Motivation Patch tests Numerical examples Conclusions

Size: px
Start display at page:

Download "Motivation Patch tests Numerical examples Conclusions"

Transcription

1 Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super- geometric analysis to Geometry Independent Field approximation (GIFT) Elena Atroshchenko, Gang Xu, Satyendra Tomar, Stéphane P.A. Bordas University of Chile, Hangzhou Dianzi University, University of Luxembourg June 5, 207

2 Outline of the presentation Motivation Theoretical background Patch tests Numerical results Conclusions

3 Motivation: IsoGeometric Analysis (IGA) Tight link between CAD and analysis The same basis functions, which are used in CAD to represent the geometry, are used in the IGA as shape functions to approximation the unknown solution Geometry is exact at any stage of the solution refinement process Better accuracy per DOF in comparison with standard FEM Additional advantages, such as higher continuity of splines, makes IGA applicable for PDEs of higher order

4 Disadvantages of IsoGeometric Analysis (IGA) Gaps can occur when different geometrical pieces are joined Additional coupling mechanisms are required for multi-patch geometries Tensor-product structure of NURBS does not allow local refinement

5 What is I in the IGA? CAD model (surface for 2d or volume for 3d) Knot vectors and control points: η ξ

6 What is I in the IGA? on each element: x = Ne C e i N i (ξ, η) n= u = Ne Ui en i(ξ, η) n= global assembly: KU = f K e U e = f e

7 Motivation Patch tests Numerical examples Conclusions What is I in the IGA? refinement: on each element: Ne P x= C ei Ni (ξ, η) u= n= Ne P n= Uie Ni (ξ, η) η ξ K eu e = f e

8 What is I in the IGA? Isogeometric means that the same shape functions are used on each element to represent the geometrical variables x and the field u: N e x = C e i N i (ξ, η) n= N e u = Ui e N i (ξ, η) n=

9 What is the difference between iso-geometric and iso-parametric? In the standard FEM iso-parametric elements are used to approximate both, the field and the computational domain, while in the IGA, refinement does not improve geometry parameterization (it remains exact and equivalent to the original model at each refinement stage), therefore geometry refinement is redundant.

10 Are NURBS always the best choice to approximate the solution? Rational functions No local refinement

11 What can we improve? Keep the exact representation of the geometry Choose more suitable approximation for the field

12 Patch test: will it pass or fail? Laplace eqn: u = 0, in Ω u Ω (x, y) = + x + y. Elasticity eqn: σ ij,j = 0, in Ω t i = σ 0 n i at r =, 2, u 2 = 0, t = 0 at θ = 0, u = 0, t 2 = 0 at θ = π/2,

13 Patch test: will it pass or fail? Quarter annulus parameterizations: Q 0 A C Σ = [0, 0,, ] Σ = [0, 0, 2/3,, ] Σ = [0, 0, 2/3, ] Π = [0, 0, 0,,, ] Π = [0, 0, 0, /8,,, ] Π = [0, 0, 0, /8,,, ] B Σ = [0, 0, 0.7,, ] Π = [0, 0, 0, 0.8,,, ] D (B-Splines) Σ = [0, 0, 2/3,, ] Π = [0, 0, 0, /8,,, ]

14 Five types of geometry parametrization Q 0 : the coarsest parameterization (single element) necessary to represent the geometry, A : uniform parametrization (four elements), obtained by the refinement of Q 0 with knot insertion at 2/3 and /8 B : uniform parametrization (four elements), obtained by the refinement of Q 0 with knot insertion at 0.7 and 0.8 C : non-uniform parametrization (four elements), obtained from A by moving the internal points randomly Bases A 2, B 2, C 2, are obtained by elevating degree in both directions by of A, B, and C, respectively. D (B-Splines): uniform parametrization (four elements), obtained from A by setting all the weights to Bases D 0 and D 2 are obtained from D by reducing and elevating (respectively) degrees in both directions.

15 Table : Results of various patch tests, denoted by T. Superscript l denotes the test case, G i denotes the bases for the geometry, and S j denotes the bases for the solution approximation TG l i,s j Laplace Eq. Elasticity Eq. TQ 0 0,A.385e e-4 TQ 0 0,A e e-4 TQ 0 0,C TQ 0 0,C TA,A.0023e-5.675e-4 TA,A e e-4 TA 2,A.4059e e-5 TB 2,A.4755e e-5 TB 2,A e-5.28e-4 TB 2 2,A.044e e-5 TC 3,C.06e e-4 TC 3,C e e-5 TC 3 2,C.2062e e-4 TC 4,A TC 4,A TC 4 2,A TA 5,D TA 5,D TA 5,D

16 Conclusion from the patch test studies Any of the following combination of bases, which are equal up to operations of knot insertion or degree elevation, pass the patch test Geometry by Q 0, together with A i or B i for the solution Geometry by A i and solution by A j Geometry by B i and solution by A j Geometry by C i and solution by C j Patch test for A mixture of C i with either of Q 0, A i or B i fails because C i can not be obtained from these bases (only internal points randomly moved)

