Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial

Size: px
Start display at page:

Download "Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial"

Transcription

1 Bundle Adjustment Frank Dellaert CVPR 2014 Visual SLAM Tutorial

2 VO: just two frames - > R,t using 5- pt or 3- pt Can we do bener? SFM, SLAM - > VSLAM Later: integrate IMU, other sensors

3 refine VO by non- linear T 1 w T 2 w p ij P j w

4 Two Views Unknowns: poses and points Measurements p ij : normalized (x,y), known K! T 1 w T 2 w p ij P j w

5 If we lived in a Linear World:

6 In a Linear World Linear measurement func@on: and objec@ve func@on: Linear least- squares! Note: = 6D, = = 3D

7 Rewrite as where Sparse MaNers

8 Normal Least- squares criterion Take set to zero: Solve using cholmod, GTSAM In MATLAB: x=a\b

9 Model Measurement calibrated sedng! Rigid 3D transform to camera frame to intrinsic image coordinates

10 Taylor Expansion Epic Fail Taylor expansion?

11 Taylor Expansion Epic Fail Taylor expansion? Oops:? T is a 4x4 matrix, but is over- parameterized! T in SE(3): only 6DOF (3 rota@on, 3 transla@on)

12 Tangent Spaces An incremental change on a manifold can be introduced via the no@on of an n- dimensional tangent space at a Sphere SO(2) a==0 a

13 Tangent Spaces Provides local coordinate frame for manifold a 0

14 SE(3): A Twist of Li(m)e Lie group = group + manifold SE(3) is group! SE(3) is 6DOF manifold embedded in R 4*4 For Lie groups, we have exponen@al maps: se<2> twist:

15 Map for SE(3)

16 map closed form: Generators for SE(3)

17 Generalized Taylor Expansion Define f (a) to sa@sfy: =[ ]

18 Taylor Expansion for of two variables, 2x6 2x3 )

19 Taylor Expansion for of two variables, 2x6 2x3

20 Gauss- Newton Linearize, solve normal on tangent space, update Lie group elements

21 Too much Freedom! SE(3) x SE(3) E A A will be singular! 7DOF gauge freedom Switch to 5DOF Essen@al Manifold Use photogrammetry inner constraints Add prior terms Fuse in other sensors, e.g., IMU/GPS

22 Levenberg- Marquardt Algorithm Idea: Add a damping factor What is the effect of this damping factor? Small? Large? Slide by Dr. Jürgen Sturm, Computer Vision Group, TUM

23 Levenberg- Marquardt Algorithm Idea: Add a damping factor What is the effect of this damping factor? Small à same as least squares Large à steepest descent (with small step size) Algorithm If error decreases, accept and reduce If error increases, reject and increase Slide by Dr. Jürgen Sturm, Computer Vision Group, TUM

24 Linearizing Re- Error Chain rule:

25 Linearizing Re- Error Chain rule:

26 frames = Full BA Simple to extend. Typically not fully connected: Factor graph representa@on:

27 SFM Packages SBA: pioneer Google Ceres: great at large- scale BA GTSAM (Georgia Tech Smoothing and Mapping) Has isam, isam2, ideal for sensor fusion Factor- graph based throughout:

28 Stereo Camera Model 2 3 l = 4 X Y Z 5 K = 2 4 f c x f c y Z X u L b u R v c y v Projection equations: c x u L = f X Z + c x u R = f X b Z + c x Due to rectification v L = v R = v v = f Y Z + c y

29 Primary Structure Insight: and are block- diagonal (because each constraint depends only on one camera and one point) This can be solved using the Schur Complement Slide by Dr. Jürgen Sturm, Computer Vision Group, TUM 29

30 Given: Linear system Schur Complement If D is inver@ble, then (using Gauss elimina@on) Reduced complexity, i.e., invert one matrix instead of one matrix Slide by Dr. Jürgen Sturm, Computer Vision Group, TUM and

