Data Mining. Covering algorithms. Covering approach At each stage you identify a rule that covers some of instances. Fig. 4.

Size: px
Start display at page:

Download "Data Mining. Covering algorithms. Covering approach At each stage you identify a rule that covers some of instances. Fig. 4."

Transcription

1 Data Mining Chapter 4. Algorithms: The Basic Methods (Covering algorithm, Association rule, Linear models, Instance-based learning, Clustering) 1 Covering approach At each stage you identify a rule that covers some of instances. Fig. 4.6 (a) 2 1

2 A set of rules covering the a s if x > 1.2 and y > 2.6 then class = a if x > 1.4 and y > 2.4 then class = a A set of rules covering the b s if x 1.2 then class = b if x > 1.2 and y 2.6 then class = b 3 Covering algorithm Choosing an attribute-value pair to maximize the probability of the desired classification Including as many instances of the desired class as possible Excluding as many instances of other classes as possible Weka rules: PRISM method 4 2

3 A basic rule learner Maximizing the accuracy p(positive examples) / t(instances) 5 Contact lens problem IF? THEN recommendation = hard Age = young, 2/8 Age = pre-presbyopic, 1/8 Age = presbyopic, 1/8 Spectacle prescription = myope, 3/12 Spectacle prescription = hypermetrope, 1/12 Astigmatism = no, 0/12 Astigmatism = yes, 4/12 Tear production rate = reduced, 0/12 Tear production rate = normal, 4/12 6 3

4 Accuracy p / t Break ties by choosing the condition with the largest p Selecting largest fraction : 4/12 (at random) IF astigmatism = yes THEN recommendation = hard 7 Refinement IF astigmatism = yes AND?, THEN recommendation = hard Age = young, 2/4 Age = pre-presbyopic, 1/4 Age = presbyopic, 1/4 Spectacle prescription = myope, 3/6 Spectacle prescription = hypermetrope, 1/6 Tear production rate = reduced, 0/6 Tear production rate = normal, 4/6 IF astigmatism=yes AND tear production rate=normal 8 4

5 Exact rules Age=young, 2/2 Age=pre-presbyopic, 1/2 Age=presbyopic, 1/2 Spectacle prescription=myope, 3/3 greater coverage Spectacle prescription=hypermetrope, 1/3 IF astigmatism=yes AND tear production rate=normal AND spectacle prescription=myope, THEN recommendation = hard 9 Checking the coverage rate The above rule covers ¾. (4: hard ) delete! (3 instances) Looking for another rule IF? THEN recommendation = hard best choice : age=young (coverage: 7) IF age=young AND astigmatism=yes AND tear production rate=normal, 1/1 Covering 2 out of the original instances! 10 5

6 For another class For soft and none PRISM Adding clauses to each rule until it s perfect only correct rules. 11 Rules vs trees Tree : taking all classes into account Rule : one class at a time (more compact!) Decision tree Applied in order Execution stops as soon as one rule applies. Order-independent rules Independent nuggets of knowledge Disadvantage Being not clear what to do when conflicting rules apply e.g.) rules different classes 12 6

7 Mining association rules Association rules Weka Apriori algorithm Coverage support Accuracy confidence Association rules with high coverage Attribute-value pair: item Item sets Table 4.10 Item sets for weather data with coverage 2 or greater One-item sets, Two-item sets, Three-item sets 6 Four-item sets 13 Mining association rules Association rules A three-item set with a coverage of 4 (Table 4.10): humidity=normal, windy=false, play=yes 7 potential rules IF humidity = normal and windy = false, THEN play = yes 4/4 IF humidity = normal and play = yes, THEN windy = false 4/6 IF windy = false and play = yes, THEN humidity = normal 4/6 IF humidity = normal, THEN windy = false and play = yes 4/7 IF windy = false, THEN humidity = normal and play = yes 4/8 IF play = yes, THEN humidity = normal and windy = false 4/9 IF, THEN humidity = normal and windy = false and play = yes 4/14 4: coverage, 4/4: accuracy Assuming that minimum specified accuracy is 100%, then 1 st rule! Table 4.11: the final rule set 14 7

8 Linear models Numeric prediction: Linear regression Class and all attributes: numeric Expressing the class as a linear combination of the attributes x = w 0 + w 1 a 1 +w 2 a 2 + +w k a k where x: class, w k : weights, a k : attribute values 15 Linear models Minimizing the sum of the squared differences Predicted value w 0 a (1) 0 + w 1 a (1) w k a (1) k k = j=0 w j a j The sum of the squared differences» n : training instances» x (i) : ith instance s actual class (1) (1): 1st instance n k i=1 ( x(i) - j=0 w j a (i) j )

9 Linear models Disadvantages Linearity For a nonlinear dependency the best-fitting straight line the least mean-squared difference Linear models serve well as building blocks for more complex learning methods. 17 Linear classification using the perceptron From a biological viewpoint, a mathematical model for the operation of brain a method of representing functions using networks 18 9

10 Linear classification using the perceptron Neural networks Input units (nodes), hidden units, output units Links, (numeric) weights Network structure : feed-forward (unidirectional, no cycles) Input function in i, activation function g I 1 w 13 H 3 w 35 w 23 w 14 O 5 I 2 H 4 w 45 w Linear classification using the perceptron a i g in i = g( w j,i a j ) j Input links in i g a i output links a 5 = g(w 3,5 a 3 + w 4,5 a 4 ) = g(w 3,5 g(w 1,3 a 1 + w 2,3 a 2 ) + w 4,5 g(w 1,4 a 1 + w 2,4 a 2 )) A complex nonlinear function 20 10

11 Linear classification using the perceptron a 1 a 2 w 1 w 2 +/- a n threshold w n T If a 1 w 1 + a 2 w a n w n > T then positive examples else negative examples 21 Linear classification using the perceptron activation function g 1(firing): when the input is greater than its threshold 0(no firing): otherwise hard threshold 1: positive 0 or -1: negative Sigmoid function : smooth transition To determine a predicted value anywhere between 0 and

12 Linear classification using the perceptron Perceptrons Layered feed-forward networks A single-layer: no hidden layer Weight update rule Predicted output for the single output unit: O Correct output: T Error: T-O If error is positive, increase O. If it s negative, decrease O. Learning rate(gain factor) W j W j + I J Error Activation of input I j 23 Linear classification using the perceptron Example) classification errors lead to changes in weights When the misclassified instance is positive, w i = ƞv i When the misclassified instance is negative, w i = ƞv i 24 12

13 Linear classification using the perceptron Initial hypothesis 1.0 Height Girth 1.5 ƞ=0.04, Instance(Girth, Height) = {(1.75,6.0), (2.0,5.0), (2.5,5.0), (3.0,6.25)} Positives = {(1.75,6.0), (2.0,5.0)} Negatives = {(2.5,5.0), (3.0,6.25)} The misclassified instance is positive: (2.0,5.0) w for threshold = =0.04 w for girth = =0.08 w for height = = H G Linear classification using the perceptron The misclassified instance is negative: (3.0,6.25) w for threshold = 0.04 w for girth = =0.12 w for height = = H G 1.5 Final revised hypothesis 1.15Height Girth 1.54 if the training set is linearly separable, it is guaranteed to converge in a finite number of iterations. useful approximations even when the target concepts are not linearly separable 26 13

14 Once the nearest training instance has been located, its class is predicted for test instance. Distance function Determining which member of the training set is closest to an unknown test instance Euclidian distance Distance between an instance with a 1 (1), a 2 (1),.. a k (1) and one with values a 1 (2), a 2 (2),, a k (2) k: attributes, (#): instances 27 the sum of squares (a 1 (1) a 1 2 ) 2 + (a 2 1 a 2 2 ) (a k 1 a k 2 ) 2 Normalization ([0..1]) a i = v i min v i max v i min v i Nominal attributes If the values are the same, difference: 0. Otherwise, difference:

15 Finding nearest neighbors efficiently Finding which member of training set is closest to an unknown test instance Calculating the distance from every member of the training set and selecting the smallest Being linear in the number of training instances Representing the training set as a tree kd-tree Storing a set of points in k-dimensional space» k-dimensional space: the number of attributes 29 Root (horizontally) (vertically) 30 15

16 Speeding up nearest-neighbor calculations ; h 2 ; v 5 ; v closest Good first approximation! (log 2 n ) where n: depth of the tree 32 16

17 Using hyperspheres, not hyperrectangles Squares are not the best shape, because of their corners Ball tree Fig 4.14 The nodes of actual ball trees: the center and radius of their ball The leaf nodes: the points they contain 33 Splitting method Choose the point in the ball that is farthest from its center. Then choose a 2 nd point that is farthest from the 1 st one. Assign all data points in the ball to the closest one of these two cluster centers. Then compute the centroid of each cluster and the minimum radius required for it to enclose all the data points

18 35 To use a ball tree to find the nearest neighbor to a given target Traversing the tree from the top down to locate the leaf that contains the target and find the closest point to the target in that ball If the distance from target to the sibling s center exceeds its radius plus the current upper bound, it cannot possibly contain a close point. Otherwise, the sibling must be examined by descending the tree further. Ruling out (Fig. 4.15) 36 18

19 37 Clustering techniques Clustering When there is no class to be predicted but rather when the instances are to be divided into natural groups (unsupervised learning) Iterative distance-based clustering k-means Specifying in advance how many clusters are being sought: k k points are chosen at random as cluster centers. All instances are assigned to their closest cluster center according to Euclidean distance metric. The mean of the instances in each cluster is calculated

20 Clustering These means are taken to be new center values for their respective clusters. Repeated until the cluster centers have stabilized. Minimizing V V = k i=1 j S i x j - u i 2 where» k: clusters» S i for i = 1, 2,, k» U i : the mean point of the points x j S i 39 Clustering The overall effect Minimizing the total squared distance from all points to their cluster centers The minimum: local optimum not a global optimum Final clusters: being sensitive to the initial cluster centers Running the algorithm several times with different initial choices and choosing the best final result The one with the smallest total squared distance 40 20

21

Chapter 4: Algorithms CS 795

Chapter 4: Algorithms CS 795 Chapter 4: Algorithms CS 795 Inferring Rudimentary Rules 1R Single rule one level decision tree Pick each attribute and form a single level tree without overfitting and with minimal branches Pick that

More information

Data Mining Algorithms: Basic Methods

Data Mining Algorithms: Basic Methods Algorithms: The basic methods Inferring rudimentary rules Data Mining Algorithms: Basic Methods Chapter 4 of Data Mining Statistical modeling Constructing decision trees Constructing rules Association

More information

Chapter 4: Algorithms CS 795

Chapter 4: Algorithms CS 795 Chapter 4: Algorithms CS 795 Inferring Rudimentary Rules 1R Single rule one level decision tree Pick each attribute and form a single level tree without overfitting and with minimal branches Pick that

More information

Data Mining Part 4. Tony C Smith WEKA Machine Learning Group Department of Computer Science University of Waikato

Data Mining Part 4. Tony C Smith WEKA Machine Learning Group Department of Computer Science University of Waikato Data Mining Part 4 Tony C Smith WEKA Machine Learning Group Department of Computer Science University of Waikato Algorithms: The basic methods Inferring rudimentary rules Statistical modeling Constructing

More information

Instance-Based Representations. k-nearest Neighbor. k-nearest Neighbor. k-nearest Neighbor. exemplars + distance measure. Challenges.

Instance-Based Representations. k-nearest Neighbor. k-nearest Neighbor. k-nearest Neighbor. exemplars + distance measure. Challenges. Instance-Based Representations exemplars + distance measure Challenges. algorithm: IB1 classify based on majority class of k nearest neighbors learned structure is not explicitly represented choosing k

More information

Homework 1 Sample Solution

Homework 1 Sample Solution Homework 1 Sample Solution 1. Iris: All attributes of iris are numeric, therefore ID3 of weka cannt be applied to this data set. Contact-lenses: tear-prod-rate = reduced: none tear-prod-rate = normal astigmatism

More information

Data Mining and Machine Learning: Techniques and Algorithms

Data Mining and Machine Learning: Techniques and Algorithms Instance based classification Data Mining and Machine Learning: Techniques and Algorithms Eneldo Loza Mencía eneldo@ke.tu-darmstadt.de Knowledge Engineering Group, TU Darmstadt International Week 2019,

More information

Representing structural patterns: Reading Material: Chapter 3 of the textbook by Witten

Representing structural patterns: Reading Material: Chapter 3 of the textbook by Witten Representing structural patterns: Plain Classification rules Decision Tree Rules with exceptions Relational solution Tree for Numerical Prediction Instance-based presentation Reading Material: Chapter

More information

Input: Concepts, Instances, Attributes

Input: Concepts, Instances, Attributes Input: Concepts, Instances, Attributes 1 Terminology Components of the input: Concepts: kinds of things that can be learned aim: intelligible and operational concept description Instances: the individual,

More information

Machine Learning and Pervasive Computing

Machine Learning and Pervasive Computing Stephan Sigg Georg-August-University Goettingen, Computer Networks 17.12.2014 Overview and Structure 22.10.2014 Organisation 22.10.3014 Introduction (Def.: Machine learning, Supervised/Unsupervised, Examples)

More information

Summary. Machine Learning: Introduction. Marcin Sydow

Summary. Machine Learning: Introduction. Marcin Sydow Outline of this Lecture Data Motivation for Data Mining and Learning Idea of Learning Decision Table: Cases and Attributes Supervised and Unsupervised Learning Classication and Regression Examples Data:

More information

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners

Data Mining. 3.5 Lazy Learners (Instance-Based Learners) Fall Instructor: Dr. Masoud Yaghini. Lazy Learners Data Mining 3.5 (Instance-Based Learners) Fall 2008 Instructor: Dr. Masoud Yaghini Outline Introduction k-nearest-neighbor Classifiers References Introduction Introduction Lazy vs. eager learning Eager

More information

For Monday. Read chapter 18, sections Homework:

For Monday. Read chapter 18, sections Homework: For Monday Read chapter 18, sections 10-12 The material in section 8 and 9 is interesting, but we won t take time to cover it this semester Homework: Chapter 18, exercise 25 a-b Program 4 Model Neuron

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Unsupervised Learning Hierarchical Methods

Unsupervised Learning Hierarchical Methods Unsupervised Learning Hierarchical Methods Road Map. Basic Concepts 2. BIRCH 3. ROCK The Principle Group data objects into a tree of clusters Hierarchical methods can be Agglomerative: bottom-up approach

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Algorithms: The basic methods Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter of Data Mining by I. H. Witten and. Frank Inferring rudimentary rules Statistical modeling Constructing

More information

Advanced learning algorithms

Advanced learning algorithms Advanced learning algorithms Extending decision trees; Extraction of good classification rules; Support vector machines; Weighted instance-based learning; Design of Model Tree Clustering Association Mining

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

Data Mining and Knowledge Discovery Practice notes 2

Data Mining and Knowledge Discovery Practice notes 2 Keywords Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si Data Attribute, example, attribute-value data, target variable, class, discretization Algorithms

More information

Hierarchical Clustering 4/5/17

Hierarchical Clustering 4/5/17 Hierarchical Clustering 4/5/17 Hypothesis Space Continuous inputs Output is a binary tree with data points as leaves. Useful for explaining the training data. Not useful for making new predictions. Direction

More information

Data Mining and Knowledge Discovery: Practice Notes

Data Mining and Knowledge Discovery: Practice Notes Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si 8.11.2017 1 Keywords Data Attribute, example, attribute-value data, target variable, class, discretization

More information

Association Rule Mining and Clustering

Association Rule Mining and Clustering Association Rule Mining and Clustering Lecture Outline: Classification vs. Association Rule Mining vs. Clustering Association Rule Mining Clustering Types of Clusters Clustering Algorithms Hierarchical:

More information

What is Learning? CS 343: Artificial Intelligence Machine Learning. Raymond J. Mooney. Problem Solving / Planning / Control.

What is Learning? CS 343: Artificial Intelligence Machine Learning. Raymond J. Mooney. Problem Solving / Planning / Control. What is Learning? CS 343: Artificial Intelligence Machine Learning Herbert Simon: Learning is any process by which a system improves performance from experience. What is the task? Classification Problem

More information

6.034 Quiz 2, Spring 2005

6.034 Quiz 2, Spring 2005 6.034 Quiz 2, Spring 2005 Open Book, Open Notes Name: Problem 1 (13 pts) 2 (8 pts) 3 (7 pts) 4 (9 pts) 5 (8 pts) 6 (16 pts) 7 (15 pts) 8 (12 pts) 9 (12 pts) Total (100 pts) Score 1 1 Decision Trees (13

More information

Data Mining and Machine Learning. Instance-Based Learning. Rote Learning k Nearest-Neighbor Classification. IBL and Rule Learning

Data Mining and Machine Learning. Instance-Based Learning. Rote Learning k Nearest-Neighbor Classification. IBL and Rule Learning Data Mining and Machine Learning Instance-Based Learning Rote Learning k Nearest-Neighbor Classification Prediction, Weighted Prediction choosing k feature weighting (RELIEF) instance weighting (PEBLS)

More information

Data Mining. Lesson 9 Support Vector Machines. MSc in Computer Science University of New York Tirana Assoc. Prof. Dr.

Data Mining. Lesson 9 Support Vector Machines. MSc in Computer Science University of New York Tirana Assoc. Prof. Dr. Data Mining Lesson 9 Support Vector Machines MSc in Computer Science University of New York Tirana Assoc. Prof. Dr. Marenglen Biba Data Mining: Content Introduction to data mining and machine learning

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

CMPT 882 Week 3 Summary

CMPT 882 Week 3 Summary CMPT 882 Week 3 Summary! Artificial Neural Networks (ANNs) are networks of interconnected simple units that are based on a greatly simplified model of the brain. ANNs are useful learning tools by being

More information

Data Mining and Knowledge Discovery Practice notes: Numeric Prediction, Association Rules

Data Mining and Knowledge Discovery Practice notes: Numeric Prediction, Association Rules Keywords Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si Data Attribute, example, attribute-value data, target variable, class, discretization Algorithms

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

Midterm Examination CS 540-2: Introduction to Artificial Intelligence

Midterm Examination CS 540-2: Introduction to Artificial Intelligence Midterm Examination CS 54-2: Introduction to Artificial Intelligence March 9, 217 LAST NAME: FIRST NAME: Problem Score Max Score 1 15 2 17 3 12 4 6 5 12 6 14 7 15 8 9 Total 1 1 of 1 Question 1. [15] State

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A.

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Output: Knowledge representation Tables Linear models Trees Rules

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A.

Data Mining. Practical Machine Learning Tools and Techniques. Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Input: Concepts, instances, attributes Terminology What s a concept?

More information

Clustering in Data Mining

Clustering in Data Mining Clustering in Data Mining Classification Vs Clustering When the distribution is based on a single parameter and that parameter is known for each object, it is called classification. E.g. Children, young,

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22 INF4820 Clustering Erik Velldal University of Oslo Nov. 17, 2009 Erik Velldal INF4820 1 / 22 Topics for Today More on unsupervised machine learning for data-driven categorization: clustering. The task

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Machine Learning Chapter 2. Input

Machine Learning Chapter 2. Input Machine Learning Chapter 2. Input 2 Input: Concepts, instances, attributes Terminology What s a concept? Classification, association, clustering, numeric prediction What s in an example? Relations, flat

More information

What to come. There will be a few more topics we will cover on supervised learning

What to come. There will be a few more topics we will cover on supervised learning Summary so far Supervised learning learn to predict Continuous target regression; Categorical target classification Linear Regression Classification Discriminative models Perceptron (linear) Logistic regression

More information

COMP33111: Tutorial and lab exercise 7

COMP33111: Tutorial and lab exercise 7 COMP33111: Tutorial and lab exercise 7 Guide answers for Part 1: Understanding clustering 1. Explain the main differences between classification and clustering. main differences should include being unsupervised

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

COSC 6397 Big Data Analytics. Fuzzy Clustering. Some slides based on a lecture by Prof. Shishir Shah. Edgar Gabriel Spring 2015.

COSC 6397 Big Data Analytics. Fuzzy Clustering. Some slides based on a lecture by Prof. Shishir Shah. Edgar Gabriel Spring 2015. COSC 6397 Big Data Analytics Fuzzy Clustering Some slides based on a lecture by Prof. Shishir Shah Edgar Gabriel Spring 215 Clustering Clustering is a technique for finding similarity groups in data, called

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.4. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Using IF-THEN Rules for Classification Rule Extraction from a Decision Tree 1R Algorithm Sequential Covering Algorithms

More information

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS

LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Neural Networks Classifier Introduction INPUT: classification data, i.e. it contains an classification (class) attribute. WE also say that the class

More information

Artificial Neural Networks (Feedforward Nets)

Artificial Neural Networks (Feedforward Nets) Artificial Neural Networks (Feedforward Nets) y w 03-1 w 13 y 1 w 23 y 2 w 01 w 21 w 22 w 02-1 w 11 w 12-1 x 1 x 2 6.034 - Spring 1 Single Perceptron Unit y w 0 w 1 w n w 2 w 3 x 0 =1 x 1 x 2 x 3... x

More information

Data Mining and Analytics

Data Mining and Analytics Data Mining and Analytics Aik Choon Tan, Ph.D. Associate Professor of Bioinformatics Division of Medical Oncology Department of Medicine aikchoon.tan@ucdenver.edu 9/22/2017 http://tanlab.ucdenver.edu/labhomepage/teaching/bsbt6111/

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Implementation: Real machine learning schemes Decision trees Classification

More information

Lecture on Modeling Tools for Clustering & Regression

Lecture on Modeling Tools for Clustering & Regression Lecture on Modeling Tools for Clustering & Regression CS 590.21 Analysis and Modeling of Brain Networks Department of Computer Science University of Crete Data Clustering Overview Organizing data into

More information

Data Mining. 3.3 Rule-Based Classification. Fall Instructor: Dr. Masoud Yaghini. Rule-Based Classification

Data Mining. 3.3 Rule-Based Classification. Fall Instructor: Dr. Masoud Yaghini. Rule-Based Classification Data Mining 3.3 Fall 2008 Instructor: Dr. Masoud Yaghini Outline Using IF-THEN Rules for Classification Rules With Exceptions Rule Extraction from a Decision Tree 1R Algorithm Sequential Covering Algorithms

More information

Cluster Analysis. Prof. Thomas B. Fomby Department of Economics Southern Methodist University Dallas, TX April 2008 April 2010

Cluster Analysis. Prof. Thomas B. Fomby Department of Economics Southern Methodist University Dallas, TX April 2008 April 2010 Cluster Analysis Prof. Thomas B. Fomby Department of Economics Southern Methodist University Dallas, TX 7575 April 008 April 010 Cluster Analysis, sometimes called data segmentation or customer segmentation,

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Instructor: Jessica Wu Harvey Mudd College

Instructor: Jessica Wu Harvey Mudd College The Perceptron Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Eric Eaton (UPenn), David Kauchak (Pomona), and the many others who made their course

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Input: Concepts, instances, attributes Data ining Practical achine Learning Tools and Techniques Slides for Chapter 2 of Data ining by I. H. Witten and E. rank Terminology What s a concept z Classification,

More information

INF4820, Algorithms for AI and NLP: Hierarchical Clustering

INF4820, Algorithms for AI and NLP: Hierarchical Clustering INF4820, Algorithms for AI and NLP: Hierarchical Clustering Erik Velldal University of Oslo Sept. 25, 2012 Agenda Topics we covered last week Evaluating classifiers Accuracy, precision, recall and F-score

