Chapter 6: Problem Solutions

Size: px
Start display at page:

Download "Chapter 6: Problem Solutions"

Transcription

1 Chapter 6: Problem s Multirate Digital Signal Processing: Fundamentals Sampling, Upsampling and Downsampling à Problem 6. From the definiton of downsampling, yn xn a) yn n n b) yn n 0 c) yn n un un d) yn e j0.n e) yn e j0.n un yn e j0.n un f) yn cos0.4n g) yn cos0.5 n cosn n h) yn sinn 0 i) yn cosn j) yn sinn 0

2

3

4

5

6

7

8

9

10 4 s_chapter6[].nb à Problem 6.3 X () x[n] y[n] B In all cases Y X X for all Whene there is no aliasing, ie X 0 for then this relation simpilfies to a) B 5 Y X. Then there is no aliasing after downsampling and therefore Y is as shown below X () 5 x[n] y[n] Y () 5 b) B. Then again there is no aliasing after downsampling and therefore Y is as shown below X () x[n] y[n] Y () c) B 3 4. In this cases there is aliasing and we have to account for it. Best way to do it is proceed in two steps: sampling and then downsampling.

11 s_chapter6[].nb 5 The sampling operation yields Y X X The figure below shows both X and X. X ( ) Then downsampling yields Y Y, just a rescaling of the frequency axis. The final results is shown below. Y () Y () / / 3

12 6 s_chapter6[].nb d) B. Same reasoning as in c). This time it is easy to see that Y X X and therefore Y Y for all. for all à Problem 6.4 Recall that yn x n n x n n x n ejn a) yn n; b) yn n un c) yn d) yn e) yn which becomes ej0.05n ej0.05n ej0.05n ej0.05n un 4 ej0.05n 4 ej0.05n un yn cos0.05nun cos0.95nun f) similarly yn cos0.05n cos0.95n à Problem ej0.05n 4 ej0.05n un x[n] s[n] y[n] Using the DTFT. For upsampling S X and downsampling Substitute for S to obtain Y S S

13 s_chapter6[].nb 7 S X X S X X Therefore Y X from the periodicity of the DTFT. X X à Problem 6.6 From the diagram it is easy to verify that yn xn if n even 0 if n odd Therefore yn xn n, and Yz Xz Xz, or equivalently, Y X X. One way we can verify this is the following: call vn the output of the downsampler. Then V X X Since yn is the output of the upsampler then YV X X as we expect. à Problem 6.7 X () x [n] x M [n] y[n] 4 s[n] The effect of modulation on the frequency spectrum is as follows DTFTx M n X 0 X 0

14 8 s_chapter6[].nb where x M n xncos 0 n. After upsampling by the signal yn has DTFT Y X M X 0 X 0 a) 0 4. Then X M and Y are shown below. X M () / / 4 Y () 8 b) 0. Then X M and Y are shown below. X M () / / 4 Y () 4 c) 0. Then X M and Y are shown below.

15 s_chapter6[].nb 9 X M () Y () 3 4 In this case notice the maximum amplitude of the DTFT being "one" (rather then / as in the previous cases). This is due to the fact that X X. à Problem 6.8 In this problem we need to increase the sampling frequency from F s 8kHz to F s khz, ie by a factor. Therefore with ideal filters the scheme is as shown below. 8 3 x[n] 3 ) H ( s[n] y[n] H () 3

16 0 s_chapter6[].nb à Problem 6.9 In this case the Low Pass Filter H is a non ideal FIR filter. The whole problem is to choose the correct specifications for the filter. The stopband has to be S 3, since the purpose of this filter is to stop the frequency artifacts generated by the upsampling operation. The passband has to be decided on the basis of the bandwirdth of the signal we want to pass and the desired complexity of the filter. For a window based, recall that we need a hamming window (from the desired attenuation) with transition region 8 N. Therefore an FIR filter of length N will have a passband p à Problem N. The digital signal has frequencies at 6 3 rad and 6 3 rad. Therefore the output signal has frequencies at 3, 3 and also at 3 3, 3 3, 3 3 and 3 3. All components at 3 and 3 are going to sum with each other. à Problem 6. a) Hz 4z 3 6z 6 z 3 5z 3 z 6 z z 3 b) Hz z 5z 4 6z 6 z 3 4z z 4 z 6 c) Hz z z 5z 4 6z 6 z z 3 4z z 4 z 6 d) Hz z 3 4z 3 6z 6 z z 3 5z 3 z 6 z z 6 3z 3 z 3 e) Hz 0.5 n z n 0.5 n z n z 0.5 n z n whixh yields n0 n0 n0 Hz 0.5z z z z f) Hz z0.8 which can be written as Hz 0.8 n z n 0.8 n z n z 0.8 n z n. This becomes n0 n0 n0 Hz 0.64z z z The same result can be obtained by an alternative way:

17 s_chapter6[].nb Hz z z0.8 z0.8 z0.8 z amd you can verify that the two answers are the same. z 0.64 z 0.8z z 0.64 g) You can verify that the general exprezzion for the polyphase terms is H k z hnm kz n n for k 0,..., M. Applying this formula we obtain à Problem 6. H k z sin 5 3nk n 5 3nk z n for k 0,, a) From the transfer function of the filter Hz z z z 3 z 4 z 5 z 6 and M 4 we obtain the decomposition with Hz H 0 z 4 z H z 4 z H z 4 z 3 H 3 z 4 The block diagram of the system is shown below: H 0 z z H z z H z z H 3 z x [n] y[n] 4 H 0( z ) z z z 4 H ( z ) 4 H ( z ) 4 H 3 ( z) b) Using the same filters, the realization is as follows:

18 s_chapter6[].nb x[n] H 0 ( z) 4 y[n] z H ( z ) 4 z H ( z ) 4 z H 3 ( z) 4 c) When M the polyphase decomposition becomes H 0 z z z z 3 and Hz z z Therefore the system becomes as shown below: x[n] H ( z 0 ) y[n] z H ( z) Now notice that the cascade upsampler - downsampler (both by ) is just an identity. Also the cascede upsampler - time delay - downsampler as shown gives an output of zero, no matter what the input is (easy to verify). This is shown below: z 0 Therefore the overall system looks like this one:

19 s_chapter6[].nb 3 x [n] y[n] H 0( z ) Applications of MultiRate à Problem 6.3 a) In digital frequency, the passband is P radians, and the stopband is S radians. As a consequence the transition region is S P For a 60 db attenuation we can use (say) a Kaiser window with parameters N 4, and therefore the order is 4, 6. This yields a total number of 4, 66, multiplications and additions per second b) Since we want to reject all frequencies above 30Hz, we can downsample from the orginal sampling frequency (6kHz) down to 60Hz, ie by a factor D 6, As seen in class, this can be done in three stages by factoring D 00 as (say) as shown below F Fx 6kHz F 600Hz F3 0Hz F y x[n] H 3 H 0 H 5 Now the specifications of the filters become as follows:

20 4 s_chapter6[].nb H : F p 5Hz, F S Hz, H : F p 5Hz, F S Hz, H 3 : F p 5Hz, F S Hz, From the transition bands we can determine the orders of the filters. using the Kaiser window again we have the orders N,N,N 3 of the threee filters to be. respectively, 608 N N N Finally the total number of operations per second becomes: ops sec , which is reduction of a factor of more than 90. Also notice that we are not even attempting to save even more in computation using the polyphase decomposition! à Problem 6.4 Q) Recall the Butterworth filter frequency response: H c N Then for the reconstruction filter, the passband is F p khz, 000, that is to say p 44, 000 rad sec. The stopband has to be at half the sampling frequency, ie F S kHz, that si to say S 44, 00 rad sec. From the passband ripple we determine the factor e from and therefore 0.45 We determine the order from the requirement p N H S N Solving for N gives a very large number, and the analog filter cannot be implemented. Furthermore there will be a distortion in phase from the reconstruction filter itself. Q) Now the filter has still the same expression, but with N 4, since we are restricted to a 4 pole filer. Therefore the filter is given by H 44, Since we want the attenuation to be 40dB in the stopband, we can solve for the stopband, as

21 s_chapter6[].nb 5 which yields , S 44, Therefore the stopband of this filter is at F S 5.470kHz 3.4kHz. This has to coincide with half the sampling frequency, and therefore the new sampling frequency is F s 3.4kHz 6.5kHz. In other words we have to upsample at least by 6.5/44.=5. times before the Digital to Analog conversion.

EE2S11 Signals and Systems, part 2. Ch.7.3 Analog filter design. Note differences in notation. We often write. transition band passband.

EE2S11 Signals and Systems, part 2. Ch.7.3 Analog filter design. Note differences in notation. We often write. transition band passband. Note differences in notation. We often write EE2S11 Signals and Systems, part 2 Ch.7.3 How can I design an analog filter that meets certain specifications? passband ripple transition band passband stopband

More information

Fatima Michael College of Engineering & Technology

Fatima Michael College of Engineering & Technology DEPARTMENT OF ECE V SEMESTER ECE QUESTION BANK EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING UNIT I DISCRETE FOURIER TRANSFORM PART A 1. Obtain the circular convolution of the following sequences x(n)

More information

Multistage Rate Change 1/12

Multistage Rate Change 1/12 Multistage Rate Change 1/12 Motivation for Multi-Stage Schemes Consider Decimation: When M is large (typically > 10 or so) it is usually inefficient to implement decimation in a single step (i.e., in a

More information

Resampling using a FIR filter

Resampling using a FIR filter Resampling using a FIR filter by Jens Hee http://jenshee.dk October 2016 Change log 29. september 2016 1. Document started. 23. october 2016 1. Document extended i Resampling The resampling method described

More information

Implementation of a Low Power Decimation Filter Using 1/3-Band IIR Filter

Implementation of a Low Power Decimation Filter Using 1/3-Band IIR Filter Implementation of a Low Power Decimation Filter Using /3-Band IIR Filter Khalid H. Abed Department of Electrical Engineering Wright State University Dayton Ohio, 45435 Abstract-This paper presents a unique

More information

CHAPTER 3 MULTISTAGE FILTER DESIGN FOR DIGITAL UPCONVERTER AND DOWNCONVERTER

CHAPTER 3 MULTISTAGE FILTER DESIGN FOR DIGITAL UPCONVERTER AND DOWNCONVERTER CHAPTER 3 MULTISTAGE FILTER DESIGN FOR DIGITAL UPCONVERTER AND DOWNCONVERTER 3.1 Introduction The interpolation and decimation filter design problem is a very important issue in the modern digital communication

More information

LOW COMPLEXITY SUBBAND ANALYSIS USING QUADRATURE MIRROR FILTERS

LOW COMPLEXITY SUBBAND ANALYSIS USING QUADRATURE MIRROR FILTERS LOW COMPLEXITY SUBBAND ANALYSIS USING QUADRATURE MIRROR FILTERS Aditya Chopra, William Reid National Instruments Austin, TX, USA Brian L. Evans The University of Texas at Austin Electrical and Computer

More information

A POWER EFFICIENT POLYPHASE SHARPENED CIC DECIMATION FILTER. FOR SIGMA-DELTA ADCs. A Thesis. Presented to

A POWER EFFICIENT POLYPHASE SHARPENED CIC DECIMATION FILTER. FOR SIGMA-DELTA ADCs. A Thesis. Presented to A POWER EFFICIENT POLYPHASE SHARPENED CIC DECIMATION FILTER FOR SIGMA-DELTA ADCs A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the

More information

Filter Bank Design and Sub-Band Coding

Filter Bank Design and Sub-Band Coding Filter Bank Design and Sub-Band Coding Arash Komaee, Afshin Sepehri Department of Electrical and Computer Engineering University of Maryland Email: {akomaee, afshin}@eng.umd.edu. Introduction In this project,

More information

EEE 512 ADVANCED DIGITAL SIGNAL AND IMAGE PROCESSING

EEE 512 ADVANCED DIGITAL SIGNAL AND IMAGE PROCESSING UNIVERSITI SAINS MALAYSIA Semester I Examination Academic Session 27/28 October/November 27 EEE 52 ADVANCED DIGITAL SIGNAL AND IMAGE PROCESSING Time : 3 hours INSTRUCTION TO CANDIDATE: Please ensure that

More information

ECE 6560 Multirate Signal Processing Chapter 8

ECE 6560 Multirate Signal Processing Chapter 8 Multirate Signal Processing Chapter 8 Dr. Bradley J. Bazuin Western Michigan University College o Engineering and Applied Sciences Department o Electrical and Computer Engineering 903 W. Michigan Ave.

More information

Advanced Design System 1.5. Digital Filter Designer

Advanced Design System 1.5. Digital Filter Designer Advanced Design System 1.5 Digital Filter Designer December 2000 Notice The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind

More information

ECE4703 B Term Laboratory Assignment 2 Floating Point Filters Using the TMS320C6713 DSK Project Code and Report Due at 3 pm 9-Nov-2017

ECE4703 B Term Laboratory Assignment 2 Floating Point Filters Using the TMS320C6713 DSK Project Code and Report Due at 3 pm 9-Nov-2017 ECE4703 B Term 2017 -- Laboratory Assignment 2 Floating Point Filters Using the TMS320C6713 DSK Project Code and Report Due at 3 pm 9-Nov-2017 The goals of this laboratory assignment are: to familiarize

More information

Filterbanks and transforms

Filterbanks and transforms Filterbanks and transforms Sources: Zölzer, Digital audio signal processing, Wiley & Sons. Saramäki, Multirate signal processing, TUT course. Filterbanks! Introduction! Critical sampling, half-band filter!

More information

Lecture 6: The Haar Filter Bank

Lecture 6: The Haar Filter Bank WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 6: The Haar Filter Bank Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture our aim is to implement Haar MRA using appropriate filter

More information

Anu Kalidas Muralidharan Pillai and Håkan Johansson

Anu Kalidas Muralidharan Pillai and Håkan Johansson 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) A SUB-BAND BASED RECONSTRUCTOR FOR M-CHANNEL TIME-INTERLEAVED ADCS WITH MISSING SAMPLES Anu Kalidas Muralidharan Pillai

More information

L-Point Interpolator

L-Point Interpolator Multi-Rate Processing and Polyphase Filtering with Plug-In Example Will Pirkle Oversampling theory is covered in detail in many DSP books and the math can be a little much to deal with at first. In Plug-Ins,

More information

19. Implementing High-Performance DSP Functions in Stratix & Stratix GX Devices

19. Implementing High-Performance DSP Functions in Stratix & Stratix GX Devices 19. Implementing High-Performance SP Functions in Stratix & Stratix GX evices S52007-1.1 Introduction igital signal processing (SP) is a rapidly advancing field. With products increasing in complexity,

More information

Module 9 AUDIO CODING. Version 2 ECE IIT, Kharagpur

Module 9 AUDIO CODING. Version 2 ECE IIT, Kharagpur Module 9 AUDIO CODING Lesson 29 Transform and Filter banks Instructional Objectives At the end of this lesson, the students should be able to: 1. Define the three layers of MPEG-1 audio coding. 2. Define

More information

The theory and design of a class of perfect reconstruction modified DFT filter banks with IIR filters

The theory and design of a class of perfect reconstruction modified DFT filter banks with IIR filters Title The theory and design of a class of perfect reconstruction modified DFT filter banks with IIR filters Author(s) Yin, SS; Chan, SC Citation Midwest Symposium On Circuits And Systems, 2004, v. 3, p.