31 Smart Factors Vision- based naviga?on: Smart factors approach: A smart factor for each 3D landmark At each itera@on of nonlinear op@miza@on Camera poses Landmark posi@on 1. SF triangulates the point, given camera poses 2. SF eliminates the point via Schur complement 3. One only needs to solve a small system including the camera poses We can easily manage degenerate instances.. e.g., if the triangula@on is degenerate the smart factor can generate a different poten@al (only on rota@ons).. and we can do outlier rejec@on inside each factor! Fast(er), Robust

32 3D for crops monitoring Smart Factors

33 NEW RELEASE: GTSAM 3.1 Georgia Tech Smoothing And Mapping Download: collab.cc.gatech.edu/borg/gtsam Includes numerous performance improvements and features: threading with TBB (funded by DARPA) Smart Factors for SfM LAGO for planar SLAM (Luca Carlone et. al) threading Smart Factors Lago Linear for Graph

34 Bibliography Hartley and Zisserman, 2004 Murray, Li & Sastry, 1994 Absil, Mahony & Sepulchre, 2007

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

GTSAM 4.0 Tutorial Theory, Programming, and Applications

GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM: https://bitbucket.org/gtborg/gtsam Examples: https://github.com/dongjing3309/gtsam-examples Jing Dong 2016-11-19 License CC BY-NC-SA 3.0

More information

Lecture 8.2 Structure from Motion. Thomas Opsahl

Lecture 8.2 Structure from Motion. Thomas Opsahl Lecture 8.2 Structure from Motion Thomas Opsahl More-than-two-view geometry Correspondences (matching) More views enables us to reveal and remove more mismatches than we can do in the two-view case More

More information

CS 532: 3D Computer Vision 7 th Set of Notes

CS 532: 3D Computer Vision 7 th Set of Notes 1 CS 532: 3D Computer Vision 7 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Logistics No class on October

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne Hartley - Zisserman reading club Part I: Hartley and Zisserman Appendix 6: Iterative estimation methods Part II: Zhengyou Zhang: A Flexible New Technique for Camera Calibration Presented by Daniel Fontijne

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Camera calibration. Robotic vision. Ville Kyrki

Camera calibration. Robotic vision. Ville Kyrki Camera calibration Robotic vision 19.1.2017 Where are we? Images, imaging Image enhancement Feature extraction and matching Image-based tracking Camera models and calibration Pose estimation Motion analysis

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Bundle Adjustment 2 Example Application A vehicle needs to map its environment that it is moving

More information

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss Robot Mapping Graph-Based SLAM with Landmarks Cyrill Stachniss 1 Graph-Based SLAM (Chap. 15) Use a graph to represent the problem Every node in the graph corresponds to a pose of the robot during mapping

More information

A Theory of Multi-Layer Flat Refractive Geometry

A Theory of Multi-Layer Flat Refractive Geometry A Theory of Multi-Layer Flat Refractive Geometry Axis Amit Agrawal Srikumar Ramalingam Yuichi Taguchi Visesh Chari Mitsubishi Electric Research Labs (MERL) INRIA Imaging with Refractions Source: Shortis

More information

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching --

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching -- Computational Optical Imaging - Optique Numerique -- Single and Multiple View Geometry, Stereo matching -- Autumn 2015 Ivo Ihrke with slides by Thorsten Thormaehlen Reminder: Feature Detection and Matching

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information

Mul$-objec$ve Visual Odometry Hsiang-Jen (Johnny) Chien and Reinhard Kle=e

Mul$-objec$ve Visual Odometry Hsiang-Jen (Johnny) Chien and Reinhard Kle=e Mul$-objec$ve Visual Odometry Hsiang-Jen (Johnny) Chien and Reinhard Kle=e Centre for Robo+cs & Vision Dept. of Electronic and Electric Engineering School of Engineering, Computer, and Mathema+cal Sciences