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20

Data mining. Classification k-nn Classifier. Piotr Paszek. (Piotr Paszek) Data mining k-nn 1 / 20 Data mining Piotr Paszek Classification k-nn Classifier (Piotr Paszek) Data mining k-nn 1 / 20 Plan of the lecture 1 Lazy Learner 2 k-nearest Neighbor Classifier 1 Distance (metric) 2 How to Determine

More information

Midterm Examination CS540-2: Introduction to Artificial Intelligence

Midterm Examination CS540-2: Introduction to Artificial Intelligence Midterm Examination CS540-2: Introduction to Artificial Intelligence March 15, 2018 LAST NAME: FIRST NAME: Problem Score Max Score 1 12 2 13 3 9 4 11 5 8 6 13 7 9 8 16 9 9 Total 100 Question 1. [12] Search

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

LOGISTIC REGRESSION FOR MULTIPLE CLASSES

LOGISTIC REGRESSION FOR MULTIPLE CLASSES Peter Orbanz Applied Data Mining Not examinable. 111 LOGISTIC REGRESSION FOR MULTIPLE CLASSES Bernoulli and multinomial distributions The mulitnomial distribution of N draws from K categories with parameter

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Nearest Neighbor 1-nearest neighbor algorithm: Remember all your data points When prediction needed for a new point Find the nearest saved data point Return the answer associated

More information

Statistical Learning Part 2 Nonparametric Learning: The Main Ideas. R. Moeller Hamburg University of Technology

Statistical Learning Part 2 Nonparametric Learning: The Main Ideas. R. Moeller Hamburg University of Technology Statistical Learning Part 2 Nonparametric Learning: The Main Ideas R. Moeller Hamburg University of Technology Instance-Based Learning So far we saw statistical learning as parameter learning, i.e., given

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

COMP 465: Data Mining Still More on Clustering

COMP 465: Data Mining Still More on Clustering 3/4/015 Exercise COMP 465: Data Mining Still More on Clustering Slides Adapted From : Jiawei Han, Micheline Kamber & Jian Pei Data Mining: Concepts and Techniques, 3 rd ed. Describe each of the following

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

The Explorer. chapter Getting started

The Explorer. chapter Getting started chapter 10 The Explorer Weka s main graphical user interface, the Explorer, gives access to all its facilities using menu selection and form filling. It is illustrated in Figure 10.1. There are six different

More information

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation Learning Learning agents Inductive learning Different Learning Scenarios Evaluation Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil Material from Russell & Norvig, chapters

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

11/2/2017 MIST.6060 Business Intelligence and Data Mining 1. Clustering. Two widely used distance metrics to measure the distance between two records

11/2/2017 MIST.6060 Business Intelligence and Data Mining 1. Clustering. Two widely used distance metrics to measure the distance between two records 11/2/2017 MIST.6060 Business Intelligence and Data Mining 1 An Example Clustering X 2 X 1 Objective of Clustering The objective of clustering is to group the data into clusters such that the records within

More information

Data Mining. Neural Networks

Data Mining. Neural Networks Data Mining Neural Networks Goals for this Unit Basic understanding of Neural Networks and how they work Ability to use Neural Networks to solve real problems Understand when neural networks may be most

More information

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines

DATA MINING LECTURE 10B. Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines DATA MINING LECTURE 10B Classification k-nearest neighbor classifier Naïve Bayes Logistic Regression Support Vector Machines NEAREST NEIGHBOR CLASSIFICATION 10 10 Illustrating Classification Task Tid Attrib1

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

CS513-Data Mining. Lecture 2: Understanding the Data. Waheed Noor

CS513-Data Mining. Lecture 2: Understanding the Data. Waheed Noor CS513-Data Mining Lecture 2: Understanding the Data Waheed Noor Computer Science and Information Technology, University of Balochistan, Quetta, Pakistan Waheed Noor (CS&IT, UoB, Quetta) CS513-Data Mining

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Output: Knowledge representation Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter of Data Mining by I. H. Witten and E. Frank Decision tables Decision trees Decision rules

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Linear Regression and K-Nearest Neighbors 3/28/18

Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression Hypothesis Space Supervised learning For every input in the data set, we know the output Regression Outputs are continuous A number,

More information