Course Updates. Reminders: 1) Assignment #12 due Monday. 2) Start Optics (Chapter 33) 3) Last HW (#13 posted) due Monday, May 3rd

Size: px
Start display at page:

Download "Course Updates. Reminders: 1) Assignment #12 due Monday. 2) Start Optics (Chapter 33) 3) Last HW (#13 posted) due Monday, May 3rd"

Transcription

1 Course Updates Reminders: 1) Assignment #12 due Monday 2) Start Optics (Chapter 33) 3) Last HW (#13 posted) due Monday, May 3rd

2 θ i = θ r n = 1 sinθ1 n2 sin θ 2 2

3 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can e v < c. index of refraction, n = c/v. frequency, f, does not change in wave eqn. of v = f λ, wavelength, λ, depends on medium, λ = v/f = c/nf = λ 0 /n In some media, n, depends on f, this is called dispersion. 3

4 Waves, wave front, rays (Y&F section 33.2) Plane waves moving in +x direction r E r B ( x, y, z, t) = E0 yˆ cos( kx ωt) ( x, y, z, t) = B zˆ cos( kx ωt) 0 Wave front is a surface of constant phase E field Wave front (y-z plane surface of constant phase) y Ray propagation z x 4

5 Huygen s Principle (Y&F section 33.7) Huygen s principle; a wave front can e a source of secondary wavelets the spread out in all directions at the speed of propagation in the medium. The envelope of leading edges forms a wave front. This principle was stated y Huygen in 1678, it is derivale from Maxwell s eqn. It is a geometrical description of ray propagation. vt Plane wave example; Secondary wavelets create another wave front (plane) 5

6 Reflection from Huygen s Principle Consider wave fronts, separated y vt, the incident wave fronts in contact with the surface will create a wavelets according to Huygen s Principle and leads to another reflected wave front. The result is θ i = θ r reflected wave front Incident wave front vt vt vt ray diagram vt θ r θ i θ i θ r θ i = θ r Reflection Law 6

7 Refraction from Huygen s Principle Now the speed changes, from medium a to medium, so the Speed may change and the wavefront spacing differs. L sinθ a = v a t = ct/n a L sinθ = v t= ct/n Medium a, v a =c/n a Medium, v =c/n θ L v t v t Wave front L v a t θ a v a t Wave front = n sinθ n a sinθ a Snell s Law 7

8 Snell s Law (law of refraction) Incident ray θ a normal Wave front Medium a, v a =c/n a Medium, v =c/n θ Refracted Wave front Refracted ray θ θ a Angles are usually given relative to normal to plane = n sinθ n a sinθ a Snell s Law 8

9 Question 1 A ray of light passes from into water with an angle of incidence of 30 o. Which of the following quantities does not change as the light enters the water. a) Wavelength ) frequency c) speed of propagation d) direction of propagation. 9

10 Question 1 A ray of light passes from into water with an angle of incidence of 30 o. Which of the following quantities does not change as the light enters the water. a) Wavelength ) frequency c) speed of propagation d) direction of propagation. 10

11 Question 2 Which of the following ray diagrams could represent the passage of light from through glass and ack to? (n =1 and n glass =1.5) (a) () (c) glass glass glass 11

12 Question 2 Which of the following ray diagrams could represent the passage of light from through glass and ack to? (n =1 and n glass =1.5) (a) () (c) glass θ 1 θ 2 glass glass The ehavior of these rays is determined from Snell s Law: n = 1 sinθ1 n2 sin Since n(glass) > n(), sinθ (glass) < sinθ (). Therefore, moving from to glass, ray will end toward normal. this eliminates (a). Moving from glass to, ray will end away from normal. this eliminates (c). As a matter of fact, the final angle in must e equal to the initial angle in!! 12 θ 2

13 EXAMPLE, from into glass; θ a Suppose we have light in (n=1) incidence on glass (n=1.55) at an angle θ a =45 deg. What is the angle of the refracted light, θ? θ n sinθ = n (1)sin ( 45 ) = (1)sin sinθ = 1.55 θ = 27 a glass (1.55)sinθ ( 45 ) sinθ =