17 Convergence studies Laplace eqn: u = 0, in Ω u Ω (x, y) = r 3 cos 3θ. Elasticity eqn: σ ij,j = 0, in Ω t i = σ n i at r =, t i = σ 2 n i at r = 2, u 2 = 0, t = 0 at θ = 0, u = 0, t 2 = 0 at θ = π/2,

18 Numerical examples: Example - Laplace Convergence studies for various combinations of bases For exact representation of the geometry, all combinations of bases, including those which fail the patch test, deliver the optimal convergence log( e L 2 (Ω)).00e-0.00e-02.00e-03.00e-04.00e-05.00e-06.00e (Q0, A) (A, A) (A2, A) (B, A) (B2, A) (Q0, A2) (A, A2) (B, A2) log(h) log( e L 2 (Ω)).00e-0.00e-02.00e-03.00e-04.00e-05.00e-06.00e (Q0, C) (C, C) (C2, C) (C, A) (C2, A) (Q0, C2) (C, C2) (C, A2) log(h) log( e L 2 (Ω)).00e+00.00e-0.00e-02.00e-03.00e-04.00e-05.00e-06.00e (A, D0) (A, D) (A, A) (A, D2) (A, A2) log(h)

19 Numerical examples: Example - Elasticity Convergence studies for various combinations of bases For exact representation of the geometry, all combinations of bases, including those which fail the patch test, deliver the optimal convergence.00e-0 log( e L 2 (Ω)).00e-02.00e-03.00e-04.00e-05.00e-06.00e (Q0, A) (A, A) (A2, A) (B, A) (B2, A) (Q0, A2) (A, A2) (B, A2) log(h) log( e L 2 (Ω)).00e-02.00e-03.00e-04.00e-05.00e-06.00e (Q0, C) (C, C) (C2, C) (C, A) (C2, A) (Q0, C2) (C, C2) (C, A2) log(h) log( e L 2 (Ω)).00e-02.00e-03.00e-04.00e-05.00e-06.00e (A, D0) (A, D) (A, A) (A, D2) (A, A2) log(h)

20 Conclusion: Together with the given (exact) geometry parametrization at the coarsest level, the convergence rate is entirely defined by the solution basis, and does not depend on the further refinement of the geometry parametrization: For a given geometry parameterization, the degree of the solution basis can be increased or decreased without changing the degree of the geometry (from iso-geometric to super-geometric and sub-geometric elements) For solution approximation, using same degree B-Splines or NURBS yields almost identical results

21 Numerical examples: Example 2 - Laplace Convergence studies for various combinations of bases Exact representation of the geometry by N,4, various bases for the solution approximation, iso/super/sub-geometric, deliver optimal convergence (governed by the minimum degree), second order for first five choices, and third order for last two choices. B represents B-splines. u(x, y) = ln((x+0.) 2 +(y+0.) 2 ).00e-0.00e log( e L 2 (Ω) ).00e-03.00e-04.00e-05.00e (N,4, N,4) (N,4, B,4) (N,4, B,) (N,4, B,2) (N,4, B,3) (N,4, N2,4) (N,4, B2,4) log(h)

22 Numerical examples: Example 3 - Elasticity Convergence studies for various combinations of bases Exact representation of the geometry by N 2,2, various bases for the solution approximation, iso/super-geometric, deliver optimal convergence (governed by the minimum degree), third order for first three choices, and fourth order for last three choices. Ñ are NURBS with weights of two inner points changed. symmetry conditions exact tractions zero tractions exact tractions log( e L 2 (Ω) ).00e-0.00e-02.00e-03.00e-04 (N2,2, N2,2) (N2,2, Ñ2,2) (N2,2, B2,2) (N2,2, N3,3) (N2,2, Ñ3,3) (N2,2, B3,3) e-05 symmetry conditions log(h)

23 Numerical examples: Example 4 - Elasticity 3D Convergence studies for various combinations of bases Same observation as in Example 2 and 3. Optimal convergence governed by the minimum degree, second order for first three choices, and third order for last two choices.00e+00.00e-0 (N,2,2, B,2,2) (N,2,2, N,2,2) (N,2,2, B,,) (N,2,2, B2,2,2) (N,2,2, N2,2,2) log( e L 2 (Ω) ).00e e-03.00e-04 3 log(h)

24 Numerical examples: NURBS + PHT splines Main properties of PHT-splines: Polynomial splines of degree p = 3 defined over T-meshes: Global refinement (tensor-product mesh) vs local refinement (T-mesh) C continuity across the elements

25 Numerical examples: NURBS + PHT splines Laplace equation in the quarter annulus with the solution exhibiting a high peak: u(x, y) = (r )(r 2)θ(θ π/2) exp( 00(r cos θ ) 2 )

26 Numerical examples: NURBS + PHT splines IGA with cubic NURBS (for the geometry as well as numerical solution). Note that, a quadratic NURBS is sufficient for this geometry, however, to have a fair comparison with the remaining studies, we elevate the degree while maintaining the exact geometry representation. IGA with cubic PHT-splines (for the geometry as well as the numerical solution). Note that, in this case, the computational geometry is only approximate (not exact as in IGA with cubic NURBS). GIFT with cubic B-splines for the numerical solution, and quadratic NURBS for exact geometry representation. GIFT with cubic PHT-splines for the numerical solution, and quadratic NURBS for exact geometry representation.

27 Adaptive refinement with PHT splines:

28 Adaptive refinement with PHT splines:

29 Numerical examples: NURBS + PHT splines GIFT with cubic B spline field IGA with cubic NURBS field IGA with cubic PHT spline field GIFT with cubic PHT spline field 0 2 Relative L error degree of freedom

30 Comparison between IGA with cubic PHT-spline field and GIFT with cubic PHT-spline field: The advantage of the exact geometry representation in the latter case over an approximate geometry in the former case is very minor in the given example, but in realistic industrial problems with complex domains, this advantage will become more pronounced. Use of GIFT concept eliminates the need to communicate with the original CAD model at each step of the solution refinement process, and the approximation of the boundaries. Use of GIFT concept also eliminates the need to refine the original coarse geometry, as well as to store and process the refined data, which can lead to significant computational savings for big problems.

31 Conclusions It is possible to retain the advantages of IGA but decouple the geometry and the field approximation Standard patch tests may not always pass, yet the convergence rates are optimal as long as the geometry is exactly represented by the geometry basis With geometry exactly represented by NURBS, using same degree B-splines or NURBS for the approximation of the solution field yields almost identical results With geometry exactly represented by NURBS, using PHT splines for the approximation of the solution gives additional advantage of local adaptive refinement

Isogeometric Collocation Method

Isogeometric Collocation Method Chair for Computational Analysis of Technical Systems Faculty of Mechanical Engineering, RWTH Aachen University Isogeometric Collocation Method Seminararbeit By Marko Blatzheim Supervisors: Dr. Stefanie

More information

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

Adaptive Isogeometric Analysis by Local h-refinement with T-splines Adaptive Isogeometric Analysis by Local h-refinement with T-splines Michael Dörfel 1, Bert Jüttler 2, Bernd Simeon 1 1 TU Munich, Germany 2 JKU Linz, Austria SIMAI, Minisymposium M13 Outline Preliminaries:

More information

The NURBS and GeoPDEs packages Octave software for research on IGA

The NURBS and GeoPDEs packages Octave software for research on IGA The NURBS and GeoPDEs packages Octave software for research on IGA Rafael Vázquez IMATI Enrico Magenes, Pavia Consiglio Nazionale delle Ricerche R. Vázquez (IMATI-CNR Italy) The NURBS and GeoPDEs packages

More information

Isogeometric analysis with Axel

Isogeometric analysis with Axel Isogeometric analysis with Axel Gang Xu, Régis Duvigneau,Bernard Mourrain INRIA Sophia-Antipolis gxu@sophia.inria.fr SAGA Workshop, March 18th, 2010 Outline 1 Isogeometric toolbox in EXCITING 2 Isogeometric

More information

Rational Bezier Surface

Rational Bezier Surface Rational Bezier Surface The perspective projection of a 4-dimensional polynomial Bezier surface, S w n ( u, v) B i n i 0 m j 0, u ( ) B j m, v ( ) P w ij ME525x NURBS Curve and Surface Modeling Page 97

More information

PATCH TEST OF HEXAHEDRAL ELEMENT

PATCH TEST OF HEXAHEDRAL ELEMENT Annual Report of ADVENTURE Project ADV-99- (999) PATCH TEST OF HEXAHEDRAL ELEMENT Yoshikazu ISHIHARA * and Hirohisa NOGUCHI * * Mitsubishi Research Institute, Inc. e-mail: y-ishi@mri.co.jp * Department

More information

Transfinite Interpolation Based Analysis

Transfinite Interpolation Based Analysis Transfinite Interpolation Based Analysis Nathan Collier 1 V.M. Calo 1 Javier Principe 2 1 King Abdullah University of Science and Technology 2 International Center for Numerical Methods in Engineering

More information

AN ISOGEOMETRIC REISSNER-MINDLIN SHELL WITH LAGRANGE BASIS

AN ISOGEOMETRIC REISSNER-MINDLIN SHELL WITH LAGRANGE BASIS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Geometry-Independent Field approximation: CAD-Analysis Integration, geometrical exactness and adaptivity

