Motion Capture using Body Mounted Cameras in an Unknown Environment

Size: px
Start display at page:

Download "Motion Capture using Body Mounted Cameras in an Unknown Environment"

Transcription

1 Motion Capture using Body Mounted Cameras in an Unknown Environment Nam Vo Taeyoung Kim Siddharth Choudhary 1. The Problem Motion capture has been recently used to provide much of character motion in several recent theatrical releases. It generally requires the recording to be done in an indoor environment with controlled light setting. This prevents directors from capturing motion in a natural setting or a large environment. In this paper we propose a method to solve this problem of motion capture in an unknown and unconstrained environment by using body mounted cameras. 2. Related work Motion capture technology has been studied for a long time [7]. The technology is also available as commercial products from Vicon and Qualisys [1, 2]. Most of these approaches are classified as outside-in as they require sensors mounted in an environment. In contrast our approach is an inside-out approach and uses the cameras mounted on the body to recover the motion. Markerless motion capture techniques has been developed by a number of researchers [3, 4]. More recently, Hasler et al. proposed a method to handle markerless motion capture using structure from motion to handle register cameras with respect to the background and using conventional motion capture to estimate the motion of the articulated object [4]. Our work is the most closely related to the work by Shiratori et al. which also tries to capture motion using body mounted cameras[5]. However they require a known environment which is reconstructed using the reference images prior to running their algorithm. We have no such requirement. Our approach is also fundamentally different from most of these approaches as we propose an inside-out system. 3. Approach Unlike [5], our hardware setup is simpler: we use a set of 3 cheap webcams which are attached to torso and hands. All webcams are connected to a single computer to record videos. However our approach is supposed to work with any number of cameras as long as synchronized videos are given as input. The system consists of 2 main parts: 3D reconstruction and skeleton estimation D Reconstruction For the 3D reconstruction step, we apply traditional structure from motion technique to build a sparse model of the environment. At the same time, each camera s pose is also retrieved and represent initial guess for corresponding body part position. Initialize Model: First of all, we initialize the model using some images. This is done off-line on some frames from all cameras. First, SIFT features are extracted and correspondences between pairs of images that has significant number of matches are estimated using RANSAC. Next, we triangulate location of matched features points in 3D. The set of points and cameras are optimized using GTSAM. Some of the triangulated points having reprojection error greater than some threshold are removed from the set. As a result, we get an initial model consisting of camera and points. Feature Tracking: Given a set of reconstructed images and points, we track the features in rest of the frames using Kanade Lucas Tomasi (KLT) feature tracker. Using the KLT tracker, we create a mapping between already reconstructed points and the features found in new frames. The factors between new frames and the existing points are added to factor graph which is used to optimize its pose with respect to the world. We do not triangulate any new points in the tracking stage. In case tracking fails due to lack of correspondences between existing 3D points and 2D features, we reconstruct another frame using incremental reconstruction. Incremental Reconstruction: Whenever tracking fails, we match the current frame to the previous five frames and grow the 3D model by incrementally adding points and images using their correspondences to the existing model. The model is again optimized using GTSAM over the newly added points and images and all the previously tracked frames to minimize the error introduced by tracking. As the result, we have new 3D points and camera poses which is used to track rest of the frames until it again fails. As the system progresses, the drifting error of individual cameras would make the skeleton more and more inconsistent. So the final step in the pipeline is to do global optimization to 1

