate with the user video display terminals keyboard mouse printer Categories of I/O Devices Machine

More information

Guide to SATA Hard Disks Installation and RAID Configuration

Guide to SATA Hard Disks Installation and RAID Configuration Guide to SATA Hard Disks Installation and RAID Configuration 1. Guide to SATA Hard Disks Installation... 2 1.1 Serial ATA (SATA) Hard Disks Installation... 2 2. Guide to RAID Configurations... 3 2.1 Introduction

More information

4. Error correction and link control. Contents

4. Error correction and link control. Contents //2 4. Error correction and link control Contents a. Types of errors b. Error detection and correction c. Flow control d. Error control //2 a. Types of errors Data can be corrupted during transmission.

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering MIPS Instruction Set James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy MIPS Registers MIPS

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of MCA INTERNAL ASSESSMENT TEST 2 Date : 30/3/15 Max Marks : 50 Name of faculty : Sabeeha Sultana Subject & Code : ADA(13MCA41) Answer any five full question: 1.Illustrate Mergesort for the dataset 8,3,2,9,7,1,5,4.

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-II COMBINATIONAL CIRCUITS

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District UNIT-II COMBINATIONAL CIRCUITS NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF ELETRONICS AND COMMUNICATION ENGINEERING COURSE NOTES SUBJECT: DIGITAL ELECTRONICS CLASS: II YEAR ECE SUBJECT CODE: EC2203

More information

Fountain Codes Based on Zigzag Decodable Coding

Fountain Codes Based on Zigzag Decodable Coding Fountain Codes Based on Zigzag Decodable Coding Takayuki Nozaki Kanagawa University, JAPAN Email: nozaki@kanagawa-u.ac.jp Abstract Fountain codes based on non-binary low-density parity-check (LDPC) codes

More information

Modern Communications Chapter 5. Low-Density Parity-Check Codes

Modern Communications Chapter 5. Low-Density Parity-Check Codes 1/14 Modern Communications Chapter 5. Low-Density Parity-Check Codes Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2017 2/14 History

More information

The Memory System. Components of the Memory System. Problems with the Memory System. A Solution

The Memory System. Components of the Memory System. Problems with the Memory System. A Solution Datorarkitektur Fö 2-1 Datorarkitektur Fö 2-2 Components of the Memory System The Memory System 1. Components of the Memory System Main : fast, random access, expensive, located close (but not inside)

More information

Fractal Image Compression. Kyle Patel EENG510 Image Processing Final project

Fractal Image Compression. Kyle Patel EENG510 Image Processing Final project Fractal Image Compression Kyle Patel EENG510 Image Processing Final project Introduction Extension of Iterated Function Systems (IFS) for image compression Typically used for creating fractals Images tend

More information

Efficient Majority Logic Fault Detector/Corrector Using Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes

Efficient Majority Logic Fault Detector/Corrector Using Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes Efficient Majority Logic Fault Detector/Corrector Using Euclidean Geometry Low Density Parity Check (EG-LDPC) Codes 1 U.Rahila Begum, 2 V. Padmajothi 1 PG Student, 2 Assistant Professor 1 Department Of

More information

Pelican: A building block for exascale cold data storage

Pelican: A building block for exascale cold data storage Pelican: A building block for exascale cold data storage Shobana Balarishnan, Richard Black, Austin Donnelly, Paul England, Adam Glass, Dave Harper, Sergey Legtchenko, Aaron Ogus, Eric Peterson, Antony

More information

Capacity-approaching Codes for Solid State Storages

Capacity-approaching Codes for Solid State Storages Capacity-approaching Codes for Solid State Storages Jeongseok Ha, Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Contents Capacity-Approach Codes Turbo

More information

that system. weighted value associated with it. numbers. a number. the absence of a signal. MECH 1500 Quiz 2 Review Name: Class: Date:

that system. weighted value associated with it. numbers. a number. the absence of a signal. MECH 1500 Quiz 2 Review Name: Class: Date: Name: Class: Date: MECH 1500 Quiz 2 Review True/False Indicate whether the statement is true or false. 1. The decimal system uses the number 9 as its base. 2. All digital computing devices perform operations

More information

Communication Networks for the Next-Generation Vehicles

Communication Networks for the Next-Generation Vehicles Communication Networks for the, Ph.D. Electrical and Computer Engg. Dept. Wayne State University Detroit MI 48202 (313) 577-3855, smahmud@eng.wayne.edu January 13, 2005 4 th Annual Winter Workshop U.S.

