Lab 2: Real-Time Automotive Suspension system Simulator

Size: px
Start display at page:

Download "Lab 2: Real-Time Automotive Suspension system Simulator"

Transcription

1 ENGG*4420 Real Time System Design Lab 2: Real-Time Automotive Suspension system Simulator TA: Matthew Mayhew Due: Fri. Oct 12 th / Mon Oct 15 th ENGG*4420 1

2 Today s Activities Lab 2 Introduction. Lab 1 Demos. Start work on Lab 2. Note that some numbering is repeated for a few of the equations in the lab manual section for Lab 2. Equations referenced in this presentation match the numbering currently used. ENGG*4420 2

3 Lab 2 Development Environment HP PC LabVIEW 2009 software ENGG*4420 3

4 Introduction Types of vehicle suspension systems Passive Suspension System. Active Suspension System. Semi-Active Suspension System. SASS. Road disturbance Step Input. Harmonic Input. ENGG*4420 4

5 Passive Suspension System Standard vehicle suspension system. Employed in the majority of commercial vehicles. Advantages: Low cost. Simple implementation. Disadvantages: Purely passive elements. On-line performance optimization not possible. k s Vehicle body k t b s Tire z u z r z s ENGG*4420 5

6 Active Suspension System Fully active system. Computer controlled active element (F a ). Advantages: Offers excellent performance. Allows for control and performance optimization at any point during lifetime. Disadvantages: High cost. Major safety issues. High power demand. Vehicle body k t Tire F a z s z u z r ENGG*4420 6

7 Semi-Active Suspension System Hybrid system (Passive + Active elements). Provides excellent fail safe mechanism. Relatively low cost. Provides a performance comparable to the active system. Very low power demand. k s Vehicle body b s k t Tire z s b semi z u z r ENGG*4420 7

8 Quarter-Car Suspension Model z s z s m s m s Active element k s b s z u k s b s b semi z u m u m u z r z r k t k t Passive Suspension System Semi-Active Suspension System ENGG*4420 8

9 Quarter-Car Suspension Model cont. The system can be modeled using state space representation: Passive: Semi-Active: X & = AX + Lz& r & = AX + NXb + Lz& semi r X The two models are equivalent when the variable damper coefficient is set to 0.,, ENGG*4420 9

10 State Space Model X & = AX + NXb + Lz&, eq semi r In the S.S. equation: X State vector. A State matrix (system description). N Semi-active control matrix. L Input disturbance vector. Z r Road disturbance. Matrices description is provided in the lab manual pg ENGG*

11 State Space Model = = = Tire deflection sprung mass Velocity of Suspension deflection 2 1 s u s z z z z z x x x X & ENGG* mass unsprung Velocity of Tire deflection 4 3 u r u z z z x x & - Derivative of the state vector over the sampling time. - Derivative of the road disturbance over the sampling time. X & Z & r

12 Road Disturbance Step Input: Isolated sudden disturbance. Ex. Curb with a height of 10 cm. Z r = 0.1m Road Input Z r (t) 0 Time (t) ENGG*

13 Road Disturbance cont. Harmonic Input: Simple road profile. Modeled as a Sine wave with: Freq. 1 Hz. Amp. 10 cm. Phase 0. ENGG*

14 Semi-Active Suspension Control Methods Skyhook Control. Ground-hook control. Optimal control based on LQR. Fuzzy logic control: GA-based fuzzy control. Neural-Fuzzy control. Adaptive Fuzzy control. ENGG*

15 Linear Quadratic Regulator (LQR) The controller works towards minimizing the performance index given in equation (2.13). J T = lime T x& 2 + ρ1x1 + ρ 2x2 + ρ3x3 + ρ 4x4 eq The controller determines the required ideal active force (F a ) to stabilize the vehicle. ENGG*

16 Linear Quadratic Regulator (LQR) Cont. The active force (F a ) can be calculated using Equation (2.14) in the lab manual. G 1 = R T ( B P+ S0 ) F a = G X eq The representation of G is shown in Equation (2.15). eq ENGG*

17 Semi-Active Control Law (LQR) The optimal control law is determined using Fig According to the calculated optimal active force (F a ), and the absolute velocity of the two masses, the damping coefficient (b semi ) is calculated. Fig ENGG*

18 Semi-Active Control Law (LQR) cont. The LQR control method is summarized in table 2.2. ENGG*

19 Lab 2 Implementation steps Step 1: Read Chapter 2 of the lab manual (further information is given in the appendix section). Step 2: Implement the quarter-car passive and semi-active suspension models in LabVIEW. Step 3: Implement the two road disturbances (step and harmonic). ENGG*

20 Lab 2 Implementation steps Step 4: Implement the LQR controller for the semi-active suspension system. Step 5: Perform the following analysis: 1. Compare the performance of the passive and semi-active suspension systems. 2. Vary the weight parameters of the LQR controller (ρ i values in Eqn. 2.15) and observe the change in performance of the SASS. 3. Provide a measure to differentiate the difference in performance of the two systems (% difference?). ENGG*

21 Requirements 1. Fully functional passive and semiactive suspension systems, with the ability to switch between the two systems in the same project. 2. Simulations performed using the two road disturbances given in section of the lab manual. Step Harmonic ENGG*

22 Requirements 3. The following performance graphs must be present on the front panel: Vehicle ride quality ( 2). Suspension deflection response (X 1 ). Tire deflection response (X 3 ). Input disturbance to the system. 4. LQR control must be performed using a separate Task (loop with a timing VI) from the plant system. Time LabVIEW NOT required. X & ENGG* Real-

23 Notes Matlab Script Nodes The matrices can be coded using the MatLAB script node in LabVIEW. Matrix definitions are done in the following format: X= [xx xx xx; xx xx xx; xx xx xx]; Note that variables can be used within the matrix definition. ENGG*

24 Notes Matlab Script Nodes Matrices can be multiplied and added as long as the dimensions are consistent. To transpose a matrix add a after the matrix variable. Element wise multiplications can be performed using a.*. Matrix multiplication can be performed with a *. Dot products can be determined with the dot(x,y) function. ENGG*

25 Notes Matrix Another method of implementing the matrices is through using the matrix variables in LabVIEW. Matrix values must be calculated by hand and inputted in the matrices manually. Allows for the use of LabVIEW VIs to perform operations. Values may also be entered as an array and converted to Matrix form. ENGG*

26 Notes Plant/Controller synchronization A requirement of the lab is to implement the controller in a separate task than the plant system. Synchronization between the two systems can be accomplished using: Semaphores, or Occurrences. Task 1 Task 2 SASS Plant LQR Controller synchronization ENGG*

27 Notes - Structures Queues can be used to pass values between loops. Found in the Data Communication palette. ENGG*

28 Notes - Structures Flat Sequences can be used to make sure operations occur in order. Timing VIs can be found in a sub-palette of Programming. ENGG*

29 Notes - Structures MatLAB nodes can be found in the Structures sub-palette. Arrays and Matrixes found in the Programming palette. ENGG*

30 Demo Front Panel Performance Metrics Controls Passive Control Semi-Active Control Road Profile Task Communication ENGG*

31 Report Can use general structure similar to first lab. Implementation of model and controller. Communication/Synchronization between tasks. Implementation challenges and solutions. Performance Metrics. Semi-Active vs. Active Control. Effect of road profile. Weighting Factors. ENGG*

32 Deadlines and Marking Lab 2 is worth 8%. 4% for the report, and 4% for the demo. The Demo is due Oct 12 th /Oct. 15 th, 2012 in the Lab. The Report is due Oct 12 th /Oct. 15 th, 2012 in the Lab. Physical and Electronic copy. A signed group evaluation sheet must be submitted with the lab report. Do NOT include student numbers with the lab report. ENGG*

Lab 2: Real-Time Automotive Suspension system Simulator

Lab 2: Real-Time Automotive Suspension system Simulator ENGG*4420 Real Time System Design Lab 2: Real-Time Automotive Suspension system Simulator TA: Aws Abu-Khudhair (aabukhud@uoguelph.ca) Due: Week of Oct. 12th Aws Abu-Khudhair ENGG*4420 1 Today s Activities

More information

1 1 / 1 / Due : Fri. Nov. 23 rd / Mon. Nov. 26

1 1 / 1 / Due : Fri. Nov. 23 rd / Mon. Nov. 26 ENGG*4420 Real Time System Design (mmayhew@uoguelph.ca) Due : Fri. Nov. 23 rd / Mon. Nov. 26 th 1 1 Today s Activities Lab 4 Introduction. Lab 3 Demos. Start work on Lab 4. 2 2 Lab 4 Development Environment

More information

Comparative Analysis Of Vehicle Suspension System in Matlab-SIMULINK and MSc- ADAMS with the help of Quarter Car Model

Comparative Analysis Of Vehicle Suspension System in Matlab-SIMULINK and MSc- ADAMS with the help of Quarter Car Model Comparative Analysis Of Vehicle Suspension System in Matlab-SIMULINK and MSc- ADAMS with the help of Quarter Car Model S. J. Chikhale 1, Dr. S. P. Deshmukh 2 PG student, Dept. of Mechanical Engineering,

More information

Controllable Suspension Design Using Magnetorheological Fluid

Controllable Suspension Design Using Magnetorheological Fluid Controllable Suspension Design Using Magnetorheological Fluid Public Defence October 213 Student: Supervisor: Co-Supervisor: Anria Strydom Prof Schalk Els Dr Sudhir Kaul 1 Outline Project background MR

More information

Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension

Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension International Journal of Control Vol., No., DD Month 2x, 1 13 Hybrid Model Predictive Control Application Towards Optimal Semi-Active Suspension N. Giorgetti, A. Bemporad, E. Tseng, D. Hrovat Dept. Information

More information

AN APPROACH TO DEVELOPING A REFERENCE PROFILER

AN APPROACH TO DEVELOPING A REFERENCE PROFILER AN APPROACH TO DEVELOPING A REFERENCE PROFILER John B. Ferris TREY Associate SMITH Professor Graduate Mechanical Research Engineering Assistant Virginia Tech RPUG October Meeting 08 October 28, 2008 Overview

More information

Engineering Tool Development

Engineering Tool Development Engineering Tool Development Codification of Legacy Three critical challenges for Indian engineering industry today Dr. R. S. Prabakar and Dr. M. Sathya Prasad Advanced Engineering 21 st August 2013 Three

More information

Vehicle Suspension Optimization. J. Michael Gray Jacob Wronski Friday May 9 th, 2003

Vehicle Suspension Optimization. J. Michael Gray Jacob Wronski Friday May 9 th, 2003 Vehicle Suspension Optimization J. Michael Gray Jacob Wronski Friday May 9 th, 2003 Presentation Outline Project introduction Simulation model description Trade space exploration Single objective optimization

More information

Ride Analysis of Three Wheeled Vehicle Using MATLAB/Simulink

Ride Analysis of Three Wheeled Vehicle Using MATLAB/Simulink Ride Analysis of Three Wheeled Vehicle Using MATLAB/Simulink M K Naidu 1, S Srinivasa Rao 2 and T Tejesh 3 1, 2 Asso.Profs., Mechanical Dept., M V G R College of Engineering Email: mknaidu99@gmail.com

More information

Development of Fuzzy Logic Controller by Particle Swarm Optimization Algorithm for Semi-active Suspension System using Magneto-rheological Damper

Development of Fuzzy Logic Controller by Particle Swarm Optimization Algorithm for Semi-active Suspension System using Magneto-rheological Damper Development of Fuzzy Logic Controller by Particle Swarm Optimization Algorithm for Semi-active Suspension System using Magneto-rheological Damper MAT HUSSIN AB TALIB and INTAN Z. MAT DARUS Department of

More information

Research on Suspension System Based on Genetic Algorithm and Neural Network Control

Research on Suspension System Based on Genetic Algorithm and Neural Network Control 72 The Open Mechanical Engineering Journal, 2009, 3, 72-79 Open Access Research on Suspension System Based on Genetic Algorithm and Neural Network Control Chuan-Yin Tang and Li-Xin Guo * School of Mechanical

More information

A Simplified Vehicle and Driver Model for Vehicle Systems Development

A Simplified Vehicle and Driver Model for Vehicle Systems Development A Simplified Vehicle and Driver Model for Vehicle Systems Development Martin Bayliss Cranfield University School of Engineering Bedfordshire MK43 0AL UK Abstract For the purposes of vehicle systems controller

More information

THE EXPERIENCE WITH OPTIMISATION OF HIGHLY NON-LINEAR DYNAMIC SYSTEMS BY GENETIC ALGORITHMS IN MATLAB ENVIRONMENT

THE EXPERIENCE WITH OPTIMISATION OF HIGHLY NON-LINEAR DYNAMIC SYSTEMS BY GENETIC ALGORITHMS IN MATLAB ENVIRONMENT THE EXPERIENCE WITH OPTIMISATION OF HIGHLY NON-LINEAR DYNAMIC SYSTEMS BY GENETIC ALGORITHMS IN MATLAB ENVIRONMENT Zbynek Šika, Pavel Steinbauer, Michael Valášek, 1 Abstract: The paper summarises experience

More information

SEMI-ACTIVE VIBRATION CONTROL WITH ON-LINE IDENTIFICATION OF THE INVERSE MR DAMPER MODEL

SEMI-ACTIVE VIBRATION CONTROL WITH ON-LINE IDENTIFICATION OF THE INVERSE MR DAMPER MODEL SEMI-ACTIVE VIBRATION CONTROL WITH ON-LINE IDENTIFICATION OF THE INVERSE MR DAMPER MODEL Jerzy Kasprzyk and Piotr Krauze Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland,

More information

Lunar / Mars Rover Suspension

Lunar / Mars Rover Suspension Lunar / Mars Rover Suspension HW1: A Plan for a Simulation-Based Study ME 6105 Modeling and Simulation in Design January 30, 2007 Nathan Young Stephanie Thompson Robert Thiets 1. The Decision Situation

More information

COSMOS. Vehicle Suspension Analysis ---- SolidWorks Corporation. Introduction 1. Role of vehicle suspension 2. Motion analysis 2

COSMOS. Vehicle Suspension Analysis ---- SolidWorks Corporation. Introduction 1. Role of vehicle suspension 2. Motion analysis 2 ---- WHITE PAPER Vehicle Suspension Analysis CONTENTS Introduction 1 Role of vehicle suspension 2 Motion analysis 2 Motion analysis using COSMOSMotion 3 Real-life example 4-5 Exporting loads to COSMOSWorks

More information

Exploration Assignment #1. (Linear Systems)

Exploration Assignment #1. (Linear Systems) Math 0280 Introduction to Matrices and Linear Algebra Exploration Assignment #1 (Linear Systems) Acknowledgment The MATLAB assignments for Math 0280 were developed by Jonathan Rubin with the help of Matthew

More information

AN LPV APPROACH FOR SEMI-ACTIVE SUSPENSION CONTROL

AN LPV APPROACH FOR SEMI-ACTIVE SUSPENSION CONTROL Copyright c 29 by ABCM January 4-8, 2, Foz do Iguaçu, PR, Brazil AN LPV APPROACH FOR SEMI-ACTIVE SUSPENSION CONTROL Do Anh-Lam, anh-lam.do@gipsa-lab.grenoble-inp.fr Sename Olivier, olivier.sename@gipsa-lab.grenoble-inp.fr

More information

PROJECTILE MOTION PURPOSE

PROJECTILE MOTION PURPOSE PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile,

More information

Dynamic analysis of a half-car model with active suspension

Dynamic analysis of a half-car model with active suspension Dynamic analysis of a half-car model with active suspension Cătălin Alexandru, and Petre Alexandru Abstract Passive suspension systems of the motor vehicles have inherent limitations as a consequence of

More information

Active Suspension Design Requirements for Compliant Boundary Condition Road Disturbances

Active Suspension Design Requirements for Compliant Boundary Condition Road Disturbances Active Suspension Design Requirements for Compliant Boundary Condition Road Disturbances Anirudh Srinivasan Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in

More information

PSO based Adaptive Force Controller for 6 DOF Robot Manipulators

PSO based Adaptive Force Controller for 6 DOF Robot Manipulators , October 25-27, 2017, San Francisco, USA PSO based Adaptive Force Controller for 6 DOF Robot Manipulators Sutthipong Thunyajarern, Uma Seeboonruang and Somyot Kaitwanidvilai Abstract Force control in

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 4 Other control strategies These slides are devoted to two advanced control approaches, namely Operational space control Interaction

More information

SEMI-ACTIVE CONTROL OF BUILDING STRUCTURES USING A NEURO-FUZZY CONTROLLER WITH ACCELERATION FEEDBACK

SEMI-ACTIVE CONTROL OF BUILDING STRUCTURES USING A NEURO-FUZZY CONTROLLER WITH ACCELERATION FEEDBACK Proceedings of the 6th International Conference on Mechanics and Materials in Design, Editors: J.F. Silva Gomes & S.A. Meguid, P.Delgada/Azores, 26-30 July 2015 PAPER REF: 5778 SEMI-ACTIVE CONTROL OF BUILDING

More information

Experiment 9: Inverted Pendulum using Torsion Control System

Experiment 9: Inverted Pendulum using Torsion Control System DEPARTMENT OF ELECTRICAL ENGINEERING UNIVERSITY OF MINNESOTA EE 4237 State Space Control Laboratory Experiment 9: Inverted Pendulum using Torsion Control System Objective: 1. To study the LQR design and

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MATLAB sessions: Laboratory MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs

More information

Research Article. ISSN (Print) *Corresponding author Chen Hao

Research Article. ISSN (Print) *Corresponding author Chen Hao Scholars Journal of Engineering and Technology (SJET) Sch. J. Eng. Tech., 215; 3(6):645-65 Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources)

More information

SOLUTION APPROACHES TO DIFFERENTIAL EQUATIONS OF MECHANICAL SYSTEM DYNAMICS: A CASE STUDY OF CAR SUSPENSION SYSTEM

SOLUTION APPROACHES TO DIFFERENTIAL EQUATIONS OF MECHANICAL SYSTEM DYNAMICS: A CASE STUDY OF CAR SUSPENSION SYSTEM Advances in Science and Technology Research Journal Volume 12, No. 2, June 2018, pages 266-273 DOI: 10.12913/22998624/85662 Research Article SOLUTION APPROACHES TO DIFFERENTIAL EQUATIONS OF MECHANICAL

More information

Robotics: Science and Systems

Robotics: Science and Systems Robotics: Science and Systems Model Predictive Control (MPC) Zhibin Li School of Informatics University of Edinburgh Content Concepts of MPC MPC formulation Objective function and constraints Solving the

More information

Lab 0a: Introduction to MATLAB

Lab 0a: Introduction to MATLAB http://www.comm.utoronto.ca/~dkundur/course/real-time-digital-signal-processing/ Page 1 of 1 Lab 0a: Introduction to MATLAB Professor Deepa Kundur Introduction and Background Welcome to your first real-time

More information

in Truck Suspension - Design-by-Simulation O. Vaculn, W. Kortum, W. Schwartz Oberpfaenhofen, D Wessling, Germany

in Truck Suspension - Design-by-Simulation O. Vaculn, W. Kortum, W. Schwartz Oberpfaenhofen, D Wessling, Germany Analysis and Design of Semi-Active Damping in Truck Suspension - Design-by-Simulation O. Vaculn, W. Kortum, W. Schwartz DLR, German Aerospace Research Establishment Institute for Robotics and System Dynamics

More information

Hands-on Lab. LabVIEW Simulation Tool Kit

Hands-on Lab. LabVIEW Simulation Tool Kit Hands-on Lab LabVIEW Simulation Tool Kit The LabVIEW Simulation Tool Kit features a comprehensive suite of tools to test designs. This lab provides a primer to implementing a simulation. This will be useful

More information

Can be put into the matrix form of Ax=b in this way:

Can be put into the matrix form of Ax=b in this way: Pre-Lab 0 Not for Grade! Getting Started with Matlab Introduction In EE311, a significant part of the class involves solving simultaneous equations. The most time efficient way to do this is through the

More information

Lecture 17. ENGR-1100 Introduction to Engineering Analysis CENTROID OF COMPOSITE AREAS

Lecture 17. ENGR-1100 Introduction to Engineering Analysis CENTROID OF COMPOSITE AREAS ENGR-00 Introduction to Engineering Analysis Lecture 7 CENTROID OF COMPOSITE AREAS Today s Objective : Students will: a) Understand the concept of centroid. b) Be able to determine the location of the

More information

K-Beam Accelerometer. Acceleration. Capacitive MEMS, Triaxial Accelerometer. Type 8395A...

K-Beam Accelerometer. Acceleration. Capacitive MEMS, Triaxial Accelerometer. Type 8395A... Acceleration K-Beam Accelerometer Type 8395A... Capacitive MEMS, Triaxial Accelerometer Type 8395A is a high-sensitivity, low noise triaxial accelerometer which simultaneously measures acceleration and/or

More information

Lab 2: Introduction to mydaq and LabView

Lab 2: Introduction to mydaq and LabView Lab 2: Introduction to mydaq and LabView Lab Goals: Learn about LabView Programming Tools, Debugging and Handling Errors, Data Types and Structures, and Execution Structures. Learn about Arrays, Controls

More information

K-Beam Accelerometer. Acceleration. Capacitive MEMS, Triaxial Accelerometer. Type 8396A...

K-Beam Accelerometer. Acceleration. Capacitive MEMS, Triaxial Accelerometer. Type 8396A... Acceleration K-Beam Accelerometer Type 8396A... Capacitive MEMS, Triaxial Accelerometer Type 8396A is a high-sensitivity, low noise triaxial accelerometer which simultaneously measures acceleration and/or

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

Introduction: Equipment: Getting Started Collecting the data:

Introduction: Equipment: Getting Started Collecting the data: Introduction: Collecting Ball Bounce data. Many aspects relating to the motion of a bouncing ball can be modelled mathematically. The first stage in modelling the motion is to collect some data. The Calculator

More information

Chapter 2. MathScript

Chapter 2. MathScript Chapter 2. MathScript 2.1 What is MathScript MathScript is math-oriented, text-based computing language to address tasks mathematic calculation: Most suitable for Mathematic calculation. Matrix based data

More information

Using 1D & 3D Simulation for Mechatronic System Design

Using 1D & 3D Simulation for Mechatronic System Design Using 1D & 3D Simulation for Mechatronic System Design Andrew Dyer Altair Engineering, Inc. Troy, USA adyer@altair.com Abstract Products and processes have become increasingly complex to meet demands on

More information

EE6102 Multivariable Control Systems

EE6102 Multivariable Control Systems EE612 Multivariable Control Systems Homework Assignments for Part 2 Prepared by Ben M. Chen Department of Electrical & Computer Engineering National University of Singapore April 21, 212 EE612 Multivariable

More information

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jiri Jaros*, Vojtech Nikl*, Bradley E. Treeby *Department of Compute Systems, Brno University of Technology Department of Medical

More information

The Virtual Prototype of a Mechatronic Suspension System with Active Force Control

The Virtual Prototype of a Mechatronic Suspension System with Active Force Control The Virtual Prototype of a Mechatronic Suspension System with Active Force Control CATALIN ALEXANDRU, PETRE ALEXANDRU Product Design and Robotics Department Transilvania University of Brasov 9 Bd. Eroilor,

More information

Precalculus Notes: Unit 7 Systems of Equations and Matrices

Precalculus Notes: Unit 7 Systems of Equations and Matrices Date: 7.1, 7. Solving Systems of Equations: Graphing, Substitution, Elimination Syllabus Objectives: 8.1 The student will solve a given system of equations or system of inequalities. Solution of a System

More information

Graphical Analysis of Kinematics

Graphical Analysis of Kinematics Physics Topics Graphical Analysis of Kinematics If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Velocity and

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

Controller Calibration using a Global Dynamic Engine Model

Controller Calibration using a Global Dynamic Engine Model 23.09.2011 Controller Calibration using a Global Dynamic Engine Model Marie-Sophie Vogels Johannes Birnstingl Timo Combé CONTENT Introduction Description of Global Dynamic Model Concept Controller Calibration

More information

Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite.

Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite. Experiment 6 Snell s Law 6.1 Objectives Use Snell s Law to determine the index of refraction of Lucite. Observe total internal reflection and calculate the critical angle. Explain the basis of how optical

More information

Potential of Low Bandwidth Active Suspension Control with Continuously Variable Damper

Potential of Low Bandwidth Active Suspension Control with Continuously Variable Damper roceedings of the 7th World Congress The nternational Federation of Automatic Control Seoul, Korea, July 6-, 28 otential of Low Bandwidth Active Suspension Control with Continuously Variable Damper Guido

More information

Optimization to Reduce Automobile Cabin Noise

Optimization to Reduce Automobile Cabin Noise EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 01-05 June 2008. Optimization to Reduce Automobile Cabin Noise Harold Thomas, Dilip Mandal, and Narayanan Pagaldipti

More information

A Self Tuning Suspension Controller for Multi-body Quarter Vehicle Model

A Self Tuning Suspension Controller for Multi-body Quarter Vehicle Model Proceedings of the 7th World Congress The International Federation of Automatic Control A Self Tuning Suspension Controller for Multi-body Quarter Vehicle Model C. Poussot-Vassal A. Drivet O. Sename L.

More information

Plotting Graphs. Error Bars

Plotting Graphs. Error Bars E Plotting Graphs Construct your graphs in Excel using the method outlined in the Graphing and Error Analysis lab (in the Phys 124/144/130 laboratory manual). Always choose the x-y scatter plot. Number

More information

ME422 Mechanical Control Systems Matlab/Simulink Hints and Tips

ME422 Mechanical Control Systems Matlab/Simulink Hints and Tips Cal Poly San Luis Obispo Mechanical Engineering ME Mechanical Control Systems Matlab/Simulink Hints and Tips Ridgely/Owen, last update Jan Building A Model The way in which we construct models for analyzing

More information

Example: Modeling a Cruise Control System in Simulink

Example: Modeling a Cruise Control System in Simulink Example: Modeling a Cruise Control System in Simulink Physical setup and system equations Building the model Open-loop response Extracting the Model Implementing PI control Closed-loop response Physical

More information

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has.

Vector: A series of scalars contained in a column or row. Dimensions: How many rows and columns a vector or matrix has. ASSIGNMENT 0 Introduction to Linear Algebra (Basics of vectors and matrices) Due 3:30 PM, Tuesday, October 10 th. Assignments should be submitted via e-mail to: matlabfun.ucsd@gmail.com You can also submit

More information

Optimised corrections for finite-difference modelling in two dimensions

Optimised corrections for finite-difference modelling in two dimensions Optimized corrections for 2D FD modelling Optimised corrections for finite-difference modelling in two dimensions Peter M. Manning and Gary F. Margrave ABSTRACT Finite-difference two-dimensional correction

More information

ELEC4042 Signal Processing 2 MATLAB Review (prepared by A/Prof Ambikairajah)

ELEC4042 Signal Processing 2 MATLAB Review (prepared by A/Prof Ambikairajah) Introduction ELEC4042 Signal Processing 2 MATLAB Review (prepared by A/Prof Ambikairajah) MATLAB is a powerful mathematical language that is used in most engineering companies today. Its strength lies

More information

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT ,

Math 4: Advanced Algebra Ms. Sheppard-Brick A Quiz Review LT , 4A Quiz Review LT 3.4 3.10, 4.1 4.3 Key Facts Know how to use the formulas for projectile motion. The formulas will be given to you on the quiz, but you ll need to know what the variables stand for Horizontal:

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Przemys law G asior, Stanis law Gardecki, Jaros law Gośliński and Wojciech Giernacki Poznan University of

More information

Colorado State University Department of Mechanical Engineering. MECH Laboratory Exercise #1 Introduction to MATLAB

Colorado State University Department of Mechanical Engineering. MECH Laboratory Exercise #1 Introduction to MATLAB Colorado State University Department of Mechanical Engineering MECH 417 - Laboratory Exercise #1 Introduction to MATLAB Contents 1) Vectors and Matrices... 2 2) Polynomials... 3 3) Plotting and Printing...

More information

Scientific Method and Graphing

Scientific Method and Graphing Scientific Method and Graphing Objectives - Students will be able to: 1.Explain what an independent and a dependent variable are. 2.Properly label a data table and graph 3.Create a graph from a data table

More information

Amplifying an Instructional Task Algebra II Example

Amplifying an Instructional Task Algebra II Example Original Task The student is expected to write the equation of a parabola using given attributes, including vertex, focus, directrix, axis of symmetry, and direction of opening. A(4)(B) Write the equations

More information

LED55WPG Programmable LED Driver

LED55WPG Programmable LED Driver Dimmable Constant Current Rev 8-9-7 Electrical Specifications Input Voltage Range: Frequency: Power Factor: Inrush Current: Input Current (Max): -77 Vac Nom. (8-35 V Min/Max) 5/6 Hz Nom. (47-63 Hz Min/Max)

More information

Modular and Scalable Power Converters in the UPS Industry

Modular and Scalable Power Converters in the UPS Industry A-PDF Split DEMO : Purchase from www.a-pdf.com to remove the watermark Modular and Scalable Power Converters in the Industry Ian Wallace Eaton Corporation, Innovation Center 1 Eaton Overview Eaton Electric

More information

SPARTAN ROBOTICS FRC 971

SPARTAN ROBOTICS FRC 971 SPARTAN ROBOTICS FRC 971 Controls Documentation 2015 Design Goals Create a reliable and effective system for controlling and debugging robot code that provides greater flexibility and higher performance

More information

Lab 2: Introduction to LabVIEW 8.5

Lab 2: Introduction to LabVIEW 8.5 Lab 2: Introduction to LabVIEW 8.5 INTRODUCTION: This lab is designed as an introduction to using LabVIEW. In this lab you will run through some tutorials to get a basic understanding of some of the LabVIEW

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No 643921. TOOLS INTEGRATION UnCoVerCPS toolchain Goran Frehse, UGA Xavier

More information

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx 1 of 9 FreeMat Tutorial FreeMat is a general purpose matrix calculator. It allows you to enter matrices and then perform operations on them in the same way you would write the operations on paper. This

More information

Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization

Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization Traffic Signal Control Based On Fuzzy Artificial Neural Networks With Particle Swarm Optimization J.Venkatesh 1, B.Chiranjeevulu 2 1 PG Student, Dept. of ECE, Viswanadha Institute of Technology And Management,

More information

Engineering Software. Computer Aided Design Mathematical modelling and simulation Other specialised software. ENGG1811: Computing for Engineers

Engineering Software. