Efficiency Considerations of Cauchy Reed-Solomon Implementations on Accelerator and Multi-Core Platforms

Size: px
Start display at page:

Download "Efficiency Considerations of Cauchy Reed-Solomon Implementations on Accelerator and Multi-Core Platforms"

Transcription

1 Efficiency Considerations of Cauchy Reed-Solomon Implementations on Accelerator and Multi-Core Platforms SAAHPC June Knoxville, TN Kathrin Peter Sebastian Borchert Thomas Steinke Zuse Institute Berlin (ZIB) <

2 Outline Motivation The Reed-Solomon algorithm Platforms and implementations Reed-Solomon throughput and efficiency Conclusions 2

3 Motivation I: Fault-tolerance Storage systems Mean Time To Data Loss (MTTDL) for 100k disk deployments: RAID-5 is non-starter with 100k disks: MTTDL ~ 9 days! RAID-D2 (8+2P stripes): MTTDL ~ 100 years RAID-D3 (8+3P stripes): MTTDL ~ 130 million years! source: IBM, Almaden Research Center Storage Systems, SC 09 3

4 Motivation II: Application Level Fault-Recovery Mean Time To Interrupt (MTTI) for Petascale+ class compute configurations: O(1 day) application level fault-recovery, application level checkpoint-restart example: Charm++ provides in-memory distributed checkpoint scheme - memory footprint doubled F Cappello, A Geist, B Gropp, S Kale, B Kramer, M Snir: Toward Exascale Resilience,

5 Scope & Limitations objective: investigating alternative processing platforms for RS encoding (decoding) focus on one particular step of the overall processing pipeline aspects ignored include - application (producer) : data injection bandwidth - disk I/O bandwidth, disk grouping project is not aiming to design a storage system no disk and data path configuration options considered here 5

6 The Reed-Solomon algorithm Non-binary, cyclic block code (1960 I. Reed, G. Solomon) Applications: Reliable data transmission Reliable data storage: en-/decoding in the disk (RAID) controller Crash Data disk disk disk disk disk (Re) Calculation when read / write Requirement: Fast encoding 6

7 Advantages of the Reed-Solomon Coding Flexibility in the coding schema k + m RS code means: k data blocks m check blocks up to m errors can be tolerated 7

8 Encoding Principle for (k+m) RS Schema Encoding is a matrix-vector multiplication: Galois field multiplication is expensive Cauchy Reed-Solomon 8

9 The Cauchy Variant of Reed-Solomon Cauchy Reed-Solomon : work of J. S. Plank et. al. GF 2 only XOR operations 9

10 Platforms Used in this Study GPGPU: NVIDIA Tesla C1070/SGI XE500, Tesla C870/Sun Ultra27 CUDA 2.3, CUDA 3.0 FPGA: SGI RC 100/SGI Altix 450 Mitrionics SDK 2.0, RASClib 2.2, Xilinx ISE 9.2 Cell BE: IBM PowerXCell8i/IBM QS22 IBM CBE SDK 3.1 SIMD Processor: ClearSpeed CSX e620/sun X4600M2 ClearSpeed s Cn Compiler, CSAPI v

11 Memory Hierarchy Data Source Data Processing Host RAM Global Device Memory Local Memory Data Check QPI: 32 GB/s XDR: 25 GB/s PCIe x16: 8 GB/s NUMAlink4: 6 GB/s in: GPU ClearSpeed CBE 11

12 General Implementation Strategy 5+3 Reed-Solomon schema, Cauchy RS input data volumes: Mbytes to saturate the complete data path co-processor model (except CBE and x86) requires overlapping of data processing & communication 12

13 Platform Specific Optimizations x86 GPGPU SSE transfer models parallelization: OpenMP - synchronous xfer (block) FPGA NUMA: mem affinity (numactl) - asynchronous stream kernel is called as a 2D grid with 1D thread pool XOR tree /w constants 128 bit wide I/O double buffering via RASClib 1/5 resource utilization CellBE 8 SPUs, 512 byte blocks double buffering SPU NUMA 8-16 SPUs Flip Flops Slices BRAM 13

14 Metrics Used for Performance Evaluation raw throughput performance Reed-Solomon rate: RS rate := size of input data set / total time host memory-to-host memory performance (includes data transfers) normalization: relative RS rate := RS rate / link bandwidth 14

15 RS Rates (Comparing Apples with Oranges ) Best Reed-Solomon Rates and Kernel Rates 5+3 RS Schema ClearSpeed (2007) CSX600 (96x) overall RS Rate Kernel Rate FPGA (2006) XCV4LX GPU (2009) T10 (32x) GPU (2007) G80 (64x) CBE (2008) XPowerCell8i (8x) x86 (2009) X5570 (8x) RS Rate [MByte/s] 15

16 RS Rates (Comparing Apples with Oranges ) Best Reed-Solomon Rates and Kernel Rates 5+3 RS Schema ClearSpeed (2007) CSX600 (96x) overall RS Rate Kernel Rate FPGA (2006) XCV4LX GPU (2009) GPU (2007) T10 (32x) G80 (64x) Reference data: Curry et al. (2008): 13+3 RS schema on GTX 260 RS rate: 1.4 GB/s CBE (2008) XPowerCell8i (8x) Brinkmann et.al. (2009): X-8 RS schema on 8800 GTS RS rate: 1.0 GB/s x86 (2009) X5570 (8x) RS Rate [MByte/s] 16

17 Reed-Solomon Efficiencies Overall RS & Kernel Efficiencies ClearSpeed (2007) CSX600 (96x) FPGA (2006) XCV4LX200 GPU (2009) T10 (32x) GPU (2007) G80 (64x) CBE (2008) x86 (2009) XPowerCell8i (8x) X5570 (8x) overall RS Efficiency Kernel Efficiency Efficiency [%] 17

18 Reed-Solomon on x86: Performance & Scaling Reed-Solomon Rate: Intel Nehalem QPI bandwidth limit: MB/s RS Rate [MB/s] # Threads optimization level: SSE, OpenMP, NUMA 18

19 RS on CBE PowerXCell8i: Performance & Scaling Reed-Solomon Rate: PowerXCell8i XDR bandwidth limit: MB/s RS Rate [MB/s] # Threads 19

20 Overall Results 20

21 Performance & Efficiency Summary Ranking according to sustained Reed-Solomon rate Categories according to Reed-Solomon efficiency 1. Cell BE, x86 Nehalem 2. GPGPU, FPGA 3. ClearSpeed Category 50+: Category 40: Cell BE x86 Nehalem, FPGA, GPGPU-C1060 Category 20: GPGPU-C870, ClearSpeed 21

22 Limitations of the Study we measured the performance of the encoding step for a fixed 5+3 RS schema, only performance of the decoding step can be considered similar the total data processing workflow includes additional steps application (producer) : data injection bandwidth permanent storage : disk I/O bandwidth 22

23 Conclusion Reed-Solomon encoding is feasible using non-asic technology algorithmic improvements: Cauchy Reed-Solomon technology improvements: energy efficient accelerators Reed-Solomon application scenarios: 1. non-critical requirements (power, cooling) x86 platform is a convenient solution 2. data intensive processing environments: FPGA integrated into data path 23

24 Acknowledgement Thanks to Michael Peick, Johannes Bock (initial GPU & FPGA version) Mathias Foquet-Lapar, SGI (Tesla C1070 on SGI s AEP sys) Willi Homberg, FZ Jülich (QS22 system JUICEnext)??? 24

Addressing Heterogeneity in Manycore Applications

Addressing Heterogeneity in Manycore Applications Addressing Heterogeneity in Manycore Applications RTM Simulation Use Case stephane.bihan@caps-entreprise.com Oil&Gas HPC Workshop Rice University, Houston, March 2008 www.caps-entreprise.com Introduction

More information

A Performance Evaluation of Open Source Erasure Codes for Storage Applications

A Performance Evaluation of Open Source Erasure Codes for Storage Applications A Performance Evaluation of Open Source Erasure Codes for Storage Applications James S. Plank Catherine D. Schuman (Tennessee) Jianqiang Luo Lihao Xu (Wayne State) Zooko Wilcox-O'Hearn Usenix FAST February

More information

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures Haiyang Shi, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda {shi.876, lu.932, panda.2}@osu.edu The Ohio State University

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions

Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions Ethan L. Miller Center for Research in Storage Systems University of California, Santa Cruz (and Pure Storage) Authors Jim Plank Univ.

More information

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA

Particle-in-Cell Simulations on Modern Computing Platforms. Viktor K. Decyk and Tajendra V. Singh UCLA Particle-in-Cell Simulations on Modern Computing Platforms Viktor K. Decyk and Tajendra V. Singh UCLA Outline of Presentation Abstraction of future computer hardware PIC on GPUs OpenCL and Cuda Fortran

More information

Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques. Tianli Zhou & Chao Tian Texas A&M University

Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques. Tianli Zhou & Chao Tian Texas A&M University Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques Tianli Zhou & Chao Tian Texas A&M University 2 Contents Motivation Background and Review Evaluating Individual

More information

Operational Robustness of Accelerator Aware MPI

Operational Robustness of Accelerator Aware MPI Operational Robustness of Accelerator Aware MPI Sadaf Alam Swiss National Supercomputing Centre (CSSC) Switzerland 2nd Annual MVAPICH User Group (MUG) Meeting, 2014 Computing Systems @ CSCS http://www.cscs.ch/computers

More information

GaaS Workload Characterization under NUMA Architecture for Virtualized GPU

GaaS Workload Characterization under NUMA Architecture for Virtualized GPU GaaS Workload Characterization under NUMA Architecture for Virtualized GPU Huixiang Chen, Meng Wang, Yang Hu, Mingcong Song, Tao Li Presented by Huixiang Chen ISPASS 2017 April 24, 2017, Santa Rosa, California

More information

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies John C. Linford John Michalakes Manish Vachharajani Adrian Sandu IMAGe TOY 2009 Workshop 2 Virginia

More information

Graphics Processor Acceleration and YOU

Graphics Processor Acceleration and YOU Graphics Processor Acceleration and YOU James Phillips Research/gpu/ Goals of Lecture After this talk the audience will: Understand how GPUs differ from CPUs Understand the limits of GPU acceleration Have

More information

Erasure coding and AONT algorithm selection for Secure Distributed Storage. Alem Abreha Sowmya Shetty

Erasure coding and AONT algorithm selection for Secure Distributed Storage. Alem Abreha Sowmya Shetty Erasure coding and AONT algorithm selection for Secure Distributed Storage Alem Abreha Sowmya Shetty Secure Distributed Storage AONT(All-Or-Nothing Transform) unkeyed transformation φ mapping a sequence

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

Simplify System Complexity

Simplify System Complexity 1 2 Simplify System Complexity With the new high-performance CompactRIO controller Arun Veeramani Senior Program Manager National Instruments NI CompactRIO The Worlds Only Software Designed Controller

More information

Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions. James S. Plank USENIX FAST. University of Tennessee

Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions. James S. Plank USENIX FAST. University of Tennessee Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions James S. Plank University of Tennessee USENIX FAST San Jose, CA February 15, 2013. Authors Jim Plank Tennessee Kevin Greenan EMC/Data

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs Gordon Erlebacher Department of Scientific Computing Sept. 28, 2012 with Dimitri Komatitsch (Pau,France) David Michea

More information

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms Complexity and Advanced Algorithms Introduction to Parallel Algorithms Why Parallel Computing? Save time, resources, memory,... Who is using it? Academia Industry Government Individuals? Two practical

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

PARALLEL PROGRAMMING MANY-CORE COMPUTING: THE LOFAR SOFTWARE TELESCOPE (5/5)

PARALLEL PROGRAMMING MANY-CORE COMPUTING: THE LOFAR SOFTWARE TELESCOPE (5/5) PARALLEL PROGRAMMING MANY-CORE COMPUTING: THE LOFAR SOFTWARE TELESCOPE (5/5) Rob van Nieuwpoort Vrije Universiteit Amsterdam & Astron, the Netherlands Institute for Radio Astronomy Why Radio? Credit: NASA/IPAC

More information

MULTIMEDIA PROCESSING ON MANY-CORE TECHNOLOGIES USING DISTRIBUTED MULTIMEDIA MIDDLEWARE

MULTIMEDIA PROCESSING ON MANY-CORE TECHNOLOGIES USING DISTRIBUTED MULTIMEDIA MIDDLEWARE MULTIMEDIA PROCESSING ON MANY-CORE TECHNOLOGIES USING DISTRIBUTED MULTIMEDIA MIDDLEWARE Michael Repplinger 1,2, Martin Beyer 1, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken,

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Summary of previous lectures Pthreads: low-level multi-threaded programming OpenMP: simplified interface based on #pragma, adapted to scientific computing OpenMP for and

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

COMP Parallel Computing. SMM (1) Memory Hierarchies and Shared Memory

COMP Parallel Computing. SMM (1) Memory Hierarchies and Shared Memory COMP 633 - Parallel Computing Lecture 6 September 6, 2018 SMM (1) Memory Hierarchies and Shared Memory 1 Topics Memory systems organization caches and the memory hierarchy influence of the memory hierarchy

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions

Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Data Partitioning on Heterogeneous Multicore and Multi-GPU systems Using Functional Performance Models of Data-Parallel Applictions Ziming Zhong Vladimir Rychkov Alexey Lastovetsky Heterogeneous Computing

More information

High Performance Computing. University questions with solution

High Performance Computing. University questions with solution High Performance Computing University questions with solution Q1) Explain the basic working principle of VLIW processor. (6 marks) The following points are basic working principle of VLIW processor. The

More information

Current Trends in Computer Graphics Hardware

Current Trends in Computer Graphics Hardware Current Trends in Computer Graphics Hardware Dirk Reiners University of Louisiana Lafayette, LA Quick Introduction Assistant Professor in Computer Science at University of Louisiana, Lafayette (since 2006)

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

GPU-centric communication for improved efficiency

GPU-centric communication for improved efficiency GPU-centric communication for improved efficiency Benjamin Klenk *, Lena Oden, Holger Fröning * * Heidelberg University, Germany Fraunhofer Institute for Industrial Mathematics, Germany GPCDP Workshop

More information

Musemage. The Revolution of Image Processing

Musemage. The Revolution of Image Processing Musemage The Revolution of Image Processing Kaiyong Zhao Hong Kong Baptist University, Paraken Technology Co. Ltd. Yubo Zhang University of California Davis Outline Introduction of Musemage Why GPU based

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

Integration of Intel Xeon Phi Servers into the HLRN-III Complex: Experiences, Performance and Lessons Learned

Integration of Intel Xeon Phi Servers into the HLRN-III Complex: Experiences, Performance and Lessons Learned Integration of Intel Xeon Phi Servers into the HLRN-III Complex: Experiences, Performance and Lessons Learned Florian Wende, Guido Laubender and Thomas Steinke Zuse Institute Berlin (ZIB) Cray User Group

More information

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing Accelerating HPC (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing SAAHPC, Knoxville, July 13, 2010 Legal Disclaimer Intel may make changes to specifications and product

More information

Finite Element Integration and Assembly on Modern Multi and Many-core Processors

Finite Element Integration and Assembly on Modern Multi and Many-core Processors Finite Element Integration and Assembly on Modern Multi and Many-core Processors Krzysztof Banaś, Jan Bielański, Kazimierz Chłoń AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków,

More information

Advanced Parallel Programming I

Advanced Parallel Programming I Advanced Parallel Programming I Alexander Leutgeb, RISC Software GmbH RISC Software GmbH Johannes Kepler University Linz 2016 22.09.2016 1 Levels of Parallelism RISC Software GmbH Johannes Kepler University

