BIQUADRATIC UNIFORM B-SPLINE SURFACE REFINEMENT

Size: px
Start display at page:

Download "BIQUADRATIC UNIFORM B-SPLINE SURFACE REFINEMENT"

Transcription

1 On-Line Geometric Modeling Notes BIQUADRATIC UNIFORM B-SPLINE SURFACE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science Uniersity of California, Dais Oeriew Subdiision surfaces are based upon the binary subdiision of the uniform B-spline surface. In general, they are defined by a initial polygonal mesh, along with a subdiision (or refinement) operation which, gien a polygonal mesh, will generate a new mesh that has a greater number of polygonal elements, and is hopefully closer to some resulting surface. By repetitiely applying the subdiision procedure to the initial mesh, we generate a sequence of meshes that (hopefully) conerges to a resulting surface. As it turns out, this is a well known process when the mesh has a rectangular structure and the subdiision procedure is an extension of binary subdiision for uniform B-spline surfaces. In these notes we present a study of the quadratic uniform B-spline case, and deelop the refinement rules that can be generalized into the Doo-Sabin subdiision method. The Matrix Equation for a Uniform Biquadratic Spline Surface Consider the biquadratic uniform B-spline surface P(u, ) defined by the 3 3 array of control points P P, P, P, P, P, P, P, P, P,

2 ! " #$ % & and the following equation (in matrix form) P(u, ) u u MP M T where M is the 3 3 matrix M The matrix M defines the quadratic uniform B-spline blending functions when multiplied by. Subdiiding the Surface This patch can be subdiided into four subpatches, which can be generated from 6 unique sub-control points. We focus on the subdiision scheme for only one of the four (the subpatch corresponding to u, ), as the others will follow by symmetry. The following figure illustrates the 6 points produced by subdiiding into four subpatches. We hae outlined the initial subpatch that we consider below. It should be noted that the four interior control points are utilized by each of the four subpatch components of the subdiision.

3 To subdiide the surface, we consider the reparameterization of the surface by u u and and 3

4 define this new surface as P (u, ). Substituting these into the equation, we obtain P (u, ) P( u, ) u ( u ) MP M T ( ) u u MP M T T u u MM MP M T (M ) T M T T u u M M M P M T (M ) T M T u u M M M P M M u u MP M T T T M T where P SP S T and S M M

5 Through this process, we hae written the surface P (u, ) as P (u, ) u u MSM T for some 3 3 control point array S. This implies that P (u, ) is a uniform biquadratic B-spline patch. The matrix S is typically called the splitting matrix, and is gien by S and so the control point mesh P corresponding to the subdiided patch is related to the original control points mesh by P SP S T By carrying out the algebra, we hae that T P 3 P, P, P, 3 3 P, P, P, 3 3 P, P, P, 3 3P, + P, 3P, + P, 3P, + P, 3 6 P, + 3P, P, + 3P, P, + 3P, 3 3 3P, + P, 3P, + P, 3P, + P, P, P, P, 6 P, P, P, P, P, P, 5

6 where the P i,j can be written as P, 6 (3(3P, + P, ) + (3P, + P, )) P, 6 ((3P, + P, ) + 3(3P, + P, )) P, 6 (3(3P, + P, ) + (3P, + P, )) P, 6 (3(P, + 3P, ) + (P, + 3P, )) P, 6 ((P, + 3P, ) + 3(P, + 3P, )) P, 6 (3(P, + 3P, ) + (P, + 3P, )) P, 6 (3(3P, + P, ) + (3P, + P, )) P, 6 ((3P, + P, ) + 3(3P, + P, )) P, 6 (3(3P, + P, ) + (3P, + P, )) These equations can be looked at in two ways:. Each of these points P i,j utilizes the four points on a certain face of the rectangular mesh, and calculates a new point by weighing the four points in the ratio of Thus, this algorithm can be specified by using subdiision masks, which specify the ratios of the points on a face to generate the new points. In this case, the subdiision masks are as follows. Each of these equations is built from weighing the points on an edge in the ratio of 3-. and then weighing the resulting points in the ratio 3-. These are exactly the ratios of Chaikin s cure and so this method can be looked upon as a extension of Chaikin s cure to surfaces. Generating the Refinement Procedure 6

