Displacement estimation

Size: px
Start display at page:

Download "Displacement estimation"

Transcription

1 Displacement estimation Displacement estimation by block matching" l Search strategies" l Subpixel estimation" Gradient-based displacement estimation ( optical flow )" l Lukas-Kanade" l Multi-scale coarse-to-fine" l Parametric displacement estimation" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 1

2 Where is the defect? Image g[x,y] (no defect)" Image f [x,y] (w/ defect)" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 2

3 Absolute difference between two images f-g w/o alignment" f-g w/ alignment" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 3

4 Displacement estimation by block matching Measurement window is compared with a shifted array of pixels in the other image, to determine the best match" Rectangular array of pixels is selected as a measurement window" Image g[x,y] " Image f [x,y] " Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 4

5 Displacement estimation by block matching Image g[x,y] " Image f [x,y] "... process repeated for another measurement window position." Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 5

6 Integer pixel shifts Measurement window is compared with a shifted array of pixels in the other image, to determine the best match" Rectangular array of pixels is selected as a measurement window" Image g[x,y] " Image f [x,y] " Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 6

7 Integer pixel shifts Rectangular array of pixels is selected as a measurement window" Measurement window is compared with a shifted array of pixels in the other image, to determine the best match" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 7

8 Error metric Sum of Squared Differences! Sum all values in measurement window" SSD Δ x,δ y = f x, y g x + Δ x, y + Δ y x,y msmnt window ( ) 2 Horizontal displacement" Vertical displacement" Alternatives: SAD (Sum of Absolute Differences), cross correlation, mutual information... " Robustness against outliers: sum of saturated squared differences, median of squared differences... " Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 8

9 SSD values resulting from block matching 1.6 SSD" Estimated displacement" 0.2 Integer-pixel accuracy" Vertical shift Δ y" " Horizontal shift Δ x" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 9

10 Block matching: search strategies Full search" Δd y Δd x All possible displacements within the search range are compared." Computationally expensive" Highly regular, parallelizable" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 10

11 Block matching: search strategies Conjugate direction search" Δd y Δd x Alternate search in x and y directions" Stop when there is no further improvement" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 11

12 Block matching: search strategies Coarse-to-fine" Δd y Δd x Start with coarsely spaced candidate displacements" Smaller pattern when best match is in the middle" Stop when desired displacement accuracy is reached" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 12

13 Block matching: search strategies Diamond search [Li, Zeng, Liou, 1994] [Zhu, Ma, 1997]" Δd y Δd x Start with large diamond pattern at [0,0]" If best match lies in the center of large diamond, proceed with small diamond" If best match does not lie in the center of large diamond, center large diamond pattern at new best match" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 13

14 Absolute difference between images w/ integer-pixel alignment" w/o alignment" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 14

15 Interpolation of the SSD Minimum SSD" Sub-pixel" Accurate" Minimum" Fit parabola through" 3 > 3 points" " exactly" approximately" Horizontal shift Δ x" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 15

16 2-d Interpolation of SSD Minimum SSD" Paraboloid" Perfect fit through 6 points" Approximate fit through > 6 points" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 16

17 Sub-pixel accuracy Interpolate pixel raster of the reference image to desired sub-pixel accuracy (e.g., by bi-linear or bi-cubic interpolation)" Straightforward extension of displacement vector search to fractional accuracy" Example: half-pixel accurate displacements" Δx 4.5 = Δ y 4.5 Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 17

18 Gradient-based displacement estimation Consider a space-time continuous signal f (x,y,t) ( Optical flow: direction x, y,t along which f (x,y,t) is constant" Δ x ( ) Δ ( y x, y,t) 1 )T Derivative in direction of optical flow # ( Δ ( x x, y,t) Δ ( y x, y,t) ) 1 $ % f ( x, y,t) x f ( x, y,t) y f ( x, y,t) t & ' ( T = 0 f f f Δ x + Δ y = x y t Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 18