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

High Performance Computing and GPU Programming

High Performance Computing and GPU Programming High Performance Computing and GPU Programming Lecture 1: Introduction Objectives C++/CPU Review GPU Intro Programming Model Objectives Objectives Before we begin a little motivation Intel Xeon 2.67GHz

More information

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University

Accelerating GPU computation through mixed-precision methods. Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Accelerating GPU computation through mixed-precision methods Michael Clark Harvard-Smithsonian Center for Astrophysics Harvard University Outline Motivation Truncated Precision using CUDA Solving Linear

More information

High performance Computing and O&G Challenges

High performance Computing and O&G Challenges High performance Computing and O&G Challenges 2 Seismic exploration challenges High Performance Computing and O&G challenges Worldwide Context Seismic,sub-surface imaging Computing Power needs Accelerating

More information

INTRODUCTION TO OPENCL TM A Beginner s Tutorial. Udeepta Bordoloi AMD

INTRODUCTION TO OPENCL TM A Beginner s Tutorial. Udeepta Bordoloi AMD INTRODUCTION TO OPENCL TM A Beginner s Tutorial Udeepta Bordoloi AMD IT S A HETEROGENEOUS WORLD Heterogeneous computing The new normal CPU Many CPU s 2, 4, 8, Very many GPU processing elements 100 s Different

More information

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors Edgar Gabriel Fall 2018 References Intel Larrabee: [1] L. Seiler, D. Carmean, E.

More information

On the limits of (and opportunities for?) GPU acceleration

On the limits of (and opportunities for?) GPU acceleration On the limits of (and opportunities for?) GPU acceleration Aparna Chandramowlishwaran, Jee Choi, Kenneth Czechowski, Murat (Efe) Guney, Logan Moon, Aashay Shringarpure, Richard (Rich) Vuduc HotPar 10,

More information

What does Heterogeneity bring?

What does Heterogeneity bring? What does Heterogeneity bring? Ken Koch Scientific Advisor, CCS-DO, LANL LACSI 2006 Conference October 18, 2006 Some Terminology Homogeneous Of the same or similar nature or kind Uniform in structure or

More information

Simplify System Complexity

Simplify System Complexity Simplify System Complexity With the new high-performance CompactRIO controller Fanie Coetzer Field Sales Engineer Northern South Africa 2 3 New control system CompactPCI MMI/Sequencing/Logging FieldPoint

More information

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx

High Capacity and High Performance 20nm FPGAs. Steve Young, Dinesh Gaitonde August Copyright 2014 Xilinx High Capacity and High Performance 20nm FPGAs Steve Young, Dinesh Gaitonde August 2014 Not a Complete Product Overview Page 2 Outline Page 3 Petabytes per month Increasing Bandwidth Global IP Traffic Growth

More information

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE)

GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) GPU ACCELERATION OF WSMP (WATSON SPARSE MATRIX PACKAGE) NATALIA GIMELSHEIN ANSHUL GUPTA STEVE RENNICH SEID KORIC NVIDIA IBM NVIDIA NCSA WATSON SPARSE MATRIX PACKAGE (WSMP) Cholesky, LDL T, LU factorization

More information

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC

GPGPUs in HPC. VILLE TIMONEN Åbo Akademi University CSC GPGPUs in HPC VILLE TIMONEN Åbo Akademi University 2.11.2010 @ CSC Content Background How do GPUs pull off higher throughput Typical architecture Current situation & the future GPGPU languages A tale of

More information

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 8+9: GPU Architecture 7+8 Markus Hadwiger, KAUST Reading Assignment #5 (until March 12) Read (required): Programming Massively Parallel Processors book, Chapter

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

Concurrent execution of an analytical workload on a POWER8 server with K40 GPUs A Technology Demonstration

Concurrent execution of an analytical workload on a POWER8 server with K40 GPUs A Technology Demonstration Concurrent execution of an analytical workload on a POWER8 server with K40 GPUs A Technology Demonstration Sina Meraji sinamera@ca.ibm.com Berni Schiefer schiefer@ca.ibm.com Tuesday March 17th at 12:00

More information

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 04. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 04 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for

More information

Practical Scientific Computing

Practical Scientific Computing Practical Scientific Computing Performance-optimised Programming Preliminary discussion, 17.7.2007 Dr. Ralf-Peter Mundani, mundani@tum.de Dipl.-Ing. Ioan Lucian Muntean, muntean@in.tum.de Dipl.-Geophys.