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

3D Photography: Epipolar geometry

3D Photography: Epipolar geometry 3D Photograph: Epipolar geometr Kalin Kolev, Marc Pollefes Spring 203 http://cvg.ethz.ch/teaching/203spring/3dphoto/ Schedule (tentative) Feb 8 Feb 25 Mar 4 Mar Mar 8 Mar 25 Apr Apr 8 Apr 5 Apr 22 Apr

More information

Inverse Kinematics II and Motion Capture

Inverse Kinematics II and Motion Capture Mathematical Foundations of Computer Graphics and Vision Inverse Kinematics II and Motion Capture Luca Ballan Institute of Visual Computing Comparison 0 1 A B 2 C 3 Fake exponential map Real exponential

More information

Computational Optical Imaging - Optique Numerique. -- Multiple View Geometry and Stereo --

Computational Optical Imaging - Optique Numerique. -- Multiple View Geometry and Stereo -- Computational Optical Imaging - Optique Numerique -- Multiple View Geometry and Stereo -- Winter 2013 Ivo Ihrke with slides by Thorsten Thormaehlen Feature Detection and Matching Wide-Baseline-Matching

More information

Today s lecture. Structure from Motion. Today s lecture. Parameterizing rotations

Today s lecture. Structure from Motion. Today s lecture. Parameterizing rotations Today s lecture Structure from Motion Computer Vision CSE576, Spring 2008 Richard Szeliski Geometric camera calibration camera matrix (Direct Linear Transform) non-linear least squares separating intrinsics

More information

Monocular Head Pose Es0ma0on

Monocular Head Pose Es0ma0on ICIAR 2008 - Interna0onal Conference on Image Analysis and Recogni0on Monocular Head Pose Es0ma0on Pedro Mar0ns, Jorge Ba0sta Ins0tute for Systems and Robo0cs h>p://www.isr.uc.pt Department of Electrical

More information

Augmented Reality, Advanced SLAM, Applications

Augmented Reality, Advanced SLAM, Applications Augmented Reality, Advanced SLAM, Applications Prof. Didier Stricker & Dr. Alain Pagani alain.pagani@dfki.de Lecture 3D Computer Vision AR, SLAM, Applications 1 Introduction Previous lectures: Basics (camera,

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Application questions. Theoretical questions

Application questions. Theoretical questions The oral exam will last 30 minutes and will consist of one application question followed by two theoretical questions. Please find below a non exhaustive list of possible application questions. The list

More information

4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture

4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture 4D Crop Analysis for Plant Geometry Estimation in Precision Agriculture MIT Laboratory for Information & Decision Systems IEEE RAS TC on Agricultural Robotics and Automation Webinar #37 Acknowledgements

More information

COMPUTER VISION Multi-view Geometry

COMPUTER VISION Multi-view Geometry COMPUTER VISION Multi-view Geometry Emanuel Aldea http://hebergement.u-psud.fr/emi/ Computer Science and Multimedia Master - University of Pavia Triangulation - the building block

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

Graph-Based SLAM and Open Source Tools. Giorgio Grisetti

Graph-Based SLAM and Open Source Tools. Giorgio Grisetti Graph-Based SLAM and Open Source Tools Giorgio Grisetti SLAM SLAM= Simultaneous Localization and Mapping Estimate: the map of the environment the trajectory of a moving device using a sequence of sensor

More information

Geometry for Computer Vision

Geometry for Computer Vision Geometry for Computer Vision Lecture 5b Calibrated Multi View Geometry Per-Erik Forssén 1 Overview The 5-point Algorithm Structure from Motion Bundle Adjustment 2 Planar degeneracy In the uncalibrated

More information

Experimental Data and Training

Experimental Data and Training Modeling and Control of Dynamic Systems Experimental Data and Training Mihkel Pajusalu Alo Peets Tartu, 2008 1 Overview Experimental data Designing input signal Preparing data for modeling Training Criterion

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Mysteries of Parameterizing Camera Motion - Part 1

Mysteries of Parameterizing Camera Motion - Part 1 Mysteries of Parameterizing Camera Motion - Part 1 Instructor - Simon Lucey 16-623 - Advanced Computer Vision Apps Today Motivation SO(3) Convex? Exponential Maps SL(3) Group. Adapted from: Computer vision:

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Lecture 9: Epipolar Geometry

Lecture 9: Epipolar Geometry Lecture 9: Epipolar Geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Why is stereo useful? Epipolar constraints Essential and fundamental matrix Estimating F (Problem Set 2

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Jia-Bin Huang, Virginia Tech Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X x

More information

Last lecture. Passive Stereo Spacetime Stereo

Last lecture. Passive Stereo Spacetime Stereo Last lecture Passive Stereo Spacetime Stereo Today Structure from Motion: Given pixel correspondences, how to compute 3D structure and camera motion? Slides stolen from Prof Yungyu Chuang Epipolar geometry

More information

CVPR 2014 Visual SLAM Tutorial Efficient Inference

CVPR 2014 Visual SLAM Tutorial Efficient Inference CVPR 2014 Visual SLAM Tutorial Efficient Inference kaess@cmu.edu The Robotics Institute Carnegie Mellon University The Mapping Problem (t=0) Robot Landmark Measurement Onboard sensors: Wheel odometry Inertial

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

Real Time Localization and 3D Reconstruction

Real Time Localization and 3D Reconstruction Real Time Localization and 3D Reconstruction E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd LASMEA UMR 6602, Université Blaise Pascal/CNRS, 63177 Aubière Cedex, France Image and embedded computer

More information

Motion Capture using Body Mounted Cameras in an Unknown Environment

Motion Capture using Body Mounted Cameras in an Unknown Environment Motion Capture using Body Mounted Cameras in an Unknown Environment Nam Vo Taeyoung Kim Siddharth Choudhary 1. The Problem Motion capture has been recently used to provide much of character motion in several

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

CS231M Mobile Computer Vision Structure from motion

CS231M Mobile Computer Vision Structure from motion CS231M Mobile Computer Vision Structure from motion - Cameras - Epipolar geometry - Structure from motion Pinhole camera Pinhole perspective projection f o f = focal length o = center of the camera z y

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

Humanoid Robotics. Least Squares. Maren Bennewitz

Humanoid Robotics. Least Squares. Maren Bennewitz Humanoid Robotics Least Squares Maren Bennewitz Goal of This Lecture Introduction into least squares Use it yourself for odometry calibration, later in the lecture: camera and whole-body self-calibration

More information

arxiv: v1 [cs.cv] 18 Sep 2017

arxiv: v1 [cs.cv] 18 Sep 2017 Direct Pose Estimation with a Monocular Camera Darius Burschka and Elmar Mair arxiv:1709.05815v1 [cs.cv] 18 Sep 2017 Department of Informatics Technische Universität München, Germany {burschka elmar.mair}@mytum.de

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Multiple View Geometry in Computer Vision Second Edition

Multiple View Geometry in Computer Vision Second Edition Multiple View Geometry in Computer Vision Second Edition Richard Hartley Australian National University, Canberra, Australia Andrew Zisserman University of Oxford, UK CAMBRIDGE UNIVERSITY PRESS Contents

More information

Motion Planning for Robot Manipulators

Motion Planning for Robot Manipulators Motion Planning for Robot Manipulators Manuel Bonilla PhD Student manuel.bonilla@centropiaggio.unipi.it 26/05/15 http://manuel-bonilla.com 1 1. What is the interesting part of Motion planning in Robotics

More information

Epipolar geometry. x x

Epipolar geometry. x x Two-view geometry Epipolar geometry X x x Baseline line connecting the two camera centers Epipolar Plane plane containing baseline (1D family) Epipoles = intersections of baseline with image planes = projections