19 Illustration of optical flow equation f Δ t t (, Δ ) f x t t Δ x f x f ( x, t) f x f x f Δ + Δ = x y y f t Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 19

20 Aperture problem f f f Δ x + Δ y = x y t One equation, two unknowns!" Can only determine component of Δ x, Δ y in direction of brightness gradient (normal flow)" Must combine at least two observations with brightness gradients of different direction" Consider Barber Pole Illusion" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 20

21 Lukas-Kanade Algorithm Assume single displacement within a measurement window W Minimize mean-squared error cost function" Solution" ( ) = ( f x "# x, y$ % Δ x + f "# y x, y $ % Δ + f "# x, y $ y t % ) E Δ x,δ y x,y W ( ) = 2 f x ( f x Δ x + f y Δ y + f t ) Δ x E Δ x,δ y Δ y E Δ x,δ y = 0 x,y W ( ) = 2 f y x,y W ( f x Δ x + f y Δ y + f t ) = 0 2 " f x [x,y] horizontal image gradient f y [x,y] vertical image gradient" f t [x,y] temporal image gradient" # % % $ % x,y W f x 2 x,y W f x f y 2 f x f y f y x,y W x,y W & ( # ( % ' ( $ % Δ x Δ y # & ( ' ( = % % % $ x,y W x,y W f x f t f y f t & ( ( ( ' Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 21

22 Lucas-Kanade Algorithm (cont.) # % % $ % x,y W f x 2 x,y W f x f y 2 f x f y f y x,y W x,y W & ( ( = M Structure matrix! ' ( Structure matrix M must be inverted to obtain Δ x, Δ y M can be singular" l l l If all gradient vectors are zero (flat area of image)" If all gradient vectors point in the same direction (aperture problem)" Measurement window W comprises only one pixel" Not singular for corners, blobs, textured areas " Kanade-Lucas-Tomasi (KLT) tracker" l l Compute eigenvalues λ 1, λ 2 of M Only consider windows, where min(λ 1, λ 2 ) > θ Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 22

23 Sampling issues Image gradients must be approximated by pixel differences, assuming a linear signal in a small spatiotemporal neighborhood" Linearization inaccurate for displacements > 0.5 pixel" Multiple iterations with displacement compensation Multi-scale implementation" Δ x, Δ y " f x Δ + f x y Δ = f y t f x Δ + f x y Δ = f y t f x Δ x + f y Δ y = f t Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 23

24 Lucas-Kanade optical flow Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 24

25 Lucas-Kanade optical flow Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 25

26 Lucas-Kanade optical flow Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 26

27 Parametric displacement estimation Displacement vector field is represented as Δ x (x, y) = a 1 Δ x1 (x, y) + a 2 Δ x2 (x, y) + a 3 Δ x3 (x, y) Δ y (x, y) = b 1 Δ y1 (x, y) + b 2 Δ y2 (x, y) + b 3 Δ y3 (x, y) Optical flow constraint f x Δ + f x y Δ = f y t Combination f x (a Δ + a Δ + a Δ ) + f 1 x1 2 x2 3 x3 y (b Δ + b Δ + b Δ ) = f 1 y1 2 y2 3 y3 t yields a system of linear equations: f x Δ, f x1 x Δ, f x2 x Δ, f x3 y Δ, f y1 y Δ, f y2 y Δ, y2 Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 27 a 1 a 2 a 3 b 1 b 2 b 3 = f t

28 Parametric model of human head Rigid motion: 6 d.o.f." Facial expression: 18 d.o.f." Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 28

29 Facial expression tracking Input video Avatar" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 29

30 Facial expression tracking Input video Avatar" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 30

31 Facial Expression Tracking Input video Avatar" Digital Image Processing: Bernd Girod, 2013 Stanford University -- Displacement Estimation 31

Motion estimation for video compression

Motion estimation for video compression Motion estimation for video compression Blockmatching Search strategies for block matching Block comparison speedups Hierarchical blockmatching Sub-pixel accuracy Motion estimation no. 1 Block-matching

More information

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar.

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar. Matching Compare region of image to region of image. We talked about this for stereo. Important for motion. Epipolar constraint unknown. But motion small. Recognition Find object in image. Recognize object.

More information

Overview: motion-compensated coding

Overview: motion-compensated coding Overview: motion-compensated coding Motion-compensated prediction Motion-compensated hybrid coding Motion estimation by block-matching Motion estimation with sub-pixel accuracy Power spectral density of

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi Motion and Optical Flow Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Overview: motion estimation. Differential motion estimation

Overview: motion estimation. Differential motion estimation Overview: motion estimation Differential methods Fast algorithms for Sub-pel accuracy Rate-constrained motion estimation Bernd Girod: EE368b Image Video Compression Motion Estimation no. 1 Differential

More information

EECS 556 Image Processing W 09

EECS 556 Image Processing W 09 EECS 556 Image Processing W 09 Motion estimation Global vs. Local Motion Block Motion Estimation Optical Flow Estimation (normal equation) Man slides of this lecture are courtes of prof Milanfar (UCSC)

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Optical flow http://en.wikipedia.org/wiki/barberpole_illusion Readings Szeliski, Chapter 8.4-8.5 Announcements Project 2b due Tuesday, Nov 2 Please sign

More information

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Lucas-Kanade Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Lucas-Kanade Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing Computer Perceptual Vision and Sensory WS 16/17 Augmented Computing

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Keypoint detection. (image registration, panorama stitching, motion estimation + tracking, recognition )

Keypoint detection. (image registration, panorama stitching, motion estimation + tracking, recognition ) Keypoint detection n n Many applications benefit from features localized in (x,y) (image registration, panorama stitching, motion estimation + tracking, recognition ) Edges well localized only in one direction

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Perceptual Vision and Sensory WS 16/76 Augmented Computing Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik Computer Vision Lecture 20 Motion and Optical Flow

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS442/542b: Artificial ntelligence Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field Methods

More information

Peripheral drift illusion

Peripheral drift illusion Peripheral drift illusion Does it work on other animals? Computer Vision Motion and Optical Flow Many slides adapted from J. Hays, S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others Video A video

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 11 140311 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Motion Analysis Motivation Differential Motion Optical

More information

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys Visual motion Man slides adapted from S. Seitz, R. Szeliski, M. Pollefes Motion and perceptual organization Sometimes, motion is the onl cue Motion and perceptual organization Sometimes, motion is the

More information

Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski

Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski Automatic Image Alignment (direct) with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Today Go over Midterm Go over Project #3

More information

Capturing, Modeling, Rendering 3D Structures

Capturing, Modeling, Rendering 3D Structures Computer Vision Approach Capturing, Modeling, Rendering 3D Structures Calculate pixel correspondences and extract geometry Not robust Difficult to acquire illumination effects, e.g. specular highlights

More information

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field Finally: Motion and tracking Tracking objects, video analysis, low level motion Motion Wed, April 20 Kristen Grauman UT-Austin Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

More information

Motion Estimation. There are three main types (or applications) of motion estimation:

Motion Estimation. There are three main types (or applications) of motion estimation: Members: D91922016 朱威達 R93922010 林聖凱 R93922044 謝俊瑋 Motion Estimation There are three main types (or applications) of motion estimation: Parametric motion (image alignment) The main idea of parametric motion

More information

Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm

Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm Face Tracking : An implementation of the Kanade-Lucas-Tomasi Tracking algorithm Dirk W. Wagener, Ben Herbst Department of Applied Mathematics, University of Stellenbosch, Private Bag X1, Matieland 762,

More information

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania.

Visual Tracking. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania. Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli studi di Catania 1 What is visual tracking? estimation of the target location over time 2 applications Six main areas:

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

CS664 Lecture #18: Motion

CS664 Lecture #18: Motion CS664 Lecture #18: Motion Announcements Most paper choices were fine Please be sure to email me for approval, if you haven t already This is intended to help you, especially with the final project Use

More information

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Visual Tracking. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Visual Tracking Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 11 giugno 2015 What is visual tracking? estimation

More information

Tracking Computer Vision Spring 2018, Lecture 24

Tracking Computer Vision Spring 2018, Lecture 24 Tracking http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 24 Course announcements Homework 6 has been posted and is due on April 20 th. - Any questions about the homework? - How

More information

Visual Tracking (1) Pixel-intensity-based methods

Visual Tracking (1) Pixel-intensity-based methods Intelligent Control Systems Visual Tracking (1) Pixel-intensity-based methods Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization.

Overview. Video. Overview 4/7/2008. Optical flow. Why estimate motion? Motion estimation: Optical flow. Motion Magnification Colorization. Overview Video Optical flow Motion Magnification Colorization Lecture 9 Optical flow Motion Magnification Colorization Overview Optical flow Combination of slides from Rick Szeliski, Steve Seitz, Alyosha

More information

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun

Optical Flow CS 637. Fuxin Li. With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Optical Flow CS 637 Fuxin Li With materials from Kristen Grauman, Richard Szeliski, S. Narasimhan, Deqing Sun Motion and perceptual organization Sometimes, motion is the only cue Motion and perceptual

More information

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition to Constraint to Uttendorf 2005 Contents to Constraint 1 Contents to Constraint 1 2 Constraint Contents to Constraint 1 2 Constraint 3 Visual cranial reflex(vcr)(?) to Constraint Rapidly changing scene

More information

ECE Digital Image Processing and Introduction to Computer Vision

ECE Digital Image Processing and Introduction to Computer Vision ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 2017 Recap, SIFT Motion Tracking Change Detection Feature

More information

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Motion and Tracking. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Motion and Tracking Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Motion Segmentation Segment the video into multiple coherently moving objects Motion and Perceptual Organization

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

Computer Vision Lecture 20

Computer Vision Lecture 20 Computer Vision Lecture 2 Motion and Optical Flow Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de 28.1.216 Man slides adapted from K. Grauman, S. Seitz, R. Szeliski,

More information

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching --

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching -- Computational Optical Imaging - Optique Numerique -- Single and Multiple View Geometry, Stereo matching -- Autumn 2015 Ivo Ihrke with slides by Thorsten Thormaehlen Reminder: Feature Detection and Matching

More information

CS201: Computer Vision Introduction to Tracking

CS201: Computer Vision Introduction to Tracking CS201: Computer Vision Introduction to Tracking John Magee 18 November 2014 Slides courtesy of: Diane H. Theriault Question of the Day How can we represent and use motion in images? 1 What is Motion? Change

More information

Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology

Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology Course Presentation Multimedia Systems Video II (Video Coding) Mahdi Amiri April 2012 Sharif University of Technology Video Coding Correlation in Video Sequence Spatial correlation Similar pixels seem

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.

Optical Flow-Based Motion Estimation. Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. Optical Flow-Based Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides. 1 Why estimate motion? We live in a 4-D world Wide applications Object

More information

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11 Announcement Edge and Corner Detection Slides are posted HW due Friday CSE5A Lecture 11 Edges Corners Edge is Where Change Occurs: 1-D Change is measured by derivative in 1D Numerical Derivatives f(x)

More information

Module 7 VIDEO CODING AND MOTION ESTIMATION

Module 7 VIDEO CODING AND MOTION ESTIMATION Module 7 VIDEO CODING AND MOTION ESTIMATION Lesson 22 Other fast search motion estimation algorithms At the end of this lesson, the students should be able to: 1. Provide an overview of the following fast

More information

Horn-Schunck and Lucas Kanade 1

Horn-Schunck and Lucas Kanade 1 Horn-Schunck and Lucas Kanade 1 Lecture 8 See Sections 4.2 and 4.3 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information. 1 / 40 Where We

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

VC 11/12 T11 Optical Flow

VC 11/12 T11 Optical Flow VC 11/12 T11 Optical Flow Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Optical Flow Constraint Equation Aperture