2 solve for optimal skeleton. Algorithm 1 gives the complete algorithm. Algorithm 1 3D Reconstruction Initialize Model repeat Track features with respect to the model if tracking fails then Do incremental reconstruction and optimize end if until end of the sequence 3.2. Skeleton Estimation In addition, we make use of the fact that there are constraints between cameras, for example relative pose between the camera attached to torso is unlikely to change overtime, so they can be calibrated in advance. The cameras attached to the torso and the palm is restricted by the introduction of distance constraint between the cameras. Since we found only three cameras, we cannot model the additional degree of freedom available in human motion. Other than this, we also restrict human motion to walk-only motion. For generic activities we do not have any constraint on the palm motion and palm can reach anywhere within some distance to the torso. In implementation we create a factor between the poses of torso and hand and optimize over the poses and the structure together. Figure 1. Nam capturing right-palm motion using Kinect CPL Dataset #Cameras Registered #Key Frames #Points Added #Measurements Avg. Repr. Error TUM RGB-D Dataset Table 1. Statistics of the reconstruction algorithm on different sequences showing the number of cameras registered, number of key frames, number of points added, number of measurements and the average reprojection error 4. Evaluation it h camera. The long horizontal lines in this figure, represents new key frames being added and the corresponding new points that are triangulated. The dripping effect below these lines are the points being tracked in rest of the cameras. Table 1 shows the number of cameras registered and the number of points added. We also show the reconstruction results on TUM RGBD dataset [6]. Figure 4 shows the screenshot of the reconstructed model for TUM RGB-D dataset. Figure 5 shows the camera landmark matrix and Table 1 shows the number of cameras registered and the number of points added. We can see from figure 3 and 5 that the estimated cameras poses follow the correct trajectory and the reconstructed points resemble an approximate structure of a lab. From table 1 it can be seen that the average re-projection error is less than 4 pixels for both the datasets which is optimal. As there is no standard dataset for this line of approach and we don t have access to modern MoCap system [1, 2], we conduct the experiments using indoor environment in Georgia Tech. To experiment with the reconstruction pipeline, we create an CPL lab video (Sequence 1) and reconstruct it. To analyze the reconstruction algorithm we try reconstructing only one video. Later on all the videos capturing motion of different body parts are merged together and optimized to capture the motion of the upper body. Figure 1 shows the picture of Nam capturing the motion of his right palm using Kinect inside the CPL lab. 3D Reconstruction. In order to evaluate the performance of the reconstruction algorithm, we reconstruct one video sequence from the CPL lab videos. Figure 2 shows the screen shot of the reconstructed model. The blue dots represent the tracked frames and the red coordinate frames represent the key frames. Figure 3 shows the camera landmark matrix representing the correspondences between the reconstructed cameras and landmarks. Each row represents one camera, each column represents one landmark and the value at (i, j) is non zero only if the jt h landmark is seen in the Skeleton Estimation Using the reconstruction algorithm, we estimate camera motion corresponding to different body parts. Figure 6 shows the screenshot of each video corresponding to left palm, torso and the right palm respectively. Figure 7 shows the estimated camera motion correspond2

3 Figure 3. CPL dataset Camera-Landmark matrix (Rows: Cameras, Columns: Landmarks) Figure 5. TUM RGB-D dataset Camera-Landmark matrix (Rows: Cameras, Columns: Landmarks) ing to left palm, torso and right palm. The blue dots refer to the tracked frames and the red axises are the keyframes. We can see a sinusoidal motion in the torso as well even though we didn t expect this from torso since it has a stable motion as compared to the left and the right palm motion. We see that the left and the right palm motion is a lot more jerky due to which it loses track at a lot of places and it can be seen from less blue dots and more keyframes. Given the optimized camera poses and the structure, we optimize over the skeleton by adding a between factor between the poses, constraining the palm poses to be below and to the left and right of the torso pose. Figure 8 shows the output after merging different videos. In Table 2, we show the statistics of the reconstruction algorithm on different sequences corresponding to the left palm, torso and the right palm, showing the number of cameras registered, number of key frames and number of measurements. As can be seen from this table, we registered a good number of cameras with less key frames. As seen in the figure 8 our optimized model is not clean but it follows our constraints that torso is above both the palms. 5. Discussion As proposed, we are able to track camera poses and capture motion of different body parts. We see that the reconstruction algorithm generally works fine on slow video sequences. However for jerky or fast motion it loses track and a new key frame has to be added. So depending on how jerky the motion is it can take a lot of time by adding new key frames each time and optimizing over the complete sequence. Other than this the reconstruction algorithm also depends on how textured the region is. We don t have sufficient features to track in texture less regions and this can result in pose estimation failures. This can be one of the reason behind tracking failures in the left and right palm videos. Camera moving along principal axis is another issue which causes bad initialization due to a very low parallax. To rectify this, we move camera sideways for some initial frames or manually select the initial frames if the sideways movement fails too. 3

4 Figure 6. Screenshot of each video to left palm, torso and right palm respectively Figure 7. Estimated Camera Motion corresponding to left palm, torso and right palm respectively References For skeleton optimization, we see that the constraints between the torso and both the palms are not effective enough to give an optimized result. Instead if we have more cameras that are attached to upper hand then it can provide better results. As a future work we can look in the direction of using other sensors like gyroscopes and GPS and fuse them with the estimated pose to get better results and may be reduce some load from the optimization to get near real-time performance. [1] Qualisys. 1, 2 [2] Vicon. 1, 2 [3] K. Cheung, S. Baker, and T. Kanade. Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture. In CVPR, [4] N. Hasler, B. Rosenhahn, T. Thormahlen, M. Wand, J. Gall, and H.-P. Seidel. Markerless motion capture with unsynchronized moving cameras. In CVPR, [5] T. Shiratori, H. S. Park, L. Sigal, Y. Sheikh, and J. K. Hodgins. Motion capture from body-mounted cameras. ACM Transactions on Graphics, 30(4),