Geometry-Independent Field approximation: CAD-Analysis Integration, geometrical exactness and adaptivity Geometry-Independent Field approximation: CAD-Analysis Integration, geometrical exactness and adaptivity Gang Xu a,, Elena Atroshchenko b, Weiyin Ma c, Stéphane P.A. Bordas d,e a Hangzhou Dianzi University,

More information

IsoGeometric Analysis: Be zier techniques in Numerical Simulations

IsoGeometric Analysis: Be zier techniques in Numerical Simulations IsoGeometric Analysis: Be zier techniques in Numerical Simulations Ahmed Ratnani IPP, Garching, Germany July 30, 2015 1/ 1 1/1 Outline Motivations Computer Aided Design (CAD) Zoology Splines/NURBS Finite

More information

AN A PRIORI MODEL REDUCTION FOR ISOGEOMETRIC BOUNDARY ELEMENT METHOD

AN A PRIORI MODEL REDUCTION FOR ISOGEOMETRIC BOUNDARY ELEMENT METHOD ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Modelling of Isogeometric Analysis for Plane Stress Problem Using Matlab GUI Norliyana Farzana Binti Zulkefli, Ahmad Razin Bin Zainal Abidin

Modelling of Isogeometric Analysis for Plane Stress Problem Using Matlab GUI Norliyana Farzana Binti Zulkefli, Ahmad Razin Bin Zainal Abidin Modelling of Isogeometric Analysis for Plane Stress Problem Using Matlab GUI Norliyana Farzana Binti Zulkefli, Ahmad Razin Bin Zainal Abidin Faculty of Civil Engineering, Universiti Teknologi Malaysia,

More information

SPLINE-BASED MESHING TECHNIQUES FOR INDUSTRIAL APPLICATIONS

SPLINE-BASED MESHING TECHNIQUES FOR INDUSTRIAL APPLICATIONS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK SPLINE-BASED MESHING TECHNIQUES FOR INDUSTRIAL APPLICATIONS

More information

Isogeometric Analysis Application to Car Crash Simulation

Isogeometric Analysis Application to Car Crash Simulation Isogeometric Analysis Application to Car Crash Simulation S. Bouabdallah 2, C. Adam 2,3, M. Zarroug 2, H. Maitournam 3 De Vinci Engineering Lab, École Supérieure d Ingénieurs Léonard de Vinci 2 Direction

More information

Geometry-Independent Field approximation (GIFT) for Adaptive Spline-Based Finite Element Analysis

Geometry-Independent Field approximation (GIFT) for Adaptive Spline-Based Finite Element Analysis Geometry-Independent Field approximation (GIFT) for Adaptive Spline-Based Finite Element Analysis Gang Xu a,, Elena Atroshchenko b, Weiyin Ma c, Stéphane P.A. Bordas d,e a Hangzhou Dianzi University, Hangzhou

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Frequency Domain Analysis for Isogeometric Element in LS-DYNA

Frequency Domain Analysis for Isogeometric Element in LS-DYNA Frequency Domain Analysis for Isogeometric Element in LS-DYNA Liping Li 1, Yun Huang 1, Zhe Cui 1, Stefan Hartmann 2, David J. Benson 3 1 Livermore Software Technology Corporation, Livermore, CA, USA 2

More information

MODELLING STIFFENED LIGHTWEIGHT STRUCTURES WITH ISOGEOMETRIC ANALYSIS VIA MORTAR METHODS

MODELLING STIFFENED LIGHTWEIGHT STRUCTURES WITH ISOGEOMETRIC ANALYSIS VIA MORTAR METHODS ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Refinable C 1 spline elements for irregular quad layout

Refinable C 1 spline elements for irregular quad layout Refinable C 1 spline elements for irregular quad layout Thien Nguyen Jörg Peters University of Florida NSF CCF-0728797, NIH R01-LM011300 T. Nguyen, J. Peters (UF) GMP 2016 1 / 20 Outline 1 Refinable, smooth,

More information

3D NURBS-ENHANCED FINITE ELEMENT METHOD

3D NURBS-ENHANCED FINITE ELEMENT METHOD 7th Workshop on Numerical Methods in Applied Science and Engineering (NMASE 8) Vall de Núria, 9 a 11 de enero de 28 c LaCàN, www.lacan-upc.es 3D NURBS-ENHANCED FINITE ELEMENT METHOD R. Sevilla, S. Fernández-Méndez

More information

Shape Gradient for Isogeometric Structural Design

Shape Gradient for Isogeometric Structural Design Shape Gradient for Isogeometric Structural Design Louis Blanchard, Régis Duvigneau, Anh-Vu Vuong, Bernd Simeon To cite this version: Louis Blanchard, Régis Duvigneau, Anh-Vu Vuong, Bernd Simeon. Shape

More information

Current Status of Isogeometric Analysis in LS-DYNA

Current Status of Isogeometric Analysis in LS-DYNA Current Status of Isogeometric Analysis in LS-DYNA Stefan Hartmann Developer Forum, September 24 th, 2013, Filderstadt, Germany Development in cooperation with: D.J. Benson: Professor of Applied Mechanics,

More information

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural Surface Modeling Types: Polygon surfaces Curved surfaces Volumes Generating models: Interactive Procedural Polygon Tables We specify a polygon surface with a set of vertex coordinates and associated attribute

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

KU Leuven vibro-acoustics activities in an Industry 4.0 context

KU Leuven vibro-acoustics activities in an Industry 4.0 context KU Leuven vibro-acoustics activities in an Industry 4.0 context Wim Desmet KU Leuven Department of Mechanical Engineering Flanders Make - Virtual Department Mechatronics & Design overview KU Leuven team

More information

Smooth Multi-Sided Blending of bi-2 Splines

Smooth Multi-Sided Blending of bi-2 Splines Smooth Multi-Sided Blending of bi-2 Splines Kȩstutis Karčiauskas Jörg Peters Vilnius University University of Florida K. Karčiauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 1 / 18 Quad

More information

Introduction to the Mathematical Concepts of CATIA V5

Introduction to the Mathematical Concepts of CATIA V5 CATIA V5 Training Foils Introduction to the Mathematical Concepts of CATIA V5 Version 5 Release 19 January 2009 EDU_CAT_EN_MTH_FI_V5R19 1 About this course Objectives of the course Upon completion of this

More information

ICES REPORT February The Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, Texas 78712

ICES REPORT February The Institute for Computational Engineering and Sciences The University of Texas at Austin Austin, Texas 78712 ICES REPORT 3-03 February 03 Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations by Dominik Schillinger, John A. Evans, Alessandro

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

arxiv: v1 [cs.na] 27 Jan 2015

arxiv: v1 [cs.na] 27 Jan 2015 A simple approach to the numerical simulation with trimmed CAD surfaces G. Beer a,b, B. Marussig and J.Zechner a arxiv:151.6741v1 [cs.na] 27 Jan 215 a Institute for Structural Analysis, Graz University

More information

Polynomial Splines over locally refined box-partitions

Polynomial Splines over locally refined box-partitions Polynomial Splines over locally refined box-partitions Tor Dokken*, Tom Lyche +, Kjell Fredrik Pettersen* *SINTEF and + University of Oslo The work is partly funded by the European Union through The TERRIFIC

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques

GL9: Engineering Communications. GL9: CAD techniques. Curves Surfaces Solids Techniques 436-105 Engineering Communications GL9:1 GL9: CAD techniques Curves Surfaces Solids Techniques Parametric curves GL9:2 x = a 1 + b 1 u + c 1 u 2 + d 1 u 3 + y = a 2 + b 2 u + c 2 u 2 + d 2 u 3 + z = a

More information

Need for Parametric Equations

Need for Parametric Equations Curves and Surfaces Curves and Surfaces Need for Parametric Equations Affine Combinations Bernstein Polynomials Bezier Curves and Surfaces Continuity when joining curves B Spline Curves and Surfaces Need

More information

Algebraic Flux Correction Schemes for High-Order B-Spline Based Finite Element Approximations

Algebraic Flux Correction Schemes for High-Order B-Spline Based Finite Element Approximations Algebraic Flux Correction Schemes for High-Order B-Spline Based Finite Element Approximations Numerical Analysis group Matthias Möller m.moller@tudelft.nl 7th DIAM onderwijs- en onderzoeksdag, 5th November

More information

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

Isogeometric Analysis of Solids & Structures Small and Finite Deformation Applications

Isogeometric Analysis of Solids & Structures Small and Finite Deformation Applications Trends & Challenges in Computational Mechanics Padua, Italy - September 12-14, 2011 Isogeometric Analysis of Solids & Structures Small and Finite Deformation Applications Robert L. Taylor Department of

More information

Recent Developments in Isogeometric Analysis with Solid Elements in LS-DYNA

Recent Developments in Isogeometric Analysis with Solid Elements in LS-DYNA Recent Developments in Isogeometric Analysis with Solid Elements in LS-DYNA Liping Li David Benson Attila Nagy Livermore Software Technology Corporation, Livermore, CA, USA Mattia Montanari Nik Petrinic

More information

Isogeometric analysis of thin Reissner-Mindlin plates and shells: Locking phenomena and generalized local B method

Isogeometric analysis of thin Reissner-Mindlin plates and shells: Locking phenomena and generalized local B method Isogeometric analysis of thin Reissner-Mindlin plates and shells: Locking phenomena and generalized local B method Qingyuan Hu a,b, Yang Xia c, Sundararajan Natarajan d, Andreas Zilian b, Ping Hu c, Stéphane

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

Construction of polynomial spline spaces over quadtree and octree T-meshes

Construction of polynomial spline spaces over quadtree and octree T-meshes Construction of polynomial spline spaces over quadtree and octree T-meshes M. Brovka J.I. López J.M. Escobar J.M. Cascón, R. Montenegro October, 2014 Abstract We present a new strategy for constructing