More information

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29,

Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, Ninio, J. and Stevens, K. A. (2000) Variations on the Hermann grid: an extinction illusion. Perception, 29, 1209-1217. CS 4495 Computer Vision A. Bobick Sparse to Dense Correspodence Building Rome in

More information

Image processing and features

Image processing and features Image processing and features Gabriele Bleser gabriele.bleser@dfki.de Thanks to Harald Wuest, Folker Wientapper and Marc Pollefeys Introduction Previous lectures: geometry Pose estimation Epipolar geometry

More information

Performance study on point target detection using super-resolution reconstruction

Performance study on point target detection using super-resolution reconstruction Performance study on point target detection using super-resolution reconstruction Judith Dijk a,adamw.m.vaneekeren ab, Klamer Schutte a Dirk-Jan J. de Lange a, Lucas J. van Vliet b a Electro Optics Group

More information

Lec 08 Video Signal Processing I

Lec 08 Video Signal Processing I CS/EE 5590 / ENG 401 Special Topics (17804, 17815, 17803) Lec 08 Video Signal Processing I Motion Estimation and Compensation Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/2016sp.video-communication/main.html

More information

Optic Flow and Basics Towards Horn-Schunck 1

Optic Flow and Basics Towards Horn-Schunck 1 Optic Flow and Basics Towards Horn-Schunck 1 Lecture 7 See Section 4.1 and Beginning of 4.2 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information.

More information

The Lucas & Kanade Algorithm

The Lucas & Kanade Algorithm The Lucas & Kanade Algorithm Instructor - Simon Lucey 16-423 - Designing Computer Vision Apps Today Registration, Registration, Registration. Linearizing Registration. Lucas & Kanade Algorithm. 3 Biggest

More information

Corner Detection. Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology

Corner Detection. Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology Corner Detection Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology rhody@cis.rit.edu April 11, 2006 Abstract Corners and edges are two of the most important geometrical

More information

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20 Lecture 19: Motion Review Problem set 3 Dense stereo matching Sparse stereo matching Indexing scenes Tuesda, Nov 0 Effect of window size W = 3 W = 0 Want window large enough to have sufficient intensit

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

SE 263 R. Venkatesh Babu. Object Tracking. R. Venkatesh Babu

SE 263 R. Venkatesh Babu. Object Tracking. R. Venkatesh Babu Object Tracking R. Venkatesh Babu Primitive tracking Appearance based - Template Matching Assumptions: Object description derived from first frame No change in object appearance Movement only 2D translation

More information

Module 05 Motion Analysis / Overview. Advanced Video Analysis and Imaging (5LSH0), Module 05. Motion Applications / Video Coding (1)

Module 05 Motion Analysis / Overview. Advanced Video Analysis and Imaging (5LSH0), Module 05. Motion Applications / Video Coding (1) 1 Module 05 Motion Analysis / Overview 2 Advanced Video Analysis and Imaging (5LSH0), Module 05 Visual Feature Extraction II: Motion Analysis Peter H.N. de With and Dirk Farin ( p.h.n.de.with@tue.nl )

More information

Robust Camera Pan and Zoom Change Detection Using Optical Flow

Robust Camera Pan and Zoom Change Detection Using Optical Flow Robust Camera and Change Detection Using Optical Flow Vishnu V. Makkapati Philips Research Asia - Bangalore Philips Innovation Campus, Philips Electronics India Ltd. Manyata Tech Park, Nagavara, Bangalore

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Binary dilation and erosion" Set-theoretic interpretation" Opening, closing, morphological edge detectors" Hit-miss filter" Morphological filters for gray-level images" Cascading

More information

TRACKING OF FACIAL FEATURE POINTS BY COMBINING SINGULAR TRACKING RESULTS WITH A 3D ACTIVE SHAPE MODEL

TRACKING OF FACIAL FEATURE POINTS BY COMBINING SINGULAR TRACKING RESULTS WITH A 3D ACTIVE SHAPE MODEL TRACKING OF FACIAL FEATURE POINTS BY COMBINING SINGULAR TRACKING RESULTS WITH A 3D ACTIVE SHAPE MODEL Moritz Kaiser, Dejan Arsić, Shamik Sural and Gerhard Rigoll Technische Universität München, Arcisstr.