5 Left Palm Data Torso Right Palm Data #Cameras Registered #Key Frames #Measurements Table 2. Statistics of the reconstruction algorithm on different sequences corresponding to the left palm, torso and the right palm, showing the number of cameras registered, number of key frames and number of measurements Figure 4. Screen shot of the reconstructed cameras and points for TUM RGB-D dataset Figure 2. Screen shot of the reconstructed cameras and points for CPL dataset [6] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of rgb-d slam systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct [7] G. Welch and E. Foxlin. Motion tracking: no silver bullet, but a respectable arsenal. Computer Graphics and Applications, IEEE, 22(6):24 38, nov.-dec Figure 8. Estimated Skeletal Motion after optimizing over the left palm, torso and right palm respectively 5

CS 775: Advanced Computer Graphics. Lecture 17 : Motion Capture

CS 775: Advanced Computer Graphics. Lecture 17 : Motion Capture CS 775: Advanced Computer Graphics Lecture 17 : History Study of human motion Leonardo da Vinci (1452 1519) History Study of human motion Edward J. Muybridge, 1830 1904 http://en.wikipedia.org/wiki/eadweard_muybridge

More information

CS 775: Advanced Computer Graphics. Lecture 8 : Motion Capture

CS 775: Advanced Computer Graphics. Lecture 8 : Motion Capture CS 775: Advanced Computer Graphics Lecture 8 : History Study of human motion Leonardo da Vinci (1452 1519) History Study of human motion Edward J. Muybridge, 1830 1904 http://en.wikipedia.org/wiki/eadweard_muybridge

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

Registration of Dynamic Range Images

Registration of Dynamic Range Images Registration of Dynamic Range Images Tan-Chi Ho 1,2 Jung-Hong Chuang 1 Wen-Wei Lin 2 Song-Sun Lin 2 1 Department of Computer Science National Chiao-Tung University 2 Department of Applied Mathematics National

More information

Long-term motion estimation from images

Long-term motion estimation from images Long-term motion estimation from images Dennis Strelow 1 and Sanjiv Singh 2 1 Google, Mountain View, CA, strelow@google.com 2 Carnegie Mellon University, Pittsburgh, PA, ssingh@cmu.edu Summary. Cameras

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Bundle Adjustment 2 Example Application A vehicle needs to map its environment that it is moving

More information

Optical-inertial Synchronization of MoCap Suit with Single Camera Setup for Reliable Position Tracking

Optical-inertial Synchronization of MoCap Suit with Single Camera Setup for Reliable Position Tracking Optical-inertial Synchronization of MoCap Suit with Single Camera Setup for Reliable Position Tracking Adam Riečický 2,4, Martin Madaras 1,2,4, Michal Piovarči 3,4 and Roman Ďurikovič 2 1 Institute of

More information

Efficient SLAM Scheme Based ICP Matching Algorithm Using Image and Laser Scan Information

Efficient SLAM Scheme Based ICP Matching Algorithm Using Image and Laser Scan Information Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015) Barcelona, Spain July 13-14, 2015 Paper No. 335 Efficient SLAM Scheme Based ICP Matching Algorithm

More information

The Kinect Sensor. Luís Carriço FCUL 2014/15

The Kinect Sensor. Luís Carriço FCUL 2014/15 Advanced Interaction Techniques The Kinect Sensor Luís Carriço FCUL 2014/15 Sources: MS Kinect for Xbox 360 John C. Tang. Using Kinect to explore NUI, Ms Research, From Stanford CS247 Shotton et al. Real-Time

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Presentation Outline 1 2 3 Sample Problem

More information

CS 532: 3D Computer Vision 7 th Set of Notes

CS 532: 3D Computer Vision 7 th Set of Notes 1 CS 532: 3D Computer Vision 7 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Logistics No class on October

More information

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah

Srikumar Ramalingam. Review. 3D Reconstruction. Pose Estimation Revisited. School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 Forward Projection (Reminder) u v 1 KR ( I t ) X m Y m Z m 1 Backward Projection (Reminder) Q K 1 q Q K 1 u v 1 What is pose estimation?