14 EXAMPLE, from glass into ; Suppose we have light in glass (n=1.55) incident into at an angle θ a =30 deg. What is the angle of the refracted light, θ? n glass sinθ = n (1.55)sin sinθ θ = = 51 a ( 30 ) = (1.55)sin sinθ (1)sinθ ( 45 ) = θ a θ 14

15 The ANITA Concept Typical alloon field of regard ~4km deep ice! 15

16 Refraction limits ANITA! E S U ANITA at float (123Kft) Seen through amateur telescope from the South Pole Size of the Rose Bowl! (thanks to James Roth) 16

17 Mini-Antarctica at Stanford Linear Accelerator 17

18 SLAC T486 θ θ a 2 mile long accelerator 28 Billion electron Volts If you ve driven I-280 etween San Francisco and San Jose 18

19 Prolem!!! θ θ a ice There is no escape!!! n ice sinθ = n (1.8) sin sinθ θ = = 90 a ( 34 ) = (1.8) sin sinθ (1) sinθ ( 34 ) =

20 Prolem θ a θ Solution = cut! ~7degrees ice θ =?? n ice sinθ = n (1.8) sin ( 34 ) sinθ = (1.8) sin a θ = 90 sinθ = (1) sinθ ( 34 ) = 1.0 n ice sinθ = n (1.8) sin sinθ a ( 27 ) = (1.8) sin θ = 54.8 sinθ = (1) sinθ ( 27 ) θ = 0.82 θ a ice θa θ ice 20

21 Mini-Antarctica at Stanford Linear Accelerator 21 Cut ~7degrees! (jackhammers, chainsaws, mauls not shown)

22 10 tons ice 22

23 23

24 Let there e light! (OK, radio) 24

25 Suppose you are stranded on an island with no food. You see a fish in the water. Where should you aim your spear to hit the fish? ANSWER; do not aim directly at the apparent position of the fish. Aim at the inside of the fish. 25

26 Suppose in the previous question instead of a spear you had a high power laser to simultaneously kill and cook the fish (in the water). Where should you aim the laser?? ANSWER; aim directly at apparent fish position as the laser eam will refract to the correct fish position. 26

27 For next time Homework #12 posted due Monday The home stretch: optics/optical phenomenon 27

28 Key Instrument pieces CSBF CIP Battery ox Instrument ox 28

29 Launch: Decemer 15, 2007 (after almost 2 agonizing weeks of waiting) Courtesy Kim Palladino A flawless launch CSBF truly professional After day after day after day of false starts, we were really ready to go 29

θ =θ i r n sinθ = n sinθ

θ =θ i r n sinθ = n sinθ θ i = θ r n = 1 sinθ1 n2 sin θ 2 Index of Refraction Speed of light, c, in vacuum is 3x10 8 m/s Speed of light, v, in different medium can be v < c. index of refraction, n = c/v. frequency, f, does not

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Physics 1502: Lecture 28 Today s Agenda

Physics 1502: Lecture 28 Today s Agenda Physics 1502: Lecture 28 Today s Agenda Announcements: Midterm 2: Monday Nov. 16 Homework 08: due next Friday Optics Waves, Wavefronts, and Rays Reflection Index of Refraction 1 Waves, Wavefronts, and

More information

Review: 22.4: Dispersion. Refraction in a Prism. Announcements

Review: 22.4: Dispersion. Refraction in a Prism. Announcements Announcements The second midterm exam is coming Monday, Nov 8 Will cover from 18.1 thru 22.7 Same format as Exam 1 20 multiple choice questions Room assignments TBA QUESTIONS? PLEASE ASK! Review: Light

More information

Course Updates. Reminders: 1) Assignment #12 due today. 2) Polarization, dispersion. 3) Last HW (#13 posted) due Monday, May 3rd

Course Updates. Reminders: 1) Assignment #12 due today. 2) Polarization, dispersion. 3) Last HW (#13 posted) due Monday, May 3rd Course Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html Reminders: 1) Assignment #12 due today 2) Polarization, dispersion 3) Last HW (#13 posted) due Monday, May 3rd n 1 n 2 Total