More information

X(f) S(f) -F s X(f) * S(f)

X(f) S(f) -F s X(f) * S(f) Digital Design for Embedded Data Converters Valentino Liberali Universita degli Studi di Pavia Dipartimento di Elettronica Via Ferrata 1, 271 Pavia, Italy Phone: 39-382.5.5783 Fax: 39-382.422583 e-mail:

More information

Filter Banks with Variable System Delay. Georgia Institute of Technology. Abstract

Filter Banks with Variable System Delay. Georgia Institute of Technology. Abstract A General Formulation for Modulated Perfect Reconstruction Filter Banks with Variable System Delay Gerald Schuller and Mark J T Smith Digital Signal Processing Laboratory School of Electrical Engineering

More information

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS.

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS. INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS Arulalan Rajan 1, H S Jamadagni 1, Ashok Rao 2 1 Centre for Electronics Design and Technology, Indian Institute of Science, India (mrarul,hsjam)@cedt.iisc.ernet.in

More information

Tangents of Parametric Curves

Tangents of Parametric Curves Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 32 Notes These notes correspond to Section 92 in the text Tangents of Parametric Curves When a curve is described by an equation of the form y = f(x),

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

Experiment 3. Getting Start with Simulink

Experiment 3. Getting Start with Simulink Experiment 3 Getting Start with Simulink Objectives : By the end of this experiment, the student should be able to: 1. Build and simulate simple system model using Simulink 2. Use Simulink test and measurement

More information

Setup the environment for first time use

Setup the environment for first time use SGN-16006 Bachelor s Laboratory Course in Signal Processing Signal processor assignment (June 2, 2014) Setup the environment for first time use Use the following procedure to start Code composer studio

More information

Chapter 1 Introducing the OM-USB Functional block diagram... 5

Chapter 1 Introducing the OM-USB Functional block diagram... 5 Table of Contents Preface About this User's Guide... 4 What you will learn from this user's guide... 4 Conventions in this user's guide... 4 Where to find more information... 4 Safety guidelines... 4 Chapter

More information

DSP Filter System. Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, Doc Number: AIGO-009

DSP Filter System. Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, Doc Number: AIGO-009 DSP Filter System Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, 2007 Doc Number: AIGO-009 2-13 Table of Contents Introduction...3 Overview...3 A2D Input Filter Board...4 Overview...4 Input

More information

Digital Signal Processing Lecture Notes 22 November 2010

Digital Signal Processing Lecture Notes 22 November 2010 Digital Signal Processing Lecture otes 22 ovember 2 Topics: Discrete Cosine Transform FFT Linear and Circular Convolution Rate Conversion Includes review of Fourier transforms, properties of Fourier transforms,

More information

Digital Filters in Radiation Detection and Spectroscopy

Digital Filters in Radiation Detection and Spectroscopy Digital Filters in Radiation Detection and Spectroscopy Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Classical and Digital Spectrometers Classical Spectrometer Detector Preamplifier Analog

More information

The Quest For The Perfect Resampler

The Quest For The Perfect Resampler The Quest For The Perfect Resampler 23.6.23 Laurent de Soras Web: http://ldesoras.free.fr ABSTRACT This is a technical paper dealing with digital sound synthesis. Among all known sound synthesis techniques,

More information

1.12 Optimal Filters (Wiener Filters)

1.12 Optimal Filters (Wiener Filters) Random Data 75 1.12 Optimal Filters (Wiener Filters) In calculating turbulent spectra we frequently encounter a noise tail just as the spectrum roles down the inertial subrange (-5/3 slope region) toward

More information

Chapter 4: Trigonometry

Chapter 4: Trigonometry Chapter 4: Trigonometry Section 4-1: Radian and Degree Measure INTRODUCTION An angle is determined by rotating a ray about its endpoint. The starting position of the ray is the of the angle, and the position

More information

Accurate Estimation of MinimumFilter Length for Optimum FIR Digital Filters

Accurate Estimation of MinimumFilter Length for Optimum FIR Digital Filters s 1 008 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-H: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 10, OCTOBER 2000 Accurate Estimation of MinimumFilter Length for Optimum FIR Digital Filters Koichi

More information

Manual. TC3 Filter. TwinCAT 3. Version: Date: Order No.: TF3680

Manual. TC3 Filter. TwinCAT 3. Version: Date: Order No.: TF3680 Manual TC3 Filter TwinCAT 3 Version: Date: Order No.: 1.0 2018-12-13 TF3680 Table of contents Table of contents 1 Foreword... 5 1.1 Notes on the documentation... 5 1.2 Safety instructions... 6 2 Overview...

More information

Design of Low-Delay FIR Half-Band Filters with Arbitrary Flatness and Its Application to Filter Banks

Design of Low-Delay FIR Half-Band Filters with Arbitrary Flatness and Its Application to Filter Banks Electronics and Communications in Japan, Part 3, Vol 83, No 10, 2000 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol J82-A, No 10, October 1999, pp 1529 1537 Design of Low-Delay FIR Half-Band

More information

0.1 Unfolding. (b) (a) (c) N 1 y(2n+1) v(2n+2) (d)

0.1 Unfolding. (b) (a) (c) N 1 y(2n+1) v(2n+2) (d) 171 0.1 Unfolding It is possible to transform an algorithm to be expressed over more than one sample period. his is called unfolding and may be beneficial as it gives a higher degree of flexibility when

More information

Sonic Studio Mastering EQ Table of Contents

Sonic Studio Mastering EQ Table of Contents Sonic Studio Mastering EQ Table of Contents 1.0 Sonic Studio Mastering EQ... 3 1.1 Sonic Studio Mastering EQ Audio Unit Plug-in...4 1.1.1 Overview... 4 1.1.2 Operation... 4 1.1.2.1 Mastering EQ Visualizer...5

More information

PC104P-24DSI Channel 24-Bit Delta-Sigma PC104-Plus Analog Input Board

PC104P-24DSI Channel 24-Bit Delta-Sigma PC104-Plus Analog Input Board PC104P-24DSI12 12-Channel 24-Bit Delta-Sigma PC104-Plus Analog Input Board With 200 KSPS Sample Rate per Channel and Optional Low-Power Configuration Available also in PCI, cpci and PMC form factors as:

More information

Section M6: Filter blocks

Section M6: Filter blocks Section M: Filter blocks These blocks appear at the top of the simulation area Table of blocks Block notation PZ-Placement PZ-Plot FIR Design IIR Design Kaiser Parks-McClellan LMS Freq Samp. Description

More information

Digital Signal Processing Laboratory

Digital Signal Processing Laboratory ECEN4002/5002 Spring 2004 Digital Signal Processing Laboratory Laboratory Exercise #2 Introduction In this lab exercise you will investigate the sampling and reconstruction process, implement delay lines

More information

UNIT 7: DIGITAL FILTER DESIGN

UNIT 7: DIGITAL FILTER DESIGN UNIT 7: DIGITAL FILTER DESIGN 7.1 Introduction This unit is concerned primarily with the design of digital systems having frequency response characteristics appropriate to low-pass, high-pass and band-pass

More information

Lecture 12: Algorithmic Strength 2 Reduction in Filters and Transforms Saeid Nooshabadi

Lecture 12: Algorithmic Strength 2 Reduction in Filters and Transforms Saeid Nooshabadi Multimedia Systems Lecture 12: Algorithmic Strength 2 Reduction in Filters and Transforms Saeid Nooshabadi Overview Cascading of Fast FIR Filter Algorithms (FFA) Discrete Cosine Transform and Inverse DCT

More information

18.327/1.130: Wavelets, Filter Banks and Applications. Solutions to Problem Set 2

18.327/1.130: Wavelets, Filter Banks and Applications. Solutions to Problem Set 2 8.327/.30: Wavelets, Filter Banks and Applications Solutions to Problem Set 2 Mark Distribution Question Marks Matlab Exercise 4 Problem Set 3.4 Problem Set 4.2 Problem Set 4.3 Problem Set 4.4 Problem

More information

Digital Signal Processing and Filter Design using Scilab

Digital Signal Processing and Filter Design using Scilab Digital Signal Processing and Filter Design using Scilab Department of Electrical Engineering, IIT Bombay December 1, 2010 Outline 1 Basic signal processing tools Discrete Fourier Transform Fast Fourier

More information

The Design of Nonuniform Lapped Transforms

The Design of Nonuniform Lapped Transforms Microsoft Research Technical Report MSR-TR2005-116 September 2005 The Design of Nonuniform Lapped Transforms Byung-Jun Yoon and Henrique S. Malvar Microsoft Research Abstract We propose a new method for

More information

EE 341 Spring 2013 Lab 4: Properties of Discrete-Time Fourier Transform (DTFT)

EE 341 Spring 2013 Lab 4: Properties of Discrete-Time Fourier Transform (DTFT) EE 341 Spring 2013 Lab 4: Properties of Discrete-Time Fourier Transform (DTFT) Objective In this lab, we will learn properties of the discrete-time Fourier transform (DTFT), such as conjugate symmetry

More information

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): 2321-0613 VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Lecture 5: Frequency Domain Transformations

Lecture 5: Frequency Domain Transformations #1 Lecture 5: Frequency Domain Transformations Saad J Bedros sbedros@umn.edu From Last Lecture Spatial Domain Transformation Point Processing for Enhancement Area/Mask Processing Transformations Image

More information

EECS 452 Midterm Closed book part Fall 2010

EECS 452 Midterm Closed book part Fall 2010 EECS 452 Midterm Closed book part Fall 2010 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points Closed book Page