7 To generate the subdiision surface, we consider all 6 of the possible points generated through the binary subdiision of the quadratic patch. It is easily seen that each of these points can be generated through considering other subdiisions of the patch P (u, ) and can be defined by the same subdiision masks Summary The extension of Chaikin s Cure to surfaces is quite straightforward. The analysis has produced a simple mask that can be utilized to define the new points on each face (one per ertex). Connecting up these ertices into a new mesh is straightforward. The interesting extension of this algorithm is when the control point mesh does not hae a rectangular topological structure. In this case, we can still utilize the same paradigm and this was accomplished by Donald Doo and Malcolm Sabin in their Doo-Sabin surfaces References CHAIKIN, G. An algorithm for high speed cure generation. Computer Graphics and Image Processing 3 (97), DOO, D. A subdiision algorithm for smoothing down irregularly shaped polyhedrons. In Proced. Int l Conf. Ineractie Techniques in Computer Aided Design (978), pp Bologna, Italy, IEEE Computer Soc. All contents copyright (c) 996, 997, 998, 999, Computer Science Department, Uniersity of California, Dais All rights resered. 7

BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT

BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT On-Line Geometric Modeling Notes BICUBIC UNIFORM B-SPLINE SURFACE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science Uniersity of California, Dais Oeriew

More information

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT

QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT On-Line Geometric Modeling Notes QUADRATIC UNIFORM B-SPLINE CURVE REFINEMENT Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview

More information

SPLITTING THE CUBIC UNIFORM B-SPLINE CURVE

SPLITTING THE CUBIC UNIFORM B-SPLINE CURVE On-Line Geometric odeling Notes SPLITTING THE CUBIC UNIFOR B-SPLINE CURVE Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview

More information

On-Line Geometric Modeling Notes REFINEMENT

On-Line Geometric Modeling Notes REFINEMENT On-Line Geometric Modeling Notes REFINEMENT Kenneth I Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview Bézier curves, B-spline curves

More information

ECS 178 Course Notes REFINEMENT

ECS 178 Course Notes REFINEMENT ECS 78 Course Notes REFINEMENT Kenneth I Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview Bézier curves, B-spline curves and subdivision

More information

CHAIKIN S ALGORITHMS FOR CURVES

CHAIKIN S ALGORITHMS FOR CURVES On-Line Geometric Modeling Notes CHAIKIN S ALGORITHMS FOR CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview In 1974,

More information

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes)

Non-Uniform Recursive Doo-Sabin Surfaces (NURDSes) Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang 1 Guoping Wang 2 1 University of Science and Technology of China 2 Peking University, China SIAM Conference on Geometric and Physical Modeling Doo-Sabin

More information

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Geometric Modeling Notes A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018

CS354 Computer Graphics Surface Representation IV. Qixing Huang March 7th 2018 CS354 Computer Graphics Surface Representation IV Qixing Huang March 7th 2018 Today s Topic Subdivision surfaces Implicit surface representation Subdivision Surfaces Building complex models We can extend

More information

3D TOPOLOGY FOR MODELLING OF URBAN STRUCTURES

3D TOPOLOGY FOR MODELLING OF URBAN STRUCTURES 3D TOPOLOGY FOR MODELLING OF URBAN STRUCTURES Tarun Ghawana & Sisi Zlatanoa Delft Uniersity of Technology Challenge the future Increased awareness of underground information Ludig Emgard Jakob Beetz 2

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Recursive Subdivision Surfaces for Geometric Modeling

Recursive Subdivision Surfaces for Geometric Modeling Recursive Subdivision Surfaces for Geometric Modeling Weiyin Ma City University of Hong Kong, Dept. of Manufacturing Engineering & Engineering Management Ahmad Nasri American University of Beirut, Dept.

More information

B-Spline and NURBS Surfaces CS 525 Denbigh Starkey. 1. Background 2 2. B-Spline Surfaces 3 3. NURBS Surfaces 8 4. Surfaces of Rotation 9

B-Spline and NURBS Surfaces CS 525 Denbigh Starkey. 1. Background 2 2. B-Spline Surfaces 3 3. NURBS Surfaces 8 4. Surfaces of Rotation 9 B-Spline and NURBS Surfaces CS 525 Denbigh Starkey 1. Background 2 2. B-Spline Surfaces 3 3. NURBS Surfaces 8 4. Surfaces of Rotation 9 1. Background In my preious notes I e discussed B-spline and NURBS

More information

Subdivision overview

Subdivision overview Subdivision overview CS4620 Lecture 16 2018 Steve Marschner 1 Introduction: corner cutting Piecewise linear curve too jagged for you? Lop off the corners! results in a curve with twice as many corners

More information

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces Using Semi-Regular 8 Meshes for Subdivision Surfaces Luiz Velho IMPA Instituto de Matemática Pura e Aplicada Abstract. Semi-regular 8 meshes are refinable triangulated quadrangulations. They provide a

More information

Smooth Multi-Sided Blending of bi-2 Splines

Smooth Multi-Sided Blending of bi-2 Splines Smooth Multi-Sided Blending of bi-2 Splines Kȩstutis Karčiauskas Jörg Peters Vilnius University University of Florida K. Karčiauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 1 / 18 Quad

More information

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces

MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces MA 323 Geometric Modelling Course Notes: Day 36 Subdivision Surfaces David L. Finn Today, we continue our discussion of subdivision surfaces, by first looking in more detail at the midpoint method and

More information

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015

Subdivision curves and surfaces. Brian Curless CSE 557 Fall 2015 Subdivision curves and surfaces Brian Curless CSE 557 Fall 2015 1 Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 6.1-6.3, 10.2,

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

Subdivision Surfaces

Subdivision Surfaces Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

More information

Curve Corner Cutting

Curve Corner Cutting Subdivision ision Techniqueses Spring 2010 1 Curve Corner Cutting Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices

More information

Gauss curvature. curvature lines, needle plot. vertices of progenitor solid are unit size. Construction Principle. edge. edge. vertex. Patch.

Gauss curvature. curvature lines, needle plot. vertices of progenitor solid are unit size. Construction Principle. edge. edge. vertex. Patch. The Platonic Spheroids Jorg Peters and Leif Kobbelt Abstract. We present a gallery of simple curvature continuous surfaces that possess the topological structure of the Platonic solids. These spherelike

More information

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Karl-Heinz Brakhage RWTH Aachen, 55 Aachen, Deutschland, Email: brakhage@igpm.rwth-aachen.de Abstract In this paper

More information

Refinable C 1 spline elements for irregular quad layout

Refinable C 1 spline elements for irregular quad layout Refinable C 1 spline elements for irregular quad layout Thien Nguyen Jörg Peters University of Florida NSF CCF-0728797, NIH R01-LM011300 T. Nguyen, J. Peters (UF) GMP 2016 1 / 20 Outline 1 Refinable, smooth,

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

More information

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

More information

Grid Generation and Grid Conversion by Subdivision Schemes

Grid Generation and Grid Conversion by Subdivision Schemes Grid Generation and Grid Conversion by Subdivision Schemes Karl Heinz Brakhage Institute for Geometry and Applied Mathematics RWTH Aachen University D-55 Aachen brakhage@igpm.rwth-aachen.de Abstract In

More information

Piecewise Smooth Surface Reconstruction

Piecewise Smooth Surface Reconstruction Piecewise Smooth Surface Reconstruction Hugues Hoppe Tony DeRose Tom Duchamp y Mark Halstead z Hubert Jin x John McDonald x Jean Schweitzer Werner Stuetzle x Uniersity of Washington Seattle, WA 9895 Abstract

More information

Hierarchical Generalized Triangle Strips

Hierarchical Generalized Triangle Strips Hierarchical Generalized Triangle Strips Luiz Velho y, Luiz Henrique de Figueiredo z, and Jonas Gomes y y IMPA Instituto de Matemática Pura e Aplicada z LNCC Laboratório Nacional de Computação Científica

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Subdivision surfaces. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Subdivision surfaces University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications,

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (?

Polygonal Mesh. Geometric object made of vertices, edges and faces. Faces are polygons. Polyhedron. Triangular mesh Quad mesh. Pyramid Cube Sphere (? 1 Mesh Modeling Polygonal Mesh Geometric object made of vertices, edges and faces Polyhedron Pyramid Cube Sphere (?) Can also be 2D (although much less interesting) Faces are polygons Triangular mesh Quad

More information

Discrete Coons patches

Discrete Coons patches Computer Aided Geometric Design 16 (1999) 691 700 Discrete Coons patches Gerald Farin a,, Dianne Hansford b,1 a Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-5406, USA b NURBS

More information

Curves and Surfaces 2

Curves and Surfaces 2 Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Automatic Ultrasonic Testing for Components with Complex Surfaces

Automatic Ultrasonic Testing for Components with Complex Surfaces 16 3 rd International Conference on Mechanical, Industrial, and Manufacturing Engineering (MIME 16) ISBN: 978-1-6595-313-7 Automatic Ultrasonic Testing for Components with Complex Surfaces Dayong Guo,

More information

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g

Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that g Generalizing the C 4 Four-directional Box Spline to Surfaces of Arbitrary Topology Luiz Velho Abstract. In this paper we introduce a new scheme that generalizes the four-directional box spline of class

More information

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK

15.10 Curve Interpolation using Uniform Cubic B-Spline Curves. CS Dept, UK 1 An analysis of the problem: To get the curve constructed, how many knots are needed? Consider the following case: So, to interpolate (n +1) data points, one needs (n +7) knots,, for a uniform cubic B-spline

More information

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd Advanced Graphics Subdivision Surfaces Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd NURBS patches aren t the greatest NURBS patches are nxm, forming

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces Shuhua Lai and Fuhua (Frank) Cheng (University of Kentucky) Graphics & Geometric Modeling Lab, Department of Computer Science,

More information

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin.

Technical Report. Removing polar rendering artifacts in subdivision surfaces. Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin. Technical Report UCAM-CL-TR-689 ISSN 1476-2986 Number 689 Computer Laboratory Removing polar rendering artifacts in subdivision surfaces Ursula H. Augsdörfer, Neil A. Dodgson, Malcolm A. Sabin June 2007

More information

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati

UNIVERSITY OF CALGARY. Subdivision Surfaces. Advanced Geometric Modeling Faramarz Samavati Subdivision Surfaces Surfaces Having arbitrary Topologies Tensor Product Surfaces Non Tensor Surfaces We can t find u-curves and v-curves in general surfaces General Subdivision Coarse mesh Subdivision

More information

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler Curves & Surfaces Schedule Sunday October 5 th, * 3-5 PM * Review Session for Quiz 1 Extra Office Hours on Monday Tuesday October 7 th : Quiz 1: In class 1 hand-written 8.5x11 sheet of notes allowed Wednesday

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

and the crooked shall be made straight, and the rough ways shall be made smooth; Luke 3:5

and the crooked shall be made straight, and the rough ways shall be made smooth; Luke 3:5 ecture 8: Knot Insertion Algorithms for B-Spline Curves and Surfaces and the crooked shall be made straight, and the rough ways shall be made smooth; uke 3:5. Motivation B-spline methods have several advantages