More information

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Chapter 33: Optics Wavefronts and Rays When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to Neglect the wave nature of light. Consider

More information

Refraction Ch. 29 in your text book

Refraction Ch. 29 in your text book Refraction Ch. 29 in your text book Objectives Students will be able to: 1) Identify incident and refracted angles 2) Explain what the index of refraction tells about a material 3) Calculate the index

More information

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org Lecture 1201 Ray Model of Light Physics Help Q&A: tutor.leiacademy.org Reflection of Light A ray of light, the incident ray, travels in a medium. When it encounters a boundary with a second medium, part

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Physics 1C. Lecture 25B. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 25B. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 25B "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Refraction of Light When light passes from one medium to another, it is

More information

11.2 Refraction. December 10, Wednesday, 11 December, 13

11.2 Refraction. December 10, Wednesday, 11 December, 13 11.2 Refraction December 10, 2013. Refraction Light bends when it passes from one medium (material) to another this bending is called refraction this is because the speed of light changes The Speed of

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

speed of light in vacuum = speed of light in the material

speed of light in vacuum = speed of light in the material Chapter 5 Let Us Entertain You Snell s law states that as light enters a substance such as acrylic (high index of refraction) from air (low index of refraction), the light bends toward the normal. When

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

Light II. Physics 2415 Lecture 32. Michael Fowler, UVa

Light II. Physics 2415 Lecture 32. Michael Fowler, UVa Light II Physics 2415 Lecture 32 Michael Fowler, UVa Today s Topics Huygens principle and refraction Snell s law and applications Dispersion Total internal reflection Huygens Principle Newton s contemporary

More information

Physics 6C. Wave Properties of Light. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Wave Properties of Light. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Wave Properties of Light Reflection and Refraction When an EM wave encounters an interface etween two materials it will generally e partially reflected and partially transmitted (refracted.

More information

Reflection and Refraction of Light

Reflection and Refraction of Light PC1222 Fundamentals of Physics II Reflection and Refraction of Light 1 Objectives Investigate for reflection of rays from a plane surface, the dependence of the angle of reflection on the angle of incidence.

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light.

LIGHT. Descartes particle theory, however, could not be used to explain diffraction of light. 1 LIGHT Theories of Light In the 17 th century Descartes, a French scientist, formulated two opposing theories to explain the nature of light. These two theories are the particle theory and the wave theory.

More information

Geometrical optics: Refraction *

Geometrical optics: Refraction * OpenStax-CNX module: m40065 1 Geometrical optics: Refraction * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0

More information

Phys 102 Lecture 17 Introduction to ray optics

Phys 102 Lecture 17 Introduction to ray optics Phys 102 Lecture 17 Introduction to ray optics 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference & diffraction Light as a ray Lecture

More information

Image Formation by Refraction

Image Formation by Refraction Image Formation by Refraction If you see a fish that appears to be swimming close to the front window of the aquarium, but then look through the side of the aquarium, you ll find that the fish is actually

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below. Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v.

PY106 Class31. Index of refraction. Refraction. Index of refraction. Sample values of n. Rays and wavefronts. index of refraction: n v. Refraction Index of refraction When an EM wave travels in a vacuum, its speed is: c = 3.00 x 10 8 m/s. In any other medium, light generally travels at a slower speed. The speed of light v in a material

More information

The geometry of reflection and refraction Wave conversion and reflection coefficient

The geometry of reflection and refraction Wave conversion and reflection coefficient 7.2.2 Reflection and Refraction The geometry of reflection and refraction Wave conversion and reflection coefficient The geometry of reflection and refraction A wave incident on a boundary separating two

More information

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface

Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface Huygens and Fermat s s principles (Textbook 4.4, 4.5) Application to reflection & refraction at an interface 1 Propagation of light: Sources E.g. point source a fundamental source Light is emitted in all