More information

Speech and audio coding

Speech and audio coding Institut Mines-Telecom Speech and audio coding Marco Cagnazzo, cagnazzo@telecom-paristech.fr MN910 Advanced compression Outline Introduction Introduction Speech signal Music signal Masking Codeurs simples

More information

20 September 2018, 14:54. User Manual

20 September 2018, 14:54. User Manual 20 September 2018, 14:54 User Manual Requirements Software and hardware requirements of the product Windows PC OS version Win 7, Win 8, Win 10 CPU 2.0 Ghz with SSE (Multicore system 2.1 Ghz recommended)

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 4, April ISSN International Journal of Scientific & Engineering Research Volume 9, Issue 4, April-2018 48 CAD Using New Algorithms for nth Order Butterworth Digital High-Pass Filter Haider Fakher Radhi Al-Saidy Computer

More information

D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department

D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department D. Richard Brown III Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department drb@ece.wpi.edu Lecture 2 Some Challenges of Real-Time DSP Analog to digital conversion Are

More information

Digital Recording and Playback

Digital Recording and Playback Digital Recording and Playback Digital recording is discrete a sound is stored as a set of discrete values that correspond to the amplitude of the analog wave at particular times Source: http://www.cycling74.com/docs/max5/tutorials/msp-tut/mspdigitalaudio.html

More information

EECS 452 Midterm Closed book part Fall 2010

EECS 452 Midterm Closed book part Fall 2010 EECS 452 Midterm Closed book part Fall 2010 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points Closed book Page

More information

e ) of a sampled signal f(kt) can be expressed in of the analog signal f(t) by T n=

e ) of a sampled signal f(kt) can be expressed in of the analog signal f(t) by T n= ECEN400/500 Digital Signal Processing Laboratory Spring 00 Laboratory Exercise # Introduction In this lab exercise you will investigate the sampling and reconstruction process, implement delay lines using

More information

cpci6u-24dsi32r 32-Channel 24-Bit Delta-Sigma Analog Input Board

cpci6u-24dsi32r 32-Channel 24-Bit Delta-Sigma Analog Input Board cpci6u-24dsi32r 32-Channel 24-Bit Delta-Sigma Analog Input Board FEATURES: 32 Differential 24-Bit Analog Input Channels Delta-Sigma Converter per Channel, with Linear Phase Digital Antialias Filtering

More information

Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework

Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework Implementing Biquad IIR filters with the ASN Filter Designer and the ARM CMSIS DSP software framework Application note (ASN-AN05) November 07 (Rev 4) SYNOPSIS Infinite impulse response (IIR) filters are

More information

Magnetics. Introduction to Filtering using the Fourier Transform. Chuck Connor, Laura Connor. Potential Fields. Magnetics.

Magnetics. Introduction to Filtering using the Fourier Transform. Chuck Connor, Laura Connor. Potential Fields. Magnetics. Introduction to using the Chuck Connor, Laura Connor Potential Fields for this week Nm Sm Schematic Earth dipolar magnetic field. The field lines placed in the page plane are drawn as thick lines, those

More information

Trigonometric Graphs. Graphs of Sine and Cosine

Trigonometric Graphs. Graphs of Sine and Cosine Trigonometric Graphs Page 1 4 Trigonometric Graphs Graphs of Sine and Cosine In Figure 13, we showed the graphs of = sin and = cos, for angles from 0 rad to rad. In reality these graphs extend indefinitely

More information

DSP-CIS. Part-IV : Filter Banks & Subband Systems. Chapter-10 : Filter Bank Preliminaries. Marc Moonen

DSP-CIS. Part-IV : Filter Banks & Subband Systems. Chapter-10 : Filter Bank Preliminaries. Marc Moonen DSP-CIS Part-IV Filter Banks & Subband Systems Chapter-0 Filter Bank Preliminaries Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/ Part-III Filter

More information

CHAPTER 4. DIGITAL DOWNCONVERTER FOR WiMAX SYSTEM

CHAPTER 4. DIGITAL DOWNCONVERTER FOR WiMAX SYSTEM CHAPTER 4 IMPLEMENTATION OF DIGITAL UPCONVERTER AND DIGITAL DOWNCONVERTER FOR WiMAX SYSTEM 4.1 Introduction FPGAs provide an ideal implementation platform for developing broadband wireless systems such

More information

Appendix 4. Audio coding algorithms

Appendix 4. Audio coding algorithms Appendix 4. Audio coding algorithms 1 Introduction The main application of audio compression systems is to obtain compact digital representations of high-quality (CD-quality) wideband audio signals. Typically

More information

Lecture 6 Basic Signal Processing

Lecture 6 Basic Signal Processing Lecture 6 Basic Signal Processing Copyright c1996, 1997 by Pat Hanrahan Motivation Many aspects of computer graphics and computer imagery differ from aspects of conventional graphics and imagery because

More information

Filter Bank Design for Subband Adaptive Filtering

Filter Bank Design for Subband Adaptive Filtering Filter Bank Design for Subband Adaptive Filtering Methods and Applications Jan Mark de Haan Ronneby, May 21 Department of Telecommunications and Signal Processing Blekinge Institute of Technology S-372