More information

Progressive Surface Modeling Based On 3D Motion Sketch

Progressive Surface Modeling Based On 3D Motion Sketch Progressive Surface Modeling Based On 3D Motion Sketch SHENGFENG IN, and DAVID K WRIGHT School of Engineering and Design Brunel University Uxbridge, Middlesex UB8 3PH UK Abstract: - This paper presents

More information

B-spline Curves. Smoother than other curve forms

B-spline Curves. Smoother than other curve forms Curves and Surfaces B-spline Curves These curves are approximating rather than interpolating curves. The curves come close to, but may not actually pass through, the control points. Usually used as multiple,

More information

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex:

Section 6.2: Properties of Graphs of Quadratic Functions. Vertex: Section 6.2: Properties of Graphs of Quadratic Functions determine the vertex of a quadratic in standard form sketch the graph determine the y intercept, x intercept(s), the equation of the axis of symmetry,

More information

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces

MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces MA 323 Geometric Modelling Course Notes: Day 28 Data Fitting to Surfaces David L. Finn Today, we want to exam interpolation and data fitting problems for surface patches. Our general method is the same,

More information

Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property

Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property Charles Loop cloop@microsoft.com February 1, 2001 Technical Report MSR-TR-2001-24 The masks for Loop s triangle subdivision

More information

Non-Uniform Recursive Doo-Sabin Surfaces

Non-Uniform Recursive Doo-Sabin Surfaces Non-Uniform Recursive Doo-Sabin Surfaces Zhangjin Huang a,b,c,, Guoping Wang d,e a School of Computer Science and Technology, University of Science and Technology of China, PR China b Key Laboratory of

More information

u 0+u 2 new boundary vertex

u 0+u 2 new boundary vertex Combined Subdivision Schemes for the design of surfaces satisfying boundary conditions Adi Levin School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:fadilev@math.tau.ac.ilg

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

3D Modeling techniques

3D Modeling techniques 3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

Subdivision curves. University of Texas at Austin CS384G - Computer Graphics

Subdivision curves. University of Texas at Austin CS384G - Computer Graphics Subdivision curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Recommended: Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications,

More information

THE CAMERA TRANSFORM

THE CAMERA TRANSFORM On-Line Computer Graphics Notes THE CAMERA TRANSFORM Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview To understanding the

More information

Subdivision based Interpolation with Shape Control

Subdivision based Interpolation with Shape Control Subdivision based Interpolation with Shape Control Fengtao Fan University of Kentucky Deparment of Computer Science Lexington, KY 40506, USA ffan2@uky.edu Fuhua (Frank) Cheng University of Kentucky Deparment

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Find p minimizing F( p ) + λ C( p ) Update p

Find p minimizing F( p ) + λ C( p ) Update p Constrained Object Reconstruction Incorporating Free-form Surfaces N. Werghi y, R.B. Fisher z, C. Robertson x y Uniersity of Glasgow. Glasgow G28QQ, UK z Uniersity of Edinburgh. Edinburgh, EH 2QL x Uniersity

More information

Subdivision of Curves and Surfaces: An Overview

Subdivision of Curves and Surfaces: An Overview Subdivision of Curves and Surfaces: An Overview Ben Herbst, Karin M Hunter, Emile Rossouw Applied Mathematics, Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland,

More information

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra

CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH Presented by Jose Guerra CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH 2002 Eitan Grinspun Caltech Petr Krysl UCSD Peter Schröder Caltech Presented by Jose Guerra 1 Outline Background Motivation (Element vs. Basis

More information

To appear in Computer-Aided Design Revised June 18, J-splines

To appear in Computer-Aided Design Revised June 18, J-splines To appear in Computer-Aided Design Revised June 18, 2008 J-splines Jarek Rossignac School of Interactive Computing, College of Computing, Georgia Institute of Technology, Atlanta, GA http://www.gvu.gatech.edu/~jarek

More information

RASTERIZING POLYGONS IN IMAGE SPACE

RASTERIZING POLYGONS IN IMAGE SPACE On-Line Computer Graphics Notes RASTERIZING POLYGONS IN IMAGE SPACE Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis A fundamental