More information

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices

Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Evaluation of Asynchronous Offloading Capabilities of Accelerator Programming Models for Multiple Devices Jonas Hahnfeld 1, Christian Terboven 1, James Price 2, Hans Joachim Pflug 1, Matthias S. Müller

More information

Introduction to GPU programming with CUDA

Introduction to GPU programming with CUDA Introduction to GPU programming with CUDA Dr. Juan C Zuniga University of Saskatchewan, WestGrid UBC Summer School, Vancouver. June 12th, 2018 Outline 1 Overview of GPU computing a. what is a GPU? b. GPU

More information

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner RiceNIC Prototyping Network Interfaces Jeffrey Shafer Scott Rixner RiceNIC Overview Gigabit Ethernet Network Interface Card RiceNIC - Prototyping Network Interfaces 2 RiceNIC Overview Reconfigurable and

More information

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems ( ZIH ) Center for Information Services and High Performance Computing Event Tracing and Visualization for Cell Broadband Engine Systems ( daniel.hackenberg@zih.tu-dresden.de ) Daniel Hackenberg Cell Broadband

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note on Disk I/O 1 I/O Devices Storage devices Floppy, Magnetic disk, Magnetic tape, CD-ROM, DVD User

More information

IBM Cell Processor. Gilbert Hendry Mark Kretschmann

IBM Cell Processor. Gilbert Hendry Mark Kretschmann IBM Cell Processor Gilbert Hendry Mark Kretschmann Architectural components Architectural security Programming Models Compiler Applications Performance Power and Cost Conclusion Outline Cell Architecture:

More information

Lecture 5. Performance programming for stencil methods Vectorization Computing with GPUs

Lecture 5. Performance programming for stencil methods Vectorization Computing with GPUs Lecture 5 Performance programming for stencil methods Vectorization Computing with GPUs Announcements Forge accounts: set up ssh public key, tcsh Turnin was enabled for Programming Lab #1: due at 9pm today,

More information

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996

Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H. Katz Computer Science 252 Spring 1996 Lecture 23: I/O Redundant Arrays of Inexpensive Disks Professor Randy H Katz Computer Science 252 Spring 996 RHKS96 Review: Storage System Issues Historical Context of Storage I/O Storage I/O Performance

More information

XPU A Programmable FPGA Accelerator for Diverse Workloads

XPU A Programmable FPGA Accelerator for Diverse Workloads XPU A Programmable FPGA Accelerator for Diverse Workloads Jian Ouyang, 1 (ouyangjian@baidu.com) Ephrem Wu, 2 Jing Wang, 1 Yupeng Li, 1 Hanlin Xie 1 1 Baidu, Inc. 2 Xilinx Outlines Background - FPGA for

More information

ECE 8823: GPU Architectures. Objectives

ECE 8823: GPU Architectures. Objectives ECE 8823: GPU Architectures Introduction 1 Objectives Distinguishing features of GPUs vs. CPUs Major drivers in the evolution of general purpose GPUs (GPGPUs) 2 1 Chapter 1 Chapter 2: 2.2, 2.3 Reading

More information

GPUfs: Integrating a file system with GPUs

GPUfs: Integrating a file system with GPUs GPUfs: Integrating a file system with GPUs Mark Silberstein (UT Austin/Technion) Bryan Ford (Yale), Idit Keidar (Technion) Emmett Witchel (UT Austin) 1 Traditional System Architecture Applications OS CPU

More information

Heterogeneous Processing

Heterogeneous Processing Heterogeneous Processing Maya Gokhale maya@lanl.gov Outline This talk: Architectures chip node system Programming Models and Compiler Overview Applications Systems Software Clock rates and transistor counts

More information

arxiv: v1 [astro-ph.im] 2 Feb 2017

arxiv: v1 [astro-ph.im] 2 Feb 2017 International Journal of Parallel Programming manuscript No. (will be inserted by the editor) Correlating Radio Astronomy Signals with Many-Core Hardware Rob V. van Nieuwpoort John W. Romein arxiv:1702.00844v1

More information

Real-Time Support for GPU. GPU Management Heechul Yun

Real-Time Support for GPU. GPU Management Heechul Yun Real-Time Support for GPU GPU Management Heechul Yun 1 This Week Topic: Real-Time Support for General Purpose Graphic Processing Unit (GPGPU) Today Background Challenges Real-Time GPU Management Frameworks

More information

Re-architecting Virtualization in Heterogeneous Multicore Systems

Re-architecting Virtualization in Heterogeneous Multicore Systems Re-architecting Virtualization in Heterogeneous Multicore Systems Himanshu Raj, Sanjay Kumar, Vishakha Gupta, Gregory Diamos, Nawaf Alamoosa, Ada Gavrilovska, Karsten Schwan, Sudhakar Yalamanchili College

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

HPSS RAIT. A high performance, resilient, fault-tolerant tape data storage class. 1

HPSS RAIT. A high performance, resilient, fault-tolerant tape data storage class.   1 HPSS RAIT A high performance, resilient, fault-tolerant tape data storage class http://www.hpss-collaboration.org 1 Why RAIT? HPSS supports striped tape without RAIT o Conceptually similar to RAID 0 o

More information

Heterogeneous Computing and OpenCL

Heterogeneous Computing and OpenCL Heterogeneous Computing and OpenCL Hongsuk Yi (hsyi@kisti.re.kr) (Korea Institute of Science and Technology Information) Contents Overview of the Heterogeneous Computing Introduction to Intel Xeon Phi

More information

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation

Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation Multi-GPU Scaling of Direct Sparse Linear System Solver for Finite-Difference Frequency-Domain Photonic Simulation 1 Cheng-Han Du* I-Hsin Chung** Weichung Wang* * I n s t i t u t e o f A p p l i e d M

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

GPU for HPC. October 2010

GPU for HPC. October 2010 GPU for HPC Simone Melchionna Jonas Latt Francis Lapique October 2010 EPFL/ EDMX EPFL/EDMX EPFL/DIT simone.melchionna@epfl.ch jonas.latt@epfl.ch francis.lapique@epfl.ch 1 Moore s law: in the old days,

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

A Design for Networked Flash

A Design for Networked Flash A Design for Networked Flash (Clusters Of Raw Flash Units) Mahesh Balakrishnan, John Davis, Dahlia Malkhi, Vijayan Prabhakaran, Michael Wei*, Ted Wobber Microso- Research Silicon Valley * Graduate student

More information

CDA3101 Recitation Section 13

CDA3101 Recitation Section 13 CDA3101 Recitation Section 13 Storage + Bus + Multicore and some exam tips Hard Disks Traditional disk performance is limited by the moving parts. Some disk terms Disk Performance Platters - the surfaces

More information

COSC 6385 Computer Architecture. - Multi-Processors (V) The Intel Larrabee, Nvidia GT200 and Fermi processors

COSC 6385 Computer Architecture. - Multi-Processors (V) The Intel Larrabee, Nvidia GT200 and Fermi processors COSC 6385 Computer Architecture - Multi-Processors (V) The Intel Larrabee, Nvidia GT200 and Fermi processors Fall 2012 References Intel Larrabee: [1] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M.