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Element Quality Metrics for Higher-Order Bernstein Bézier Elements

Element Quality Metrics for Higher-Order Bernstein Bézier Elements Element Quality Metrics for Higher-Order Bernstein Bézier Elements Luke Engvall and John A. Evans Abstract In this note, we review the interpolation theory for curvilinear finite elements originally derived

More information

arxiv: v2 [cs.na] 27 Sep 2013

arxiv: v2 [cs.na] 27 Sep 2013 Isogeometric analysis: an overview and computer implementation aspects Vinh Phu Nguyen a,1,, Stéphane P.A. Bordas a,2, Timon Rabczuk b,3 a School of Engineering, Institute of Mechanics and Advanced Materials,

More information

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model Boundary Elements XXVII 245 Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model J. J. Rencis & S. R. Pisani Department of Mechanical Engineering,

More information

ICES REPORT January D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes

ICES REPORT January D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes ICES REPORT 12-05 January 2012 An Isogeometric Design-through-analysis Methodology based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces by D. Schillinger,

More information

Almost Curvature Continuous Fitting of B-Spline Surfaces

Almost Curvature Continuous Fitting of B-Spline Surfaces Journal for Geometry and Graphics Volume 2 (1998), No. 1, 33 43 Almost Curvature Continuous Fitting of B-Spline Surfaces Márta Szilvási-Nagy Department of Geometry, Mathematical Institute, Technical University

More information

B-spline Curves. Smoother than other curve forms

B-spline Curves. Smoother than other curve forms Curves and Surfaces B-spline Curves These curves are approximating rather than interpolating curves. The curves come close to, but may not actually pass through, the control points. Usually used as multiple,

More information

ICES REPORT March Isogeometric Finite Element Data Structures based on Bezier Extraction of NURBS

ICES REPORT March Isogeometric Finite Element Data Structures based on Bezier Extraction of NURBS ICES REPORT 0-08 March 200 Isogeometric Finite Element Data Structures based on Bezier Extraction of NURBS by Michael J. Borden, Michael A. Scott, John A. Evans, and Thomas J.R. Hughes The Institute for

More information

Curves. Computer Graphics CSE 167 Lecture 11

Curves. Computer Graphics CSE 167 Lecture 11 Curves Computer Graphics CSE 167 Lecture 11 CSE 167: Computer graphics Polynomial Curves Polynomial functions Bézier Curves Drawing Bézier curves Piecewise Bézier curves Based on slides courtesy of Jurgen

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Isogeometric Analysis for Compressible Flows with Application in Turbomachinery

Isogeometric Analysis for Compressible Flows with Application in Turbomachinery Isogeometric Analysis for Compressible Flows with Application in Turbomachinery by Andrzej Jaeschke to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

Nodal Basis Functions for Serendipity Finite Elements

Nodal Basis Functions for Serendipity Finite Elements Nodal Basis Functions for Serendipity Finite Elements Andrew Gillette Department of Mathematics University of Arizona joint work with Michael Floater (University of Oslo) Andrew Gillette - U. Arizona Nodal

More information

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #13: Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Project 4 due Monday Nov 27 at 2pm Next Tuesday:

More information

To appear in Computer Methods in Applied Mechanics and Engineering. Isogeometric shape optimization of photonic crystals via Coons patches

To appear in Computer Methods in Applied Mechanics and Engineering. Isogeometric shape optimization of photonic crystals via Coons patches To appear in Computer Methods in Applied Mechanics and Engineering Isogeometric shape optimization of photonic crystals via Coons patches Xiaoping Qian Department of Mechanical, Materials and Aerospace

More information

Abaqus User Element implementation of NURBS based Isogeometric Analysis

Abaqus User Element implementation of NURBS based Isogeometric Analysis 1 / 22 Abaqus User Element implementation of NURBS based Isogeometric Analysis 1, A. Duval 1, F. Maurin 1, H. Al Akhras 1 1 Université de Lyon, CNRS INSA-Lyon, Laboratoire de Mécanique des Contacts et

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation

Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation www.oeaw.ac.at Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation A. Mantzaflaris, B. Jüttler, B.N. Khoromskij, U. Langer RICAM-Report 2014-22 www.ricam.oeaw.ac.at Matrix Generation

More information

ICES REPORT January D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes

ICES REPORT January D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.J.R. Hughes ICES REPORT 12-05 January 2012 An Isogeometric Design-through-analysis Methodology based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces by D. Schillinger,

More information

Efficient Multigrid based solvers for Isogeometric Analysis

Efficient Multigrid based solvers for Isogeometric Analysis Efficient Multigrid based solvers for Isogeometric Analysis R. Tielen, M. Möller and C. Vuik Delft Institute of Applied Mathematics (DIAM) Numerical Analysis / 22 Isogeometric Analysis (IgA) Extension