More information

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018

CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018 CS354 Computer Graphics Surface Representation III Qixing Huang March 5th 2018 Today s Topic Bspline curve operations (Brief) Knot Insertion/Deletion Subdivision (Focus) Subdivision curves Subdivision

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Evaluators and Spline Surfaces

Evaluators and Spline Surfaces Evaluators and Spline Surfaces Prerequisites A modest understanding of parametric functions of two variables together with an understanding of modeling by stepping through the polygons in a surface with

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

Computer Aided Design. CAD Surfaces

Computer Aided Design. CAD Surfaces CAD Surfaces 1 CAD Surfaces Parametric Coons patches Tensor product surfaces (Bézier triangle) Nurbs surfaces Procedural (non parametric) Subdivision surfaces 2 CAD Surfaces Coons patches 3 Coons patches

More information

Finite element algorithm with adaptive quadtree-octree mesh refinement

Finite element algorithm with adaptive quadtree-octree mesh refinement ANZIAM J. 46 (E) ppc15 C28, 2005 C15 Finite element algorithm with adaptive quadtree-octree mesh refinement G. P. Nikishkov (Received 18 October 2004; revised 24 January 2005) Abstract Certain difficulties

More information

Advanced Geometric Modeling CPSC789

Advanced Geometric Modeling CPSC789 Advanced Geometric Modeling CPSC789 Fall 2004 General information about the course CPSC 789 Advanced Geometric Modeling Fall 2004 Lecture Time and Place ENF 334 TR 9:30 10:45 Instructor : Office: MS 618

More information

A DIVIDE AND CONQUER METHOD FOR CURVE DRAWING

A DIVIDE AND CONQUER METHOD FOR CURVE DRAWING ECS 78 Course Notes A DIVIDE AND CONQUER METHOD FOR CURVE DRAWING Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview In

More information

Math 462: Review questions

Math 462: Review questions Math 462: Review questions Paul Hacking 4/22/10 (1) What is the angle between two interior diagonals of a cube joining opposite vertices? [Hint: It is probably quickest to use a description of the cube

More information

Taxonomy of interpolation constraints on recursive subdivision curves

Taxonomy of interpolation constraints on recursive subdivision curves 1 Introduction Taxonomy of interpolation constraints on recursive subdivision curves Ahmad H. Nasri 1, Malcolm A. Sabin 2 1 Dept. of Math. & Computer Science, American University of Beirut, Beirut, PO

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

Adaptive Isogeometric Analysis by Local h-refinement with T-splines Adaptive Isogeometric Analysis by Local h-refinement with T-splines Michael Dörfel 1, Bert Jüttler 2, Bernd Simeon 1 1 TU Munich, Germany 2 JKU Linz, Austria SIMAI, Minisymposium M13 Outline Preliminaries:

More information

A general matrix representation for non-uniform B-spline subdivision with boundary control

A general matrix representation for non-uniform B-spline subdivision with boundary control A general matrix representation for non-uniform B-spline subdivision with boundary control G. Casciola a, L. Romani a a Department of Mathematics, University of Bologna, P.zza di Porta San Donato 5, 40127

More information

Curves and Surfaces Computer Graphics I Lecture 9

Curves and Surfaces Computer Graphics I Lecture 9 15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

More information

Hidden Line and Surface

Hidden Line and Surface Copyright@00, YZU Optimal Design Laboratory. All rights resered. Last updated: Yeh-Liang Hsu (00--). Note: This is the course material for ME550 Geometric modeling and computer graphics, Yuan Ze Uniersity.

More information

Designing Subdivision Surfaces through Control Mesh Refinement

Designing Subdivision Surfaces through Control Mesh Refinement Designing Subdivision Surfaces through Control Mesh Refinement by Haroon S. Sheikh A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse?