More information

Design of NPR DFT-Modulated Filter Banks Using Modified Newton s Method

Design of NPR DFT-Modulated Filter Banks Using Modified Newton s Method www.semargroups.org, www.ijsetr.com ISSN 2319-8885 Vol.02,Issue.12, September-2013, Pages:1347-1353 Design of NPR DFT-Modulated Filter Banks Using Modified Newton s Method M.RAJESH 1 PG Scholar, Dept of

More information

Directionally Selective Fractional Wavelet Transform Using a 2-D Non-Separable Unbalanced Lifting Structure

Directionally Selective Fractional Wavelet Transform Using a 2-D Non-Separable Unbalanced Lifting Structure Directionally Selective Fractional Wavelet Transform Using a -D Non-Separable Unbalanced Lifting Structure Furkan Keskin and A. Enis Çetin Department of Electrical and Electronics Engineering, Bilkent

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) 1D: Common Transform Pairs Summary source FT Properties: Convolution See book DIP 4.2.5:

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

5.5 Multiple-Angle and Product-to-Sum Formulas

5.5 Multiple-Angle and Product-to-Sum Formulas Section 5.5 Multiple-Angle and Product-to-Sum Formulas 87 5.5 Multiple-Angle and Product-to-Sum Formulas Multiple-Angle Formulas In this section, you will study four additional categories of trigonometric

More information

Trigonometric Integrals

Trigonometric Integrals Most trigonometric integrals can be solved by using trigonometric identities or by following a strategy based on the form of the integrand. There are some that are not so easy! Basic Trig Identities and

More information

Audio-coding standards

Audio-coding standards Audio-coding standards The goal is to provide CD-quality audio over telecommunications networks. Almost all CD audio coders are based on the so-called psychoacoustic model of the human auditory system.

More information

IVM 4. Audio Presets Details SST 4. AKG Acoustics 2008

IVM 4. Audio Presets Details SST 4. AKG Acoustics 2008 IVM 4 Audio Presets Details SST 4 AKG Acoustics 2008 2 COMPRESSOR All COMPRESSOR Presets have one GOAL: Create a precise and well-balanced monitoring level by maintaining all sound nuances and a natural

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

4.1 QUANTIZATION NOISE

4.1 QUANTIZATION NOISE DIGITAL SIGNAL PROCESSING UNIT IV FINITE WORD LENGTH EFFECTS Contents : 4.1 Quantization Noise 4.2 Fixed Point and Floating Point Number Representation 4.3 Truncation and Rounding 4.4 Quantization Noise

More information

XMC-24DSI24WRC Wide-Range 24-Bit, 24-Channel, 200KSPS XMC Analog Input Module With 24 Wide-Range (High-Level, Low-Level) Delta-Sigma Input Channels

XMC-24DSI24WRC Wide-Range 24-Bit, 24-Channel, 200KSPS XMC Analog Input Module With 24 Wide-Range (High-Level, Low-Level) Delta-Sigma Input Channels XMC-24DSI24WRC Wide-Range 24-Bit, 24-Channel, 200KSPS XMC Analog Input Module With 24 Wide-Range (High-Level, Low-Level) Delta-Sigma Input Channels Features Include: 24 wide-range differential 24-Bit simultaneously-sampled

More information

Data Acquisition Specifications a Glossary Richard House

Data Acquisition Specifications a Glossary Richard House NATIONAL INSTRUMENTS The Software is the Instrument Application Note 092 Introduction Data Acquisition Specifications a Glossary Richard House This application note consists of comprehensive descriptions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the angle to decimal degrees and round to the nearest hundredth of a degree. 1)

More information

cpci6u64-20aof16c500kr

cpci6u64-20aof16c500kr cpci6u64-20aof16c500kr 20-Bit 16-Output 500KSPS Precision Wideband cpci 6U Analog Output Board With 8th-Order reconstruction output filters Features Include: 16 Single-ended or optional 3-Wire Differential

More information

Available online Journal of Scientific and Engineering Research, 2017, 4(5):1-6. Research Article

Available online   Journal of Scientific and Engineering Research, 2017, 4(5):1-6. Research Article Available online www.jsaer.com, 2017, 4(5):1-6 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Through the Analysis of the Advantages and Disadvantages of the Several Methods of Design of Infinite

More information

DCSP-10: Applications

DCSP-10: Applications DCSP-10: Applications Jianfeng Feng Department of Computer Science Warwick Univ., UK Jianfeng.feng@warwick.ac.uk http://www.dcs.warwick.ac.uk/~feng/dcsp.html Applications Power spectrum estimate Image

More information

by Kevin M. Chevalier

by Kevin M. Chevalier Precalculus Review Handout.4 Trigonometric Functions: Identities, Graphs, and Equations, Part I by Kevin M. Chevalier Angles, Degree and Radian Measures An angle is composed of: an initial ray (side) -

More information

D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department

D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department drb@ece.wpi.edu 3-November-2008 Analog To Digital Conversion analog signal ADC digital

More information

Appendix D Trigonometry

Appendix D Trigonometry Math 151 c Lynch 1 of 8 Appendix D Trigonometry Definition. Angles can be measure in either degree or radians with one complete revolution 360 or 2 rad. Then Example 1. rad = 180 (a) Convert 3 4 into degrees.