More information

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Hybrid Computing @ KAUST Many Cores and OpenACC Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS + Agenda Hybrid Computing n Hybrid Computing n From Multi-Physics

More information

Introduction to CUDA

Introduction to CUDA Introduction to CUDA Overview HW computational power Graphics API vs. CUDA CUDA glossary Memory model, HW implementation, execution Performance guidelines CUDA compiler C/C++ Language extensions Limitations

More information

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA

HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES. Cliff Woolley, NVIDIA HARNESSING IRREGULAR PARALLELISM: A CASE STUDY ON UNSTRUCTURED MESHES Cliff Woolley, NVIDIA PREFACE This talk presents a case study of extracting parallelism in the UMT2013 benchmark for 3D unstructured-mesh

More information

Part IV. Review of hardware-trends for real-time ray tracing

Part IV. Review of hardware-trends for real-time ray tracing Part IV Review of hardware-trends for real-time ray tracing Hardware Trends For Real-time Ray Tracing Philipp Slusallek Saarland University, Germany Large Model Visualization at Boeing CATIA Model of Boeing

More information

GPU programming. Dr. Bernhard Kainz

GPU programming. Dr. Bernhard Kainz GPU programming Dr. Bernhard Kainz Overview About myself Motivation GPU hardware and system architecture GPU programming languages GPU programming paradigms Pitfalls and best practice Reduction and tiling

More information

Practical Scientific Computing

Practical Scientific Computing Practical Scientific Computing Performance-optimized Programming Preliminary discussion: July 11, 2008 Dr. Ralf-Peter Mundani, mundani@tum.de Dipl.-Ing. Ioan Lucian Muntean, muntean@in.tum.de MSc. Csaba

More information

Rhythm: Harnessing Data Parallel Hardware for Server Workloads

Rhythm: Harnessing Data Parallel Hardware for Server Workloads Rhythm: Harnessing Data Parallel Hardware for Server Workloads Sandeep R. Agrawal $ Valentin Pistol $ Jun Pang $ John Tran # David Tarjan # Alvin R. Lebeck $ $ Duke CS # NVIDIA Explosive Internet Growth

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline Fermi/Kepler Architecture Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

MAPPING VIDEO CODECS TO HETEROGENEOUS ARCHITECTURES. Mauricio Alvarez-Mesa Techische Universität Berlin - Spin Digital MULTIPROG 2015

MAPPING VIDEO CODECS TO HETEROGENEOUS ARCHITECTURES. Mauricio Alvarez-Mesa Techische Universität Berlin - Spin Digital MULTIPROG 2015 MAPPING VIDEO CODECS TO HETEROGENEOUS ARCHITECTURES Mauricio Alvarez-Mesa Techische Universität Berlin - Spin Digital MULTIPROG 2015 Video Codecs 70% of internet traffic will be video in 2018 [CISCO] Video

More information

Warps and Reduction Algorithms

Warps and Reduction Algorithms Warps and Reduction Algorithms 1 more on Thread Execution block partitioning into warps single-instruction, multiple-thread, and divergence 2 Parallel Reduction Algorithms computing the sum or the maximum

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

Quiz for Chapter 6 Storage and Other I/O Topics 3.10

Quiz for Chapter 6 Storage and Other I/O Topics 3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: 1. [6 points] Give a concise answer to each of the following

More information

Improving Packet Processing Performance of a Memory- Bounded Application

Improving Packet Processing Performance of a Memory- Bounded Application Improving Packet Processing Performance of a Memory- Bounded Application Jörn Schumacher CERN / University of Paderborn, Germany jorn.schumacher@cern.ch On behalf of the ATLAS FELIX Developer Team LHCb

More information

Masterpraktikum Scientific Computing

Masterpraktikum Scientific Computing Masterpraktikum Scientific Computing High-Performance Computing Michael Bader Alexander Heinecke Technische Universität München, Germany Outline Logins Levels of Parallelism Single Processor Systems Von-Neumann-Principle

More information

A Near Memory Processor for Vector, Streaming and Bit Manipulations Workloads

A Near Memory Processor for Vector, Streaming and Bit Manipulations Workloads A Near Memory Processor for Vector, Streaming and Bit Manipulations Workloads Mingliang Wei, Marc Snir, Josep Torrellas (UIUC) Brett Tremaine (IBM) Work supported by HPCS/PERCS Motivation Many important

More information