More information

An isogeometric approach to topology optimization of multimaterial and functionally graded structures

An isogeometric approach to topology optimization of multimaterial and functionally graded structures An isogeometric approach to topology optimization of multimaterial and functionally graded structures Alireza H. Taheri, Krishnan Suresh * Department of Mechanical Engineering, UW-Madison, Madison, Wisconsin

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

On Smooth Bicubic Surfaces from Quad Meshes

On Smooth Bicubic Surfaces from Quad Meshes On Smooth Bicubic Surfaces from Quad Meshes Jianhua Fan and Jörg Peters Dept CISE, University of Florida Abstract. Determining the least m such that one m m bi-cubic macropatch per quadrilateral offers

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

COMP3421. Global Lighting Part 2: Radiosity

COMP3421. Global Lighting Part 2: Radiosity COMP3421 Global Lighting Part 2: Radiosity Recap: Global Lighting The lighting equation we looked at earlier only handled direct lighting from sources: We added an ambient fudge term to account for all

More information

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15 22.520 Numerical Methods for PDEs : Video 11: 1D Finite Difference Mappings Theory and Matlab February 15, 2015 22.520 Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings 2015

More information

A POINTWISE APPROACH FOR ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS IN THE ISOGEOMETRIC ANALYSIS * Y. BAZARGAN-LARI **

A POINTWISE APPROACH FOR ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS IN THE ISOGEOMETRIC ANALYSIS * Y. BAZARGAN-LARI ** IJST, Transactions of Mechanical Engineering, Vol. 38, No. M1 +, pp 167-179 Printed in The Islamic Republic of Iran, 2014 Shiraz University A POINTWISE APPROACH FOR ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS

More information

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

More information

ICES REPORT September M.A. Scott, T.J.R. Hughes, T.W. Sederberg, M.T. Sederberg

ICES REPORT September M.A. Scott, T.J.R. Hughes, T.W. Sederberg, M.T. Sederberg ICES REPORT 14-33 September 2014 An integrated approach to engineering design and analysis using the Autodesk T-spline plugin for Rhino3d by M.A. Scott, T.J.R. Hughes, T.W. Sederberg, M.T. Sederberg The

More information

Modeling 3D Objects: Part 2

Modeling 3D Objects: Part 2 Modeling 3D Objects: Part 2 Patches, NURBS, Solids Modeling, Spatial Subdivisioning, and Implicit Functions 3D Computer Graphics by Alan Watt Third Edition, Pearson Education Limited, 2000 General Modeling

More information

arxiv: v1 [cs.na] 12 Jun 2015

arxiv: v1 [cs.na] 12 Jun 2015 The Isogeometric Nyström Method Jürgen Zechner a,, Benjamin Marussig a, Gernot Beer a,b, Thomas-Peter Fries a a Institute of Structural Analysis, Graz University of Technology, Lessingstraße 25/II, 8010

More information

Interactive modelling and simulation using blending techniques. Aleksander Pedersen

Interactive modelling and simulation using blending techniques. Aleksander Pedersen Interactive modelling and simulation using blending techniques Aleksander Pedersen NUC R&D Group in mathematical and geometrical modeling, numerical simulations, programming and visualization, Narvik University

More information

Note on Industrial Applications of Hu s Surface Extension Algorithm

Note on Industrial Applications of Hu s Surface Extension Algorithm Note on Industrial Applications of Hu s Surface Extension Algorithm Yu Zang, Yong-Jin Liu, and Yu-Kun Lai Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science

More information

The weak substitution method An application of the mortar method for patch coupling in NURBS-based isogeometric analysis

The weak substitution method An application of the mortar method for patch coupling in NURBS-based isogeometric analysis The weak substitution method An application of the mortar method for patch coupling in NURBS-based isogeometric analysis W. Dornisch, G. Vitucci, S. Klinkel Lehrstuhl für Baustatik und Baudynamik, RWTH

More information

A spectral boundary element method

A spectral boundary element method Boundary Elements XXVII 165 A spectral boundary element method A. Calaon, R. Adey & J. Baynham Wessex Institute of Technology, Southampton, UK Abstract The Boundary Element Method (BEM) is not local and

More information

Available online at ScienceDirect. Procedia Engineering 155 (2016 )

Available online at  ScienceDirect. Procedia Engineering 155 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 155 (2016 ) 332 341 International Symposium on "Novel structural skins - Improving sustainability and efficiency through new

More information

Curves and Surfaces Computer Graphics I Lecture 10

Curves and Surfaces Computer Graphics I Lecture 10 15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

More information

Smooth Surfaces from 4-sided Facets

Smooth Surfaces from 4-sided Facets Smooth Surfaces from -sided Facets T. L. Ni, Y. Yeo, A. Myles, V. Goel and J. Peters Abstract We present a fast algorithm for converting quad meshes on the GPU to smooth surfaces. Meshes with 1,000 input

More information

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1

MAE 323: Lab 7. Instructions. Pressure Vessel Alex Grishin MAE 323 Lab Instructions 1 Instructions MAE 323 Lab Instructions 1 Problem Definition Determine how different element types perform for modeling a cylindrical pressure vessel over a wide range of r/t ratios, and how the hoop stress

More information

Shape Control of Cubic H-Bézier Curve by Moving Control Point

Shape Control of Cubic H-Bézier Curve by Moving Control Point Journal of Information & Computational Science 4: 2 (2007) 871 878 Available at http://www.joics.com Shape Control of Cubic H-Bézier Curve by Moving Control Point Hongyan Zhao a,b, Guojin Wang a,b, a Department

More information

ICES REPORT March Deepesh Toshniwal, Hendrik Speleers, Thomas J.R. Hughes

ICES REPORT March Deepesh Toshniwal, Hendrik Speleers, Thomas J.R. Hughes ICES REPORT 17-05 March 2017 Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations

More information

A comparison of accuracy and computational efficiency between the Finite Element Method and the Isogeometric Analysis for twodimensional

A comparison of accuracy and computational efficiency between the Finite Element Method and the Isogeometric Analysis for twodimensional A comparison of accuracy and computational efficiency between the Finite Element Method and the Isogeometric Analysis for twodimensional Poisson Problems Per Ståle Larsen Master of Science in Physics and

More information

Isogeometric models for impact analysis with LS-DYNA

Isogeometric models for impact analysis with LS-DYNA Isogeometric models for impact analysis with LS-DYNA Mattia Montanari 1, Liping Li 2, Nik Petrinic 1 1 Department of Engineering Science, University of Oxford Parks, Road, Oxford, OX1 3PJ, UK 2 Livermore

More information

CURVILINEAR MESH GENERATION IN 3D

CURVILINEAR MESH GENERATION IN 3D CURVILINEAR MESH GENERATION IN 3D Saikat Dey, Robert M. O'Bara 2 and Mark S. Shephard 2 SFA Inc. / Naval Research Laboratory, Largo, MD., U.S.A., dey@cosmic.nrl.navy.mil 2 Scientific Computation Research

More information

Collocation and optimization initialization

Collocation and optimization initialization Boundary Elements and Other Mesh Reduction Methods XXXVII 55 Collocation and optimization initialization E. J. Kansa 1 & L. Ling 2 1 Convergent Solutions, USA 2 Hong Kong Baptist University, Hong Kong

More information

Curved PN Triangles. Alex Vlachos Jörg Peters

Curved PN Triangles. Alex Vlachos Jörg Peters 1 Curved PN Triangles Alex Vlachos AVlachos@ati.com Jörg Peters jorg@cise.ufl.edu Outline 2 Motivation Constraints Surface Properties Performance Demo Quick Demo 3 Constraints 4 Software Developers Must

More information

Subdivision surfaces for CAD: integration through parameterization and local correction

Subdivision surfaces for CAD: integration through parameterization and local correction Workshop: New trends in subdivision and related applications September 4 7, 212 Department of Mathematics and Applications, University of Milano-Bicocca, Italy Subdivision surfaces for CAD: integration

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines

Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines Isogeometric Simulation and Shape Optimization with Applications to Electrical Machines Peter Gangl, Ulrich Langer, Angelos Mantzaflaris, Rainer Schneckenleitner G+S Report No. 75 September 2018 Isogeometric

More information

Polynomial Approximation and Interpolation Chapter 4

Polynomial Approximation and Interpolation Chapter 4 4.4 LAGRANGE POLYNOMIALS The direct fit polynomial presented in Section 4.3, while quite straightforward in principle, has several disadvantages. It requires a considerable amount of effort to solve the

More information

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications

LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications LECTURE #6 Geometric modeling for engineering applications Geometric Modelling for Engineering Applications Introduction to modeling Geometric modeling Curve representation Hermite curve Bezier curve B-spline

More information

Isogeometric analysis: an overview and computer implementation aspects

Isogeometric analysis: an overview and computer implementation aspects Isogeometric analysis: an overview and computer implementation aspects Vinh Phu Nguyen a,1,, Cosmin Anitescu c,2, Stéphane P.A. Bordas a,b,3, Timon Rabczuk c,4 a School of Engineering, Institute of Mechanics

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

DISPERSION ERRORS OF B-SPLINE BASED FINITE ELEMENT METHOD IN ONE-DIMENSIONAL ELASTIC WAVE PROPAGATION

DISPERSION ERRORS OF B-SPLINE BASED FINITE ELEMENT METHOD IN ONE-DIMENSIONAL ELASTIC WAVE PROPAGATION COMPDYN 20 3rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25-28 May 20 DISPERSION

More information