More information

Redundancy and Correlation: Temporal

Redundancy and Correlation: Temporal Redundancy and Correlation: Temporal Mother and Daughter CIF 352 x 288 Frame 60 Frame 61 Time Copyright 2007 by Lina J. Karam 1 Motion Estimation and Compensation Video is a sequence of frames (images)

More information

Lec 08 Video Signal Processing I

Lec 08 Video Signal Processing I CS/EE 5590 / ENG 401 Multimedia Communication Lec 08 Video Signal Processing I Motion Estimation and Compensation Zhu Li Course Web: http://l.web.umkc.edu/lizhu/ Z. Li Multimedia Communciation, Spring

More information

Chapter 9 Object Tracking an Overview

Chapter 9 Object Tracking an Overview Chapter 9 Object Tracking an Overview The output of the background subtraction algorithm, described in the previous chapter, is a classification (segmentation) of pixels into foreground pixels (those belonging

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Lecture 20: Tracking. Tuesday, Nov 27

Lecture 20: Tracking. Tuesday, Nov 27 Lecture 20: Tracking Tuesday, Nov 27 Paper reviews Thorough summary in your own words Main contribution Strengths? Weaknesses? How convincing are the experiments? Suggestions to improve them? Extensions?

More information

Kanade Lucas Tomasi Tracking (KLT tracker)

Kanade Lucas Tomasi Tracking (KLT tracker) Kanade Lucas Tomasi Tracking (KLT tracker) Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: November 26,

More information

Motion Estimation (II) Ce Liu Microsoft Research New England

Motion Estimation (II) Ce Liu Microsoft Research New England Motion Estimation (II) Ce Liu celiu@microsoft.com Microsoft Research New England Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y

More information

Computer Vision Lecture 18

Computer Vision Lecture 18 Course Outline Computer Vision Lecture 8 Motion and Optical Flow.0.009 Bastian Leibe RWTH Aachen http://www.umic.rwth-aachen.de/multimedia leibe@umic.rwth-aachen.de Man slides adapted from K. Grauman,

More information

Fi#ng & Matching Region Representa3on Image Alignment, Op3cal Flow

Fi#ng & Matching Region Representa3on Image Alignment, Op3cal Flow Fi#ng & Matching Region Representa3on Image Alignment, Op3cal Flow Lectures 5 & 6 Prof. Fergus Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros. Facebook 360 photos Panoramas How do we build

More information

Robert Collins CSE598G. Intro to Template Matching and the Lucas-Kanade Method

Robert Collins CSE598G. Intro to Template Matching and the Lucas-Kanade Method Intro to Template Matching and the Lucas-Kanade Method Appearance-Based Tracking current frame + previous location likelihood over object location current location appearance model (e.g. image template,

More information

Comparison between Motion Analysis and Stereo

Comparison between Motion Analysis and Stereo MOTION ESTIMATION The slides are from several sources through James Hays (Brown); Silvio Savarese (U. of Michigan); Octavia Camps (Northeastern); including their own slides. Comparison between Motion Analysis

More information

Optical Flow Estimation

Optical Flow Estimation Optical Flow Estimation Goal: Introduction to image motion and 2D optical flow estimation. Motivation: Motion is a rich source of information about the world: segmentation surface structure from parallax

More information

(More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects. Connelly Barnes

(More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects. Connelly Barnes (More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects Connelly Barnes Acknowledgment: Many slides from James Hays, also Derek Hoiem Grauman&Leibe 2008 Outline Edge Detec)on: Canny, etc.