Subdivision Surfaces. Homework 1: Questions on Homework? Last Time? Today. Tensor Product. What s an illegal edge collapse? Homework 1: Questions/Comments? Subdivision Surfaces Questions on Homework? Last Time? What s an illegal edge collapse? Curves & Surfaces Continuity Definitions 2 3 C0, G1, C1, C 1 a b 4 Interpolation

More information

Subdivision Surfaces. Homework 1: Questions/Comments?

Subdivision Surfaces. Homework 1: Questions/Comments? Subdivision Surfaces Homework 1: Questions/Comments? 1 Questions on Homework? What s an illegal edge collapse? 1 2 3 a b 4 7 To be legal, the ring of vertex neighbors must be unique (have no duplicates)!

More information

Hierarchical Grid Conversion

Hierarchical Grid Conversion Hierarchical Grid Conversion Ali Mahdavi-Amiri, Erika Harrison, Faramarz Samavati Abstract Hierarchical grids appear in various applications in computer graphics such as subdivision and multiresolution

More information

Tangents to fractal curves and surfaces

Tangents to fractal curves and surfaces Tangents to fractal cures and surfaces Dmitry Sokolo, Christian Gentil, Hicham Bensoudane To cite this ersion: Dmitry Sokolo, Christian Gentil, Hicham Bensoudane. Tangents to fractal cures and surfaces.

More information

An Efficient Mesh Simplification Method with Feature Detection for Unstructured Meshes and Web Graphics

An Efficient Mesh Simplification Method with Feature Detection for Unstructured Meshes and Web Graphics An Eicient Mesh Simpliication Method with Feature Detection or Unstructured Meshes and Web Graphics Bing-Yu Chen National Taiwan Uniersity robin@im.ntu.edu.tw Tomoyuki Nishita The Uniersity o Tokyo nis@is.s.u-tokyo.ac.jp

More information

2.2 Transformers: More Than Meets the y s

2.2 Transformers: More Than Meets the y s 10 SECONDARY MATH II // MODULE 2 STRUCTURES OF EXPRESSIONS 2.2 Transformers: More Than Meets the y s A Solidify Understanding Task Writetheequationforeachproblembelow.Useasecond representationtocheckyourequation.

More information

Polar Embedded Catmull-Clark Subdivision Surface

Polar Embedded Catmull-Clark Subdivision Surface Polar Embedded Catmull-Clark Subdivision Surface Anonymous submission Abstract In this paper, a new subdivision scheme with Polar embedded Catmull-Clark mesh structure is presented. In this new subdivision

More information

Carnegie Learning Math Series Course 2, A Florida Standards Program

Carnegie Learning Math Series Course 2, A Florida Standards Program to the students previous understanding of equivalent ratios Introduction to. Ratios and Rates Ratios, Rates,. and Mixture Problems.3.4.5.6 Rates and Tables to Solve Problems to Solve Problems Unit Rates

More information

A generalized conversion matrix between non-uniform B-spline and Bézier representations with applications in CAGD

A generalized conversion matrix between non-uniform B-spline and Bézier representations with applications in CAGD A generalized conversion matrix between non-uniform B-spline and Bézier representations with applications in CAGD Giulio Casciola, Lucia Romani Department of Mathematics, University of Bologna, P.zza di

More information

Shape optimization of smooth surfaces with arbitrary topology

Shape optimization of smooth surfaces with arbitrary topology International conference on Innovative Methods in Product Design June 15 th 17 th, 2011, Venice, Italy Shape optimization of smooth surfaces with arbitrary topology Przemysław Kiciak (a) (a) Institut Matematyki

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

Honeycomb Subdivision

Honeycomb Subdivision Honeycomb Subdivision Ergun Akleman and Vinod Srinivasan Visualization Sciences Program, Texas A&M University Abstract In this paper, we introduce a new subdivision scheme which we call honeycomb subdivision.

More information

Parametric curves. Brian Curless CSE 457 Spring 2016

Parametric curves. Brian Curless CSE 457 Spring 2016 Parametric curves Brian Curless CSE 457 Spring 2016 1 Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics

More information