More information

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Jae-Hak Kim 1, Richard Hartley 1, Jan-Michael Frahm 2 and Marc Pollefeys 2 1 Research School of Information Sciences and Engineering

More information

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert Week 2: Two-View Geometry Padua Summer 08 Frank Dellaert Mosaicking Outline 2D Transformation Hierarchy RANSAC Triangulation of 3D Points Cameras Triangulation via SVD Automatic Correspondence Essential

More information

A New Minimal Solution to the Relative Pose of a Calibrated Stereo Camera with Small Field of View Overlap

A New Minimal Solution to the Relative Pose of a Calibrated Stereo Camera with Small Field of View Overlap A New Minimal Solution to the Relative Pose of a Calibrated Stereo Camera with Small Field of View Overlap Brian Clipp 1, Christopher Zach 1, Jan-Michael Frahm 1 and Marc Pollefeys 2 1 Department of Computer

More information

g 2 o: A General Framework for Graph Optimization

g 2 o: A General Framework for Graph Optimization 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China g 2 o: A General Framework for Graph Optimization Rainer Kümmerle

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

CS231A Course Notes 4: Stereo Systems and Structure from Motion

CS231A Course Notes 4: Stereo Systems and Structure from Motion CS231A Course Notes 4: Stereo Systems and Structure from Motion Kenji Hata and Silvio Savarese 1 Introduction In the previous notes, we covered how adding additional viewpoints of a scene can greatly enhance

More information

Pedro MSc. Thesis Department of Electrical and Computer Engineering Faculty of Sciences and Technology University of Coimbra

Pedro MSc. Thesis Department of Electrical and Computer Engineering Faculty of Sciences and Technology University of Coimbra MSc. Thesis Department of Electrical and Computer Engineering Faculty of Sciences and Technology University of Coimbra Pedro Mar@ns pedromar@ns@isr.uc.pt Supervisor: Dr. Jorge Ba@sta ba@sta@isr.uc.pt Introduc)on

More information

An idea which can be used once is a trick. If it can be used more than once it becomes a method

An idea which can be used once is a trick. If it can be used more than once it becomes a method An idea which can be used once is a trick. If it can be used more than once it becomes a method - George Polya and Gabor Szego University of Texas at Arlington Rigid Body Transformations & Generalized

More information

Probabilis)c Temporal Inference on Reconstructed 3D Scenes

Probabilis)c Temporal Inference on Reconstructed 3D Scenes Probabilis)c Temporal Inference on Reconstructed 3D Scenes Grant Schindler Frank Dellaert Georgia Ins)tute of Technology The World Changes Over Time How can we reason about )me in structure from mo)on

More information

Computer Vision in a Non-Rigid World

Computer Vision in a Non-Rigid World 2 nd Tutorial on Computer Vision in a Non-Rigid World Dr. Lourdes Agapito Prof. Adrien Bartoli Dr. Alessio Del Bue Non-rigid Structure from Motion Non-rigid structure from motion To extract non-rigid 3D

More information

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Monocular Visual-Inertial SLAM Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Why Monocular? Minimum structural requirements Widely available sensors Applications:

More information

How to Compute the Pose of an Object without a Direct View?

How to Compute the Pose of an Object without a Direct View? How to Compute the Pose of an Object without a Direct View? Peter Sturm and Thomas Bonfort INRIA Rhône-Alpes, 38330 Montbonnot St Martin, France {Peter.Sturm, Thomas.Bonfort}@inrialpes.fr Abstract. We

More information

Robust Geometry Estimation from two Images

Robust Geometry Estimation from two Images Robust Geometry Estimation from two Images Carsten Rother 09/12/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation Process 09/12/2016 2 Appearance-based

More information

Euclidean Reconstruction Independent on Camera Intrinsic Parameters

Euclidean Reconstruction Independent on Camera Intrinsic Parameters Euclidean Reconstruction Independent on Camera Intrinsic Parameters Ezio MALIS I.N.R.I.A. Sophia-Antipolis, FRANCE Adrien BARTOLI INRIA Rhone-Alpes, FRANCE Abstract bundle adjustment techniques for Euclidean

More information

Multiple View Geometry. Frank Dellaert

Multiple View Geometry. Frank Dellaert Multiple View Geometry Frank Dellaert Outline Intro Camera Review Stereo triangulation Geometry of 2 views Essential Matrix Fundamental Matrix Estimating E/F from point-matches Why Consider Multiple Views?

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. - Marcel Proust University of Texas at Arlington Camera Calibration (or Resectioning) CSE 4392-5369 Vision-based

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

CS 664 Structure and Motion. Daniel Huttenlocher

CS 664 Structure and Motion. Daniel Huttenlocher CS 664 Structure and Motion Daniel Huttenlocher Determining 3D Structure Consider set of 3D points X j seen by set of cameras with projection matrices P i Given only image coordinates x ij of each point

More information

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms L15. POSE-GRAPH SLAM NA568 Mobile Robotics: Methods & Algorithms Today s Topic Nonlinear Least Squares Pose-Graph SLAM Incremental Smoothing and Mapping Feature-Based SLAM Filtering Problem: Motion Prediction

More information

Generic and Real-Time Structure from Motion

Generic and Real-Time Structure from Motion Generic and Real-Time Structure from Motion E. Mouragnon 1,2, M. Lhuillier 1, M. Dhome 1, F. Dekeyser 2 and P. Sayd 2 1 LASMEA UMR 6602, Université Blaise Pascal/CNRS, 63177 Aubière Cedex, France 2 CEA,

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

Structure from Motion

Structure from Motion Structure from Motion Outline Bundle Adjustment Ambguities in Reconstruction Affine Factorization Extensions Structure from motion Recover both 3D scene geoemetry and camera positions SLAM: Simultaneous

More information

Experimental Analysis of Dynamic Covariance Scaling for Robust Map Optimization Under Bad Initial Estimates

Experimental Analysis of Dynamic Covariance Scaling for Robust Map Optimization Under Bad Initial Estimates Experimental Analysis of Dynamic Covariance Scaling for Robust Map Optimization Under Bad Initial Estimates Pratik Agarwal Giorgio Grisetti Gian Diego Tipaldi Luciano Spinello Wolfram Burgard Cyrill Stachniss

More information

3D Scene Reconstruction with a Mobile Camera

3D Scene Reconstruction with a Mobile Camera 3D Scene Reconstruction with a Mobile Camera 1 Introduction Robert Carrera and Rohan Khanna Stanford University: CS 231A Autonomous supernumerary arms, or "third arms", while still unconventional, hold

More information

Davide Scaramuzza. University of Zurich

Davide Scaramuzza. University of Zurich Davide Scaramuzza University of Zurich Robotics and Perception Group http://rpg.ifi.uzh.ch/ Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and Fundamentals, IEEE Robotics

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Project 2: Structure from Motion

Project 2: Structure from Motion Project 2: Structure from Motion CIS 580, Machine Perception, Spring 2015 Preliminary report due: 2015.04.27. 11:59AM Final Due: 2015.05.06. 11:59AM This project aims to reconstruct a 3D point cloud and

More information

Lecture 13 Visual Inertial Fusion

Lecture 13 Visual Inertial Fusion Lecture 13 Visual Inertial Fusion Davide Scaramuzza Course Evaluation Please fill the evaluation form you received by email! Provide feedback on Exercises: good and bad Course: good and bad How to improve

More information

Parameter estimation. Christiano Gava Gabriele Bleser

Parameter estimation. Christiano Gava Gabriele Bleser Parameter estimation Christiano Gava Christiano.Gava@dfki.de Gabriele Bleser gabriele.bleser@dfki.de Introduction Previous lectures: P-matrix 2D projective transformations Estimation (direct linear transform)

More information

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss Robot Mapping Graph-Based SLAM with Landmarks Cyrill Stachniss 1 Graph-Based SLAM (Chap. 15) Use a graph to represent the problem Every node in the graph corresponds to a pose of the robot during mapping

More information

(More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects. Connelly Barnes

(More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects. Connelly Barnes (More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects Connelly Barnes Acknowledgment: Many slides from James Hays, also Derek Hoiem Grauman&Leibe 2008 Outline Edge Detec)on: Canny, etc.

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München Points in 3D 3D point Augmented vector Homogeneous

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Undergrad HTAs / TAs. Help me make the course better! HTA deadline today (! sorry) TA deadline March 21 st, opens March 15th

Undergrad HTAs / TAs. Help me make the course better! HTA deadline today (! sorry) TA deadline March 21 st, opens March 15th Undergrad HTAs / TAs Help me make the course better! HTA deadline today (! sorry) TA deadline March 2 st, opens March 5th Project 2 Well done. Open ended parts, lots of opportunity for mistakes. Real implementation

More information

Lecture 14: Tracking mo3on features op3cal flow

Lecture 14: Tracking mo3on features op3cal flow Lecture 14: Tracking mo3on features op3cal flow Dr. Juan Carlos Niebles Stanford AI Lab Professor Fei- Fei Li Stanford Vision Lab Lecture 14-1 What we will learn today? Introduc3on Op3cal flow Feature

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Two-View Geometry (Course 23, Lecture D)

Two-View Geometry (Course 23, Lecture D) Two-View Geometry (Course 23, Lecture D) Jana Kosecka Department of Computer Science George Mason University http://www.cs.gmu.edu/~kosecka General Formulation Given two views of the scene recover the

More information

Project: Camera Rectification and Structure from Motion

Project: Camera Rectification and Structure from Motion Project: Camera Rectification and Structure from Motion CIS 580, Machine Perception, Spring 2018 April 26, 2018 In this project, you will learn how to estimate the relative poses of two cameras and compute

More information

Image correspondences and structure from motion

Image correspondences and structure from motion Image correspondences and structure from motion http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20 Course announcements Homework 5 posted.

More information

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F

Fundamental matrix. Let p be a point in left image, p in right image. Epipolar relation. Epipolar mapping described by a 3x3 matrix F Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix F Fundamental

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuyuki Kayahara Multiple view geometry Stereo vision Epipolar geometry Lowe Hartley and Zisserman Depth map extraction Essential matrix

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features

Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features Stephen Se, David Lowe, Jim Little Department of Computer Science University of British Columbia Presented by Adam Bickett

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision Epipolar Geometry and Stereo Vision Computer Vision Shiv Ram Dubey, IIIT Sri City Many slides from S. Seitz and D. Hoiem Last class: Image Stitching Two images with rotation/zoom but no translation. X

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

Project: Camera Rectification and Structure from Motion

Project: Camera Rectification and Structure from Motion Project: Camera Rectification and Structure from Motion CIS 580, Machine Perception, Spring 2018 April 18, 2018 In this project, you will learn how to estimate the relative poses of two cameras and compute

More information

Dense 3D Reconstruction from Autonomous Quadrocopters

Dense 3D Reconstruction from Autonomous Quadrocopters Dense 3D Reconstruction from Autonomous Quadrocopters Computer Science & Mathematics TU Munich Martin Oswald, Jakob Engel, Christian Kerl, Frank Steinbrücker, Jan Stühmer & Jürgen Sturm Autonomous Quadrocopters

More information

C280, Computer Vision

C280, Computer Vision C280, Computer Vision Prof. Trevor Darrell trevor@eecs.berkeley.edu Lecture 11: Structure from Motion Roadmap Previous: Image formation, filtering, local features, (Texture) Tues: Feature-based Alignment

More information