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

Tracking in image sequences

Tracking in image sequences CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Tracking in image sequences Lecture notes for the course Computer Vision Methods Tomáš Svoboda svobodat@fel.cvut.cz March 23, 2011 Lecture notes

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

1-2 Feature-Based Image Mosaicing

1-2 Feature-Based Image Mosaicing MVA'98 IAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chibq Japan 1-2 Feature-Based Image Mosaicing Naoki Chiba, Hiroshi Kano, Minoru Higashihara, Masashi Yasuda, and Masato

More information

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015 3D Photography Marc Pollefeys, Torsten Sattler Spring 2015 Schedule (tentative) Feb 16 Feb 23 Mar 2 Mar 9 Mar 16 Mar 23 Mar 30 Apr 6 Apr 13 Apr 20 Apr 27 May 4 May 11 May 18 May 25 Introduction Geometry,

More information

Towards the completion of assignment 1

Towards the completion of assignment 1 Towards the completion of assignment 1 What to do for calibration What to do for point matching What to do for tracking What to do for GUI COMPSCI 773 Feature Point Detection Why study feature point detection?

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Fast Optical Flow Using Cross Correlation and Shortest-Path Techniques

Fast Optical Flow Using Cross Correlation and Shortest-Path Techniques Digital Image Computing: Techniques and Applications. Perth, Australia, December 7-8, 1999, pp.143-148. Fast Optical Flow Using Cross Correlation and Shortest-Path Techniques Changming Sun CSIRO Mathematical

More information

Marcel Worring Intelligent Sensory Information Systems

Marcel Worring Intelligent Sensory Information Systems Marcel Worring worring@science.uva.nl Intelligent Sensory Information Systems University of Amsterdam Information and Communication Technology archives of documentaries, film, or training material, video

More information

Global Flow Estimation. Lecture 9

Global Flow Estimation. Lecture 9 Motion Models Image Transformations to relate two images 3D Rigid motion Perspective & Orthographic Transformation Planar Scene Assumption Transformations Translation Rotation Rigid Affine Homography Pseudo

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Patch tracking based on comparing its piels 1 Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine

More information

3D Vision. Viktor Larsson. Spring 2019

3D Vision. Viktor Larsson. Spring 2019 3D Vision Viktor Larsson Spring 2019 Schedule Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar 25 Apr 1 Apr 8 Apr 15 Apr 22 Apr 29 May 6 May 13 May 20 May 27 Introduction Geometry, Camera Model, Calibration Features,

More information

CS-465 Computer Vision

CS-465 Computer Vision CS-465 Computer Vision Nazar Khan PUCIT 9. Optic Flow Optic Flow Nazar Khan Computer Vision 2 / 25 Optic Flow Nazar Khan Computer Vision 3 / 25 Optic Flow Where does pixel (x, y) in frame z move to in

More information

Computer Vision I - Basics of Image Processing Part 2

Computer Vision I - Basics of Image Processing Part 2 Computer Vision I - Basics of Image Processing Part 2 Carsten Rother 07/11/2014 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease

Particle Tracking. For Bulk Material Handling Systems Using DEM Models. By: Jordan Pease Particle Tracking For Bulk Material Handling Systems Using DEM Models By: Jordan Pease Introduction Motivation for project Particle Tracking Application to DEM models Experimental Results Future Work References

More information

Computer Vision for HCI. Topics of This Lecture

Computer Vision for HCI. Topics of This Lecture Computer Vision for HCI Interest Points Topics of This Lecture Local Invariant Features Motivation Requirements, Invariances Keypoint Localization Features from Accelerated Segment Test (FAST) Harris Shi-Tomasi

More information

Using temporal seeding to constrain the disparity search range in stereo matching

Using temporal seeding to constrain the disparity search range in stereo matching Using temporal seeding to constrain the disparity search range in stereo matching Thulani Ndhlovu Mobile Intelligent Autonomous Systems CSIR South Africa Email: tndhlovu@csir.co.za Fred Nicolls Department

More information

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska 1 Krzysztof Krawiec IDSS 2 The importance of visual motion Adds entirely new (temporal) dimension to visual

More information