More information

Reflection and Refraction

Reflection and Refraction Reflection and Refraction 1) Students will be able to state the law of reflection. 2) Students will be able to describe refraction and use Snell's law. 1 Teachers' notes Subject Topic Title Grade(s) Cross

More information

Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Chapter 33 The Nature and Propagation of Light by C.-R. Hu Chapter 33 The Nature and Propagation of Light by C.-R. Hu Light is a transverse wave of the electromagnetic field. In 1873, James C. Maxwell predicted it from the Maxwell equations. The speed of all electromagnetic

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1

(Equation 24.1: Index of refraction) We can make sense of what happens in Figure 24.1 24-1 Refraction To understand what happens when light passes from one medium to another, we again use a model that involves rays and wave fronts, as we did with reflection. Let s begin by creating a short

More information

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016 16/05/2016 Snell s Law cgrahamphysics.com 2016 Book page 110 and 112 Syllabus 3.18, 3.19 Match the words to the objects absorbs transmits emits diffracts disperses refracts reflects Fibre optics Totally

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law)

Let s review the four equations we now call Maxwell s equations. (Gauss s law for magnetism) (Faraday s law) Electromagnetic Waves Let s review the four equations we now call Maxwell s equations. E da= B d A= Q encl ε E B d l = ( ic + ε ) encl (Gauss s law) (Gauss s law for magnetism) dφ µ (Ampere s law) dt dφ

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian

Chapter 33. The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian Chapter 33 The Nature of Light and Propagation of Light (lecture 1) Dr. Armen Kocharian The Nature of Light Before the beginning of the nineteenth century, light was considered to be a stream of particles

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Physics 132: Lecture Fundamentals of Physics II Agenda for Today

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Physics 132: Lecture Fundamentals of Physics II Agenda for Today Reflection of light Law of reflection Refraction of light Snell s law Dispersion PHY132 Lecture 17, Pg1 Electromagnetic waves A changing

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

WAVE OPTICS-I. A linear source produces cylindrical wavefront. (Draw diagram).

WAVE OPTICS-I. A linear source produces cylindrical wavefront. (Draw diagram). WAVE OPTICS-I Wavefront: It is the locus of points in space which are simultaneously disturbed and are vibrating in same phase. Wavefront can be spherical, plane or cylindrical. Note that the wavefront

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

LECTURE 13 REFRACTION. Instructor: Kazumi Tolich

LECTURE 13 REFRACTION. Instructor: Kazumi Tolich LECTURE 13 REFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 26.5 Index of refraction Snell s law Total internal reflection Total polarization Index of refraction 3 The speed of light in

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

: Imaging Systems Laboratory II. Laboratory 2: Snell s Law, Dispersion and the Prism March 19 & 21, n 1 n 2

: Imaging Systems Laboratory II. Laboratory 2: Snell s Law, Dispersion and the Prism March 19 & 21, n 1 n 2 05-3: Imaging Systems Laboratory II Laboratory : Snell s Law, Dispersion and the Prism March 9 &, 00 Abstract. This laboratory exercise will demonstrate two basic properties of the way light interacts

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects New topic: Diffraction only one slit, but wide From Last time Two-source interference: Interference-like pattern from a single slit. For a slit: a θ central width ~ 2 Diffraction grating Week3HW on Mastering

More information

Reflection and Refraction. Chapter 29

Reflection and Refraction. Chapter 29 Reflection and Refraction Chapter 29 Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first medium. Reflection The angle of incidence is equal

More information

Chapter 18 Ray Optics

Chapter 18 Ray Optics Chapter 18 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 18-1 Chapter 18 Preview Looking Ahead Text p. 565 Slide 18-2 Wavefronts and Rays When visible light or other electromagnetic

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Recall from last time. Today Last Time Reflection: θ i = θ r Flat Mirror: image equidistant behind Spherical

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

PHYS 202 Notes, Week 8

PHYS 202 Notes, Week 8 PHYS 202 Notes, Week 8 Greg Christian March 8 & 10, 2016 Last updated: 03/10/2016 at 12:30:44 This week we learn about electromagnetic waves and optics. Electromagnetic Waves So far, we ve learned about