More information

MRT based Fixed Block size Transform Coding

MRT based Fixed Block size Transform Coding 3 MRT based Fixed Block size Transform Coding Contents 3.1 Transform Coding..64 3.1.1 Transform Selection...65 3.1.2 Sub-image size selection... 66 3.1.3 Bit Allocation.....67 3.2 Transform coding using

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering MIPS Instruction Set James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy MIPS Registers MIPS

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note on Disk I/O 1 I/O Devices Storage devices Floppy, Magnetic disk, Magnetic tape, CD-ROM, DVD User

More information

LZ UTF8. LZ UTF8 is a practical text compression library and stream format designed with the following objectives and properties:

LZ UTF8. LZ UTF8 is a practical text compression library and stream format designed with the following objectives and properties: LZ UTF8 LZ UTF8 is a practical text compression library and stream format designed with the following objectives and properties: 1. Compress UTF 8 and 7 bit ASCII strings only. No support for arbitrary

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

CSE Computer Architecture I Fall 2009 Homework 08 Pipelined Processors and Multi-core Programming Assigned: Due: Problem 1: (10 points)

CSE Computer Architecture I Fall 2009 Homework 08 Pipelined Processors and Multi-core Programming Assigned: Due: Problem 1: (10 points) CSE 30321 Computer Architecture I Fall 2009 Homework 08 Pipelined Processors and Multi-core Programming Assigned: November 17, 2009 Due: December 1, 2009 This assignment can be done in groups of 1, 2,

More information

Digital Systems. John SUM Institute of Technology Management National Chung Hsing University Taichung, ROC. December 6, 2012

Digital Systems. John SUM Institute of Technology Management National Chung Hsing University Taichung, ROC. December 6, 2012 Digital Systems John SUM Institute of Technology Management National Chung Hsing University Taichung, ROC December 6, 2012 Contents 1 Logic Gates 3 1.1 Logic Gate............................. 3 1.2 Truth

More information

Video 9.1 Jianbo Shi. Property of Penn Engineering, Jianbo Shi

Video 9.1 Jianbo Shi. Property of Penn Engineering, Jianbo Shi Video 9.1 Jianbo Shi 1 Exmples of resizing 2 820 546 3 3 420 546 3 (a) (b) (c) Guess We use crop, scaling and carving for resizing the given image Guess which one is for carving? 4 5 6 Guess which one

More information

DESIGN OF FAULT SECURE ENCODER FOR MEMORY APPLICATIONS IN SOC TECHNOLOGY

DESIGN OF FAULT SECURE ENCODER FOR MEMORY APPLICATIONS IN SOC TECHNOLOGY DESIGN OF FAULT SECURE ENCODER FOR MEMORY APPLICATIONS IN SOC TECHNOLOGY K.Maheshwari M.Tech VLSI, Aurora scientific technological and research academy, Bandlaguda, Hyderabad. k.sandeep kumar Asst.prof,

More information

Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces.

Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces. Quiz Describe the two most important ways in which subspaces of F D arise. (These ways were given as the motivation for looking at subspaces.) What are the two subspaces associated with a matrix? Describe

More information

Lecture-15 W-Z: Increment-Decrement Address Latch:

Lecture-15 W-Z: Increment-Decrement Address Latch: Lecture-15 W-Z: (W) and (Z) are two 8-bit temporary registers not accessible to the user. They are exclusively used for the internal operation by the microprocessor. These registers are used either to

More information

EITF20: Computer Architecture Part4.1.1: Cache - 2

EITF20: Computer Architecture Part4.1.1: Cache - 2 EITF20: Computer Architecture Part4.1.1: Cache - 2 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Cache performance optimization Bandwidth increase Reduce hit time Reduce miss penalty Reduce miss

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Information Science & Engineering SOLUTION MANUAL INTERNAL ASSESSMENT TEST 1 Subject & Code : Storage Area

More information

Solving Systems of Equations Using Matrices With the TI-83 or TI-84

Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Dimensions of a matrix: The dimensions of a matrix are the number of rows by the number of columns in the matrix. rows x columns *rows

More information

Information Storage and Spintronics 16

Information Storage and Spintronics 16 Information Storage and Spintronics 16 Atsufumi Hirohata Department of Electronic Engineering 09:00 Tuesday, 20/November/2018 (J/Q 004) Quick Review over the Last Lecture Millipede memory : Nano-RAM :

More information

Heuristics for Optimizing Matrix-Based Erasure Codes for Fault-Tolerant Storage Systems. James S. Plank Catherine D. Schuman B.

Heuristics for Optimizing Matrix-Based Erasure Codes for Fault-Tolerant Storage Systems. James S. Plank Catherine D. Schuman B. Heuristics for Optimizing Matrix-Based Erasure Codes for Fault-Tolerant Storage Systems James S. Plank Catherine D. Schuman B. Devin Robison ppearing in DSN 2012: The 42nd nnual IEEE/IFIP International

More information

SYSTEM UPGRADE, INC Making Good Computers Better. System Upgrade Teaches RAID

SYSTEM UPGRADE, INC Making Good Computers Better. System Upgrade Teaches RAID System Upgrade Teaches RAID In the growing computer industry we often find it difficult to keep track of the everyday changes in technology. At System Upgrade, Inc it is our goal and mission to provide

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Enhanced Detection of Double Adjacent Errors in Hamming Codes through Selective Bit Placement

Enhanced Detection of Double Adjacent Errors in Hamming Codes through Selective Bit Placement Enhanced Detection of Double Adjacent Errors in Hamming Codes through Selective Bit Placement 1 Lintu K Babu, 2 Hima Sara Jacob 1 M Tech Student, 2 Assistant Professor 1 Department of Electronics And Communication

More information

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY

CHAPTER 5 : Introduction to Intel 8085 Microprocessor Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY CHAPTER 5 : Introduction to Intel 8085 Hardware BENG 2223 MICROPROCESSOR TECHNOLOGY The 8085A(commonly known as the 8085) : Was first introduced in March 1976 is an 8-bit microprocessor with 16-bit address

More information

ALOHA LOAD BALANCER ACTIVE-PASSIVE BONDING

ALOHA LOAD BALANCER ACTIVE-PASSIVE BONDING ALOHA LOAD BALANCER ACTIVE-PASSIVE BONDING APPNOTE #0005 CONFIGURING ACTIVE-PASSIVE BONDING This application note is intended to help you configure bonding in order to ensure high availability of your

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 ISSN 255 CORRECTIONS TO FAULT SECURE OF MAJORITY LOGIC DECODER AND DETECTOR FOR MEMORY APPLICATIONS Viji.D PG Scholar Embedded Systems Prist University, Thanjuvr - India Mr.T.Sathees Kumar AP/ECE Prist University,

More information

AN EFFICIENT DESIGN OF VLSI ARCHITECTURE FOR FAULT DETECTION USING ORTHOGONAL LATIN SQUARES (OLS) CODES

AN EFFICIENT DESIGN OF VLSI ARCHITECTURE FOR FAULT DETECTION USING ORTHOGONAL LATIN SQUARES (OLS) CODES AN EFFICIENT DESIGN OF VLSI ARCHITECTURE FOR FAULT DETECTION USING ORTHOGONAL LATIN SQUARES (OLS) CODES S. SRINIVAS KUMAR *, R.BASAVARAJU ** * PG Scholar, Electronics and Communication Engineering, CRIT

More information

EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC

EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC EECS150 - Digital Design Lecture 24 - High-Level Design (Part 3) + ECC April 12, 2012 John Wawrzynek Spring 2012 EECS150 - Lec24-hdl3 Page 1 Parallelism Parallelism is the act of doing more than one thing

More information

NVIDIA RAID Installation Guide

NVIDIA RAID Installation Guide NVIDIA RAID Installation Guide 1. NVIDIA BIOS RAID Installation Guide.. 2 1.1 Introduction to RAID. 2 1.2 RAID Configurations Precautions.. 3 1.3 Create Disk Array. 4 2. NVIDIA Windows RAID Installation

More information

Error Detection And Correction

Error Detection And Correction Announcements Please read Error Detection and Correction sent to you by your grader. Lab Assignment #2 deals with Hamming Code. Lab Assignment #2 is available now and will be due by 11:59 PM on March 22.

More information

Outline. Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication. Outline

Outline. Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication. Outline Parity-based ECC and Mechanism for Detecting and Correcting Soft Errors in On-Chip Communication Khanh N. Dang and Xuan-Tu Tran Email: khanh.n.dang@vnu.edu.vn VNU Key Laboratory for Smart Integrated Systems

More information

A Transpositional Redundant Data Update Algorithm for Growing Server-less Video Streaming Systems

A Transpositional Redundant Data Update Algorithm for Growing Server-less Video Streaming Systems A Transpositional Redundant Data Update Algorithm for Growing Server-less Video Streaming Systems T. K. Ho and Jack Y. B. Lee Department of Information Engineering The Chinese University of Hong Kong Shatin,

More information

Application of FPGA technology in NicSys8000N platform. Liu Zhikai Oct. 14,2015

Application of FPGA technology in NicSys8000N platform. Liu Zhikai Oct. 14,2015 Application of FPGA technology in NicSys8000N platform Liu Zhikai Oct. 14,2015 Presentation Overview Introduction Structure of NicSys8000N platform FPGA technology strengthen the NicSys8000N platform comprehensively

More information

ECFS: A decentralized, distributed and faulttolerant FUSE filesystem for the LHCb online farm

ECFS: A decentralized, distributed and faulttolerant FUSE filesystem for the LHCb online farm Journal of Physics: Conference Series OPEN ACCESS ECFS: A decentralized, distributed and faulttolerant FUSE filesystem for the LHCb online farm To cite this article: Tomasz Rybczynski et al 2014 J. Phys.:

More information

Fault-Tolerant Computing

Fault-Tolerant Computing Fault-Tolerant Computing Hardware Design Methods Nov. 2007 Hardware Implementation Strategies Slide 1 About This Presentation This presentation has been prepared for the graduate course ECE 257A (Fault-Tolerant

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 28: System Dependability, Error Correction Codes and Virtual Machines Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information