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Homework 1

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Homework 1 18-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 2018 Homework 1 This homework is due in class on Thursday, September 6, 9:00am. Instructions Solve all non-matlab problems using only paper

More information

Digital Signal Processing. Soma Biswas

Digital Signal Processing. Soma Biswas Digital Signal Processing Soma Biswas 2017 Partial credit for slides: Dr. Manojit Pramanik Outline What is FFT? Types of FFT covered in this lecture Decimation in Time (DIT) Decimation in Frequency (DIF)

More information

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4) 20 STEPS OF NEW ALGORITHM WITH = 0:33 = 0:34 FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4) 20 STEPS OF NEW ALGORITHM WITH = 0:33 = 0:34 FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING ( SMOOTH INTERPOLATION (2) ONE CONSTRAINT (x N C ) 1 = x 1 WRITE DESIRED CONSTRAINED SMOOTH SIGNAL x N AS SUM OF C UNCONSTRAINED SMOOTH SIGNAL x N = Fx (F = f(k) N ) PLUS SMOOTH DEFORMATION d 1 x N C = xn

More information

PCIe-16AOF Bit, 64/32-Channel, 500KSPS PCI Express Analog Output Board. With Reconstruction Output Filters

PCIe-16AOF Bit, 64/32-Channel, 500KSPS PCI Express Analog Output Board. With Reconstruction Output Filters PCIe-16AOF64 16-Bit, 64/32-Channel, 500KSPS PCI Express Analog Output Board With Reconstruction Output Filters Features Include: Precision 16-Bit simultaneously-clocked analog outputs: R-2R DAC per channel

More information

GC2011A 3.3V DIGITAL FILTER CHIP DATASHEET. March 21, 2000

GC2011A 3.3V DIGITAL FILTER CHIP DATASHEET. March 21, 2000 GC2011A 3.3V DIGITAL FILTER CHIP DATASHEET March 21, 2000 Information provided by Graychip is believed to be accurate and reliable. No responsibility is assumed by Graychip for its use, nor for any infringement

More information

Note. f 2 (-z. = f 1 (-z) f 1 () z f 2 () z = -f 1 (-z ) - f 2 (-z) = - f 1 (-z ) f 2 (-z. 7 Completed Riemann Zeta. 7.1 Even Function & Odd Function

Note. f 2 (-z. = f 1 (-z) f 1 () z f 2 () z = -f 1 (-z ) - f 2 (-z) = - f 1 (-z ) f 2 (-z. 7 Completed Riemann Zeta. 7.1 Even Function & Odd Function 7 Completed Riemann Zeta 7. Even Function & Odd Function Definition 7..0 Let f() be a function in the domain D. () When f() = f( -), f() is an even function. () When f() = -f(- ), f() is an odd function.

More information

Research Article Digital Decimation Filter of ADSL: Design and Implementation

Research Article Digital Decimation Filter of ADSL: Design and Implementation Research Journal of Applied Sciences, Engineering and Technology 7(3): 559-564, 214 DOI:1.1926/rjaset.7.29 ISSN: 24-7459; e-issn: 24-7467 214 Maxwell Scientific Publication Corp. Submitted: November 1,

More information

PQMF Filter Bank, MPEG-1 / MPEG-2 BC Audio. Fraunhofer IDMT

PQMF Filter Bank, MPEG-1 / MPEG-2 BC Audio. Fraunhofer IDMT PQMF Filter Bank, MPEG-1 / MPEG-2 BC Audio The Basic Paradigm of T/F Domain Audio Coding Digital Audio Input Filter Bank Bit or Noise Allocation Quantized Samples Bitstream Formatting Encoded Bitstream

More information

An investigation of non-uniform bandwidths auditory filterbank in audio coding

An investigation of non-uniform bandwidths auditory filterbank in audio coding PAGE 360 An investigation of non-uniform bandwidths auditory filterbank in audio coding Andrew Lin, Stevan Berber, Waleed Abdulla Department of Electrical and Computer Engineering University of Auckland,

More information

Drawing a Triangle (and an introduction to sampling)

Drawing a Triangle (and an introduction to sampling) Lecture 4: Drawing a Triangle (and an introduction to sampling) Computer Graphics CMU 15-462/15-662, Spring 2017 Assignment 1 is out! https://15462-s17.github.io/asst1_drawsvg/ Let s draw some triangles

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

PERFORMANCE EVALUATION OF EFFICIENT STRUCTURE FOR FIR DECIMATION FILTERS USING POLYPHASE DECOMPOSITION TECHNIQUE

PERFORMANCE EVALUATION OF EFFICIENT STRUCTURE FOR FIR DECIMATION FILTERS USING POLYPHASE DECOMPOSITION TECHNIQUE INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN ISSN 0976 6464(Print)

More information

idsc Reference Manual

idsc Reference Manual idsc Reference Manual Intelligent Digital Signal Conditioning Manual Hardware and Software Description and Reference Guide Version 5.20 Microstar Laboratories, Inc. This manual contains proprietary information

More information