More information

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization Chapter 33 - Light Properties of Light 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization MFMcGraw-PHY 2426 Chap33-Light - Revised: 6-24-2012 2 Electromagnetic

More information

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura PY212 Lecture 25 Interference and Diffraction Prof. Tulika Bose 12/3/09 Fun Link: Diffraction with Ace Ventura Summary from last time The wave theory of light is strengthened by the interference and diffraction

More information

PHY 1160C Homework Chapter 23: Reflection and Refraction of Light Ch 23: 8, 10, 14, 20, 26, 28, 33,38, 43, 45, 52

PHY 1160C Homework Chapter 23: Reflection and Refraction of Light Ch 23: 8, 10, 14, 20, 26, 28, 33,38, 43, 45, 52 PHY 1160C Homework Chapter 3: Reflection and Refraction of Light Ch 3: 8, 10, 14, 0, 6, 8, 33,38, 43, 45, 5 3.8 What is the speed of light in water (n = 1.33)? n = c/v v = c/n v = (3.00 x 10 8 m/s)/(1.33)

More information

The Propagation of Light:

The Propagation of Light: Lecture 8 Chapter 4 The Propagation of Light: Transmission Reflection Refraction Macroscopic manifestations of scattering and interference occurring at the atomic level Reflection Reflection Inside the

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Purpose: To determine the index of refraction of glass, plastic and water.

Purpose: To determine the index of refraction of glass, plastic and water. LAB 9 REFRACTION-THE BENDING OF LIGHT Purpose: To determine the index of refraction of glass, plastic and water. Materials: Common pins, glass block, plastic block, small semi-circular water container,

More information

Chapter 23 Reflection and Refraction. Copyright 2010 Pearson Education, Inc.

Chapter 23 Reflection and Refraction. Copyright 2010 Pearson Education, Inc. Chapter 23 Reflection and Refraction C O L O R S White light contains all colors. White objects reflect all colors. Black objects absorb all colors. Green objects absorb all colors but reflect green. Red,

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1 F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics. MEMS Overview

Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics. MEMS Overview Introduction to Microeletromechanical Systems (MEMS) Lecture 8 Topics MicroOptoElectroMechanical Systems (MOEMS) Scanning D Micromirrors TI Digital Light Projection Device Basic Optics: Refraction and

More information

PHYS1004 Problem Sheet - Optics - with Solutions

PHYS1004 Problem Sheet - Optics - with Solutions PHYS004 Problem Sheet - Optics - with Solutions Do not write on these question sheets - there is not enough room to do a good job of answering these questions. The answers need to be written in your life

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Lecture 24: TUE 20 APR 2010 Ch : E&M Waves

Lecture 24: TUE 20 APR 2010 Ch : E&M Waves Physics 2102 Jonathan Dowling Lecture 24: TUE 20 APR 2010 Ch.33.6 10: E&M Waves Radiation Pressure Waves not only carry energy but also momentum. The effect is very small (we don t ordinarily feel pressure

More information

4.5 Images Formed by the Refraction of Light

4.5 Images Formed by the Refraction of Light Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XIII Refraction of light Snell s law Dispersion and rainbow Mirrors and lens Plane mirrors Concave and convex mirrors Thin lenses http://www.physics.wayne.edu/~apetrov/phy2130/

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

CHAPTER TWO...REFRACTION AND REFLECTION

CHAPTER TWO...REFRACTION AND REFLECTION The laws of refraction and reflection were discovered experimentally long before their significance was understood, and together they form the basis of the whole of geometrical optics. They may be derived

More information

4. A light-year is the distance light travels in one year. How far does light travel in one year? 9.46 x m

4. A light-year is the distance light travels in one year. How far does light travel in one year? 9.46 x m hapter 6 Light, Mirrors, and Lenses Practice Problems Name: Section 1: Speed, Distance, and Time (v = d/t) 1. In communicating with an automatic space station, radio signals travelling at the speed of

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve Chapter 35 I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision An optical Tuning Fork Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Where does light actually

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

History of Light. 5 th Century B.C.

History of Light. 5 th Century B.C. History of Light 5 th Century B.C. Philosophers thought light was made up of streamers emitted by the eye making contact with an object Others thought that light was made of particles that traveled from

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

3/10/2019. Models of Light. Waves and wave fronts. Wave fronts and rays

3/10/2019. Models of Light. Waves and wave fronts. Wave fronts and rays Models of Light The wave model: Under many circumstances, light exhibits the same behavior as material waves. The study of light as a wave is called wave optics. The ray model: The properties of prisms,

More information

Homework #1. Reading: Chaps. 14, 20, 21, 23. Suggested exercises: 23.6, 23.7, 23.8, 23.10, 23.12, 23.13, 23.14, 23.15

Homework #1. Reading: Chaps. 14, 20, 21, 23. Suggested exercises: 23.6, 23.7, 23.8, 23.10, 23.12, 23.13, 23.14, 23.15 Homework #1 Reading: Chaps. 14, 20, 21, 23 Suggested exercises: 23.6, 23.7, 23.8, 23.10, 23.12, 23.13, 23.14, 23.15 Problems: 23.39, 23.40, 23.41, 23.42, 23.44, 23.45, 23.47, 23.48, 23.49, 23.53, 23.54

More information

Refraction: Snell's Law. October 26, 2010

Refraction: Snell's Law. October 26, 2010 Refraction: Snell's Law October 26, 2010 When light passes from one medium into another, part of the incident light is reflected at the boundary The remainder passes into the new medium. Unless it is perpendicular,

More information

Properties of Light I

Properties of Light I Properties of Light I Light definition Light Spectrum Wavelength in nm (1nm = 10-7 cm) Visible/White Light Cosmic Gamma X-Rays Ultra Violet Infra Red Micro Waves Radio Waves 1 Theory of Light Two complimentary

More information

Lecture 24 EM waves Geometrical optics

Lecture 24 EM waves Geometrical optics Physics 2102 Jonathan Dowling Lecture 24 EM waves Geometrical optics EM spherical waves The intensity of a wave is power per unit area. If one has a source that emits isotropically (equally in all directions)

More information

NAME:... REFRACTION. Page 1

NAME:... REFRACTION.   Page 1 NAME:... REFRACTION 1. A ray of red light enters a semi-circular glass block normal to the curved surface. Which diagram correctly shows the partial reflection and refraction of the ray? www.kcpe-kcse.com

More information

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Chapter 33 cont The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Polarization of Light Waves The direction of polarization of each individual wave is defined to be the direction

More information

Physics 4C Chabot College Scott Hildreth

Physics 4C Chabot College Scott Hildreth Physics 4C Chabot College Scott Hildreth Snell s Law with Microwave Optics Experiment Goals: Experimentally verify Snell s Law holds for microwaves. Lab Safety Note! Although the microwaves in this experiment

More information

Introduction to Light

Introduction to Light Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer from the source to the observer. Images in mirrors Reflection

More information

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1 Announcement on HW 8 HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am Physics 102: Lecture 16, Slide 1 Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture

More information

Refracon. Refracon The spoon in the glass photo can be translated into a ray diagram.

Refracon. Refracon The spoon in the glass photo can be translated into a ray diagram. The of Light Learning Goals: to understand why light refracts when travelling through different media to calculate the index of refraction to use the index of refraction to calculate the speed of light

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT

L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION PHYSICS - GRADE: VIII REFRACTION OF LIGHT L. R. & S. M. VISSANJI ACADEMY SECONDARY SECTION - 2016-17 PHYSICS - GRADE: VIII REFRACTION OF LIGHT REFRACTION When light travels from one transparent medium to another transparent medium, it bends from

More information

Module 18: Diffraction-I Lecture 18: Diffraction-I

Module 18: Diffraction-I Lecture 18: Diffraction-I Module 18: iffraction-i Lecture 18: iffraction-i Our discussion of interference in the previous chapter considered the superposition of two waves. The discussion can be generalized to a situation where

More information