More information

Robotic Perception and Action: Vehicle SLAM Assignment

Robotic Perception and Action: Vehicle SLAM Assignment Robotic Perception and Action: Vehicle SLAM Assignment Mariolino De Cecco Mariolino De Cecco, Mattia Tavernini 1 CONTENTS Vehicle SLAM Assignment Contents Assignment Scenario 3 Odometry Localization...........................................

More information

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Visual Odometry Features, Tracking, Essential Matrix, and RANSAC Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline The

More information

Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system

Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system Multibody reconstruction of the dynamic scene surrounding a vehicle using a wide baseline and multifocal stereo system Laurent Mennillo 1,2, Éric Royer1, Frédéric Mondot 2, Johann Mousain 2, Michel Dhome

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Learning Articulated Skeletons From Motion

Learning Articulated Skeletons From Motion Learning Articulated Skeletons From Motion Danny Tarlow University of Toronto, Machine Learning with David Ross and Richard Zemel (and Brendan Frey) August 6, 2007 Point Light Displays It's easy for humans

More information

Structure from Motion CSC 767

Structure from Motion CSC 767 Structure from Motion CSC 767 Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R,t R 2,t 2 R 3,t 3 Camera??

More information

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group Master Automática y Robótica Técnicas Avanzadas de Vision: by Pascual Campoy Computer Vision Group www.vision4uav.eu Centro de Automá

More information

Multimodal Motion Capture Dataset TNT15

Multimodal Motion Capture Dataset TNT15 Multimodal Motion Capture Dataset TNT15 Timo v. Marcard, Gerard Pons-Moll, Bodo Rosenhahn January 2016 v1.2 1 Contents 1 Introduction 3 2 Technical Recording Setup 3 2.1 Video Data............................

More information

CMU Facilities. Motion Capture Lab. Panoptic Studio

CMU Facilities. Motion Capture Lab. Panoptic Studio CMU Facilities Motion Capture Lab The 1700 square foot Motion Capture Lab provides a resource for behavior capture of humans as well as measuring and controlling robot behavior in real time. It includes

More information

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Live Metric 3D Reconstruction on Mobile Phones ICCV 2013 Main Contents 1. Target & Related Work 2. Main Features of This System 3. System Overview & Workflow 4. Detail of This System 5. Experiments 6.

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching --

Computational Optical Imaging - Optique Numerique. -- Single and Multiple View Geometry, Stereo matching -- Computational Optical Imaging - Optique Numerique -- Single and Multiple View Geometry, Stereo matching -- Autumn 2015 Ivo Ihrke with slides by Thorsten Thormaehlen Reminder: Feature Detection and Matching

More information

Dense 3D Reconstruction from Autonomous Quadrocopters

Dense 3D Reconstruction from Autonomous Quadrocopters Dense 3D Reconstruction from Autonomous Quadrocopters Computer Science & Mathematics TU Munich Martin Oswald, Jakob Engel, Christian Kerl, Frank Steinbrücker, Jan Stühmer & Jürgen Sturm Autonomous Quadrocopters

More information

Aircraft Tracking Based on KLT Feature Tracker and Image Modeling

Aircraft Tracking Based on KLT Feature Tracker and Image Modeling Aircraft Tracking Based on KLT Feature Tracker and Image Modeling Khawar Ali, Shoab A. Khan, and Usman Akram Computer Engineering Department, College of Electrical & Mechanical Engineering, National University

More information

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany Deep Incremental Scene Understanding Federico Tombari & Christian Rupprecht Technical University of Munich, Germany C. Couprie et al. "Toward Real-time Indoor Semantic Segmentation Using Depth Information"

More information

3D Corner Detection from Room Environment Using the Handy Video Camera

3D Corner Detection from Room Environment Using the Handy Video Camera 3D Corner Detection from Room Environment Using the Handy Video Camera Ryo HIROSE, Hideo SAITO and Masaaki MOCHIMARU : Graduated School of Science and Technology, Keio University, Japan {ryo, saito}@ozawa.ics.keio.ac.jp

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Structure from Motion. Lecture-15

Structure from Motion. Lecture-15 Structure from Motion Lecture-15 Shape From X Recovery of 3D (shape) from one or two (2D images). Shape From X Stereo Motion Shading Photometric Stereo Texture Contours Silhouettes Defocus Applications

More information

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters Computer Animation and Visualisation Lecture 3. Motion capture and physically-based animation of characters Character Animation There are three methods Create them manually Use real human / animal motions

More information

Depth Sensors Kinect V2 A. Fornaser

Depth Sensors Kinect V2 A. Fornaser Depth Sensors Kinect V2 A. Fornaser alberto.fornaser@unitn.it Vision Depth data It is not a 3D data, It is a map of distances Not a 3D, not a 2D it is a 2.5D or Perspective 3D Complete 3D - Tomography

More information

Markerless human motion capture through visual hull and articulated ICP

Markerless human motion capture through visual hull and articulated ICP Markerless human motion capture through visual hull and articulated ICP Lars Mündermann lmuender@stanford.edu Stefano Corazza Stanford, CA 93405 stefanoc@stanford.edu Thomas. P. Andriacchi Bone and Joint

More information

FOREGROUND DETECTION ON DEPTH MAPS USING SKELETAL REPRESENTATION OF OBJECT SILHOUETTES

FOREGROUND DETECTION ON DEPTH MAPS USING SKELETAL REPRESENTATION OF OBJECT SILHOUETTES FOREGROUND DETECTION ON DEPTH MAPS USING SKELETAL REPRESENTATION OF OBJECT SILHOUETTES D. Beloborodov a, L. Mestetskiy a a Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University,

More information

A Model-based Approach to Rapid Estimation of Body Shape and Postures Using Low-Cost Depth Cameras

A Model-based Approach to Rapid Estimation of Body Shape and Postures Using Low-Cost Depth Cameras A Model-based Approach to Rapid Estimation of Body Shape and Postures Using Low-Cost Depth Cameras Abstract Byoung-Keon D. PARK*, Matthew P. REED University of Michigan, Transportation Research Institute,

More information

Application questions. Theoretical questions

Application questions. Theoretical questions The oral exam will last 30 minutes and will consist of one application question followed by two theoretical questions. Please find below a non exhaustive list of possible application questions. The list

More information

arxiv: v1 [cs.ro] 24 Nov 2018

arxiv: v1 [cs.ro] 24 Nov 2018 BENCHMARKING AND COMPARING POPULAR VISUAL SLAM ALGORITHMS arxiv:1811.09895v1 [cs.ro] 24 Nov 2018 Amey Kasar Department of Electronics and Telecommunication Engineering Pune Institute of Computer Technology

More information

Using Augmented Measurements to Improve the Convergence of ICP. Jacopo Serafin and Giorgio Grisetti

Using Augmented Measurements to Improve the Convergence of ICP. Jacopo Serafin and Giorgio Grisetti Jacopo Serafin and Giorgio Grisetti Point Cloud Registration We want to find the rotation and the translation that maximize the overlap between two point clouds Page 2 Point Cloud Registration We want

More information

CVPR 2014 Visual SLAM Tutorial Kintinuous

CVPR 2014 Visual SLAM Tutorial Kintinuous CVPR 2014 Visual SLAM Tutorial Kintinuous kaess@cmu.edu The Robotics Institute Carnegie Mellon University Recap: KinectFusion [Newcombe et al., ISMAR 2011] RGB-D camera GPU 3D/color model RGB TSDF (volumetric

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

URBAN STRUCTURE ESTIMATION USING PARALLEL AND ORTHOGONAL LINES

URBAN STRUCTURE ESTIMATION USING PARALLEL AND ORTHOGONAL LINES URBAN STRUCTURE ESTIMATION USING PARALLEL AND ORTHOGONAL LINES An Undergraduate Research Scholars Thesis by RUI LIU Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment

More information

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements

Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements Planetary Rover Absolute Localization by Combining Visual Odometry with Orbital Image Measurements M. Lourakis and E. Hourdakis Institute of Computer Science Foundation for Research and Technology Hellas

More information

Model-based Motion Capture for Crash Test Video Analysis

Model-based Motion Capture for Crash Test Video Analysis Model-based Motion Capture for Crash Test Video Analysis Juergen Gall 1, Bodo Rosenhahn 1, Stefan Gehrig 2, and Hans-Peter Seidel 1 1 Max-Planck-Institute for Computer Science, Campus E1 4, 66123 Saarbrücken,

More information

StereoScan: Dense 3D Reconstruction in Real-time

StereoScan: Dense 3D Reconstruction in Real-time STANFORD UNIVERSITY, COMPUTER SCIENCE, STANFORD CS231A SPRING 2016 StereoScan: Dense 3D Reconstruction in Real-time Peirong Ji, pji@stanford.edu June 7, 2016 1 INTRODUCTION In this project, I am trying

More information

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery

Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery Personal Navigation and Indoor Mapping: Performance Characterization of Kinect Sensor-based Trajectory Recovery 1 Charles TOTH, 1 Dorota BRZEZINSKA, USA 2 Allison KEALY, Australia, 3 Guenther RETSCHER,

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Scanning and Printing Objects in 3D Jürgen Sturm

Scanning and Printing Objects in 3D Jürgen Sturm Scanning and Printing Objects in 3D Jürgen Sturm Metaio (formerly Technical University of Munich) My Research Areas Visual navigation for mobile robots RoboCup Kinematic Learning Articulated Objects Quadrocopters

More information

Edge SLAM: Edge Points Based Monocular Visual SLAM

Edge SLAM: Edge Points Based Monocular Visual SLAM Edge SLAM: Edge Points Based Monocular Visual SLAM Soumyadip Maity Arindam Saha Brojeshwar Bhowmick Embedded Systems and Robotics, TCS Research & Innovation, Kolkata, India {soumyadip.maity, ari.saha,

More information

Visual SLAM. An Overview. L. Freda. ALCOR Lab DIAG University of Rome La Sapienza. May 3, 2016

Visual SLAM. An Overview. L. Freda. ALCOR Lab DIAG University of Rome La Sapienza. May 3, 2016 An Overview L. Freda ALCOR Lab DIAG University of Rome La Sapienza May 3, 2016 L. Freda (University of Rome La Sapienza ) Visual SLAM May 3, 2016 1 / 39 Outline 1 Introduction What is SLAM Motivations

More information

International Conference on Communication, Media, Technology and Design. ICCMTD May 2012 Istanbul - Turkey

International Conference on Communication, Media, Technology and Design. ICCMTD May 2012 Istanbul - Turkey VISUALIZING TIME COHERENT THREE-DIMENSIONAL CONTENT USING ONE OR MORE MICROSOFT KINECT CAMERAS Naveed Ahmed University of Sharjah Sharjah, United Arab Emirates Abstract Visualizing or digitization of the

More information

3D Line Segments Extraction from Semi-dense SLAM

3D Line Segments Extraction from Semi-dense SLAM 3D Line Segments Extraction from Semi-dense SLAM Shida He Xuebin Qin Zichen Zhang Martin Jagersand University of Alberta Abstract Despite the development of Simultaneous Localization and Mapping (SLAM),

More information

Visual Navigation for Flying Robots

Visual Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Experimentation, Evaluation and Benchmarking Dr. Jürgen Sturm Agenda for Today Course Evaluation Scientific research: The

More information

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models Emanuele Ruffaldi Lorenzo Peppoloni Alessandro Filippeschi Carlo Alberto Avizzano 2014 IEEE International

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Semi-Dense Direct SLAM

Semi-Dense Direct SLAM Computer Vision Group Technical University of Munich Jakob Engel Jakob Engel, Daniel Cremers David Caruso, Thomas Schöps, Lukas von Stumberg, Vladyslav Usenko, Jörg Stückler, Jürgen Sturm Technical University

More information

3D Reconstruction of a Hopkins Landmark

3D Reconstruction of a Hopkins Landmark 3D Reconstruction of a Hopkins Landmark Ayushi Sinha (461), Hau Sze (461), Diane Duros (361) Abstract - This paper outlines a method for 3D reconstruction from two images. Our procedure is based on known

More information

Tracking an RGB-D Camera Using Points and Planes

Tracking an RGB-D Camera Using Points and Planes MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Tracking an RGB-D Camera Using Points and Planes Ataer-Cansizoglu, E.; Taguchi, Y.; Ramalingam, S.; Garaas, T. TR2013-106 December 2013 Abstract

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

ROBUST OBJECT TRACKING BY SIMULTANEOUS GENERATION OF AN OBJECT MODEL

ROBUST OBJECT TRACKING BY SIMULTANEOUS GENERATION OF AN OBJECT MODEL ROBUST OBJECT TRACKING BY SIMULTANEOUS GENERATION OF AN OBJECT MODEL Maria Sagrebin, Daniel Caparròs Lorca, Daniel Stroh, Josef Pauli Fakultät für Ingenieurwissenschaften Abteilung für Informatik und Angewandte

More information

Articulated Structure from Motion through Ellipsoid Fitting

Articulated Structure from Motion through Ellipsoid Fitting Int'l Conf. IP, Comp. Vision, and Pattern Recognition IPCV'15 179 Articulated Structure from Motion through Ellipsoid Fitting Peter Boyi Zhang, and Yeung Sam Hung Department of Electrical and Electronic

More information

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little + Presented by Matt Loper CS296-3: Robot Learning and Autonomy Brown

More information

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33

Stereo Epipolar Geometry for General Cameras. Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar Geometry for General Cameras Sanja Fidler CSC420: Intro to Image Understanding 1 / 33 Stereo Epipolar geometry Case with two cameras with parallel optical axes General case Now this Sanja

More information

Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial

Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial Bundle Adjustment Frank Dellaert CVPR 2014 Visual SLAM Tutorial Mo@va@on VO: just two frames - > R,t using 5- pt or 3- pt Can we do bener? SFM, SLAM - > VSLAM Later: integrate IMU, other sensors Objec@ve

More information

CS 664 Structure and Motion. Daniel Huttenlocher

CS 664 Structure and Motion. Daniel Huttenlocher CS 664 Structure and Motion Daniel Huttenlocher Determining 3D Structure Consider set of 3D points X j seen by set of cameras with projection matrices P i Given only image coordinates x ij of each point

More information

Project: Camera Rectification and Structure from Motion

Project: Camera Rectification and Structure from Motion Project: Camera Rectification and Structure from Motion CIS 580, Machine Perception, Spring 2018 April 18, 2018 In this project, you will learn how to estimate the relative poses of two cameras and compute

More information

3D Scene Reconstruction with a Mobile Camera

3D Scene Reconstruction with a Mobile Camera 3D Scene Reconstruction with a Mobile Camera 1 Introduction Robert Carrera and Rohan Khanna Stanford University: CS 231A Autonomous supernumerary arms, or "third arms", while still unconventional, hold

More information

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms L15. POSE-GRAPH SLAM NA568 Mobile Robotics: Methods & Algorithms Today s Topic Nonlinear Least Squares Pose-Graph SLAM Incremental Smoothing and Mapping Feature-Based SLAM Filtering Problem: Motion Prediction

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Robust Online 3D Reconstruction Combining a Depth Sensor and Sparse Feature Points

Robust Online 3D Reconstruction Combining a Depth Sensor and Sparse Feature Points 2016 23rd International Conference on Pattern Recognition (ICPR) Cancún Center, Cancún, México, December 4-8, 2016 Robust Online 3D Reconstruction Combining a Depth Sensor and Sparse Feature Points Erik

More information

Human Body Recognition and Tracking: How the Kinect Works. Kinect RGB-D Camera. What the Kinect Does. How Kinect Works: Overview

Human Body Recognition and Tracking: How the Kinect Works. Kinect RGB-D Camera. What the Kinect Does. How Kinect Works: Overview Human Body Recognition and Tracking: How the Kinect Works Kinect RGB-D Camera Microsoft Kinect (Nov. 2010) Color video camera + laser-projected IR dot pattern + IR camera $120 (April 2012) Kinect 1.5 due

More information

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H.

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H. Nonrigid Surface Modelling and Fast Recovery Zhu Jianke Supervisor: Prof. Michael R. Lyu Committee: Prof. Leo J. Jia and Prof. K. H. Wong Department of Computer Science and Engineering May 11, 2007 1 2

More information

3D Computer Vision 1

3D Computer Vision 1 3D Computer Vision 1 Multiview Stereo Multiview Stereo Multiview Stereo https://www.youtube.com/watch?v=ugkb7itpnae Shape from silhouette Shape from silhouette Shape from silhouette Shape from silhouette

More information

CS 4758: Automated Semantic Mapping of Environment

CS 4758: Automated Semantic Mapping of Environment CS 4758: Automated Semantic Mapping of Environment Dongsu Lee, ECE, M.Eng., dl624@cornell.edu Aperahama Parangi, CS, 2013, alp75@cornell.edu Abstract The purpose of this project is to program an Erratic

More information

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage

Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Exploration, Multi-Robot Coordination and Coverage Dr. Jürgen Sturm Agenda for Today Exploration with a single robot Coordinated

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

Announcements. New version of assignment 1 on the web page: Tuesday s class in the motion capture lab:

Announcements. New version of assignment 1 on the web page: Tuesday s class in the motion capture lab: Announcements New version of assignment 1 on the web page: www.cs.cmu.edu/~jkh/anim_class.html Test login procedure NOW! Tuesday s class in the motion capture lab: Wean1326 Volunteers needed for capture

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Handed out: 001 Nov. 30th Due on: 001 Dec. 10th Problem 1: (a (b Interior

More information

Computer Vision 2 Lecture 1

Computer Vision 2 Lecture 1 Computer Vision 2 Lecture 1 Introduction (14.04.2016) leibe@vision.rwth-aachen.de, stueckler@vision.rwth-aachen.de RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de Organization

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Visual-Inertial RGB-D SLAM for Mobile Augmented Reality

Visual-Inertial RGB-D SLAM for Mobile Augmented Reality Visual-Inertial RGB-D SLAM for Mobile Augmented Reality Williem 1, Andre Ivan 1, Hochang Seok 2, Jongwoo Lim 2, Kuk-Jin Yoon 3, Ikhwan Cho 4, and In Kyu Park 1 1 Department of Information and Communication

More information

ORB SLAM 2 : an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

ORB SLAM 2 : an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras ORB SLAM 2 : an OpenSource SLAM System for Monocular, Stereo and RGBD Cameras Raul urartal and Juan D. Tardos Presented by: Xiaoyu Zhou Bolun Zhang Akshaya Purohit Lenord Melvix 1 Outline Background Introduction

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering www.csse.uwa.edu.au/~ajmal/ Overview Aim of automatic human action recognition Applications

More information

OUTDOOR AND INDOOR NAVIGATION WITH MICROSOFT KINECT

OUTDOOR AND INDOOR NAVIGATION WITH MICROSOFT KINECT DICA-Dept. of Civil and Environmental Engineering Geodesy and Geomatics Section OUTDOOR AND INDOOR NAVIGATION WITH MICROSOFT KINECT Diana Pagliari Livio Pinto OUTLINE 2 The Microsoft Kinect sensor The

More information

CSE/EE-576, Final Project

CSE/EE-576, Final Project 1 CSE/EE-576, Final Project Torso tracking Ke-Yu Chen Introduction Human 3D modeling and reconstruction from 2D sequences has been researcher s interests for years. Torso is the main part of the human

More information

PART IV: RS & the Kinect

PART IV: RS & the Kinect Computer Vision on Rolling Shutter Cameras PART IV: RS & the Kinect Per-Erik Forssén, Erik Ringaby, Johan Hedborg Computer Vision Laboratory Dept. of Electrical Engineering Linköping University Tutorial

More information

Incremental 3D Line Segment Extraction from Semi-dense SLAM

Incremental 3D Line Segment Extraction from Semi-dense SLAM Incremental 3D Line Segment Extraction from Semi-dense SLAM Shida He Xuebin Qin Zichen Zhang Martin Jagersand University of Alberta arxiv:1708.03275v3 [cs.cv] 26 Apr 2018 Abstract Although semi-dense Simultaneous

More information

Fitting (LMedS, RANSAC)

Fitting (LMedS, RANSAC) Fitting (LMedS, RANSAC) Thursday, 23/03/2017 Antonis Argyros e-mail: argyros@csd.uoc.gr LMedS and RANSAC What if we have very many outliers? 2 1 Least Median of Squares ri : Residuals Least Squares n 2

More information

Dynamic Time Warping for Binocular Hand Tracking and Reconstruction

Dynamic Time Warping for Binocular Hand Tracking and Reconstruction Dynamic Time Warping for Binocular Hand Tracking and Reconstruction Javier Romero, Danica Kragic Ville Kyrki Antonis Argyros CAS-CVAP-CSC Dept. of Information Technology Institute of Computer Science KTH,

More information

Real-time Image-based Reconstruction of Pipes Using Omnidirectional Cameras

Real-time Image-based Reconstruction of Pipes Using Omnidirectional Cameras Real-time Image-based Reconstruction of Pipes Using Omnidirectional Cameras Dipl. Inf. Sandro Esquivel Prof. Dr.-Ing. Reinhard Koch Multimedia Information Processing Christian-Albrechts-University of Kiel

More information

Final Project Report: Mobile Pick and Place

Final Project Report: Mobile Pick and Place Final Project Report: Mobile Pick and Place Xiaoyang Liu (xiaoyan1) Juncheng Zhang (junchen1) Karthik Ramachandran (kramacha) Sumit Saxena (sumits1) Yihao Qian (yihaoq) Adviser: Dr Matthew Travers Carnegie

More information

CS201: Computer Vision Introduction to Tracking

CS201: Computer Vision Introduction to Tracking CS201: Computer Vision Introduction to Tracking John Magee 18 November 2014 Slides courtesy of: Diane H. Theriault Question of the Day How can we represent and use motion in images? 1 What is Motion? Change

More information

Real-Time Vision-Based State Estimation and (Dense) Mapping

Real-Time Vision-Based State Estimation and (Dense) Mapping Real-Time Vision-Based State Estimation and (Dense) Mapping Stefan Leutenegger IROS 2016 Workshop on State Estimation and Terrain Perception for All Terrain Mobile Robots The Perception-Action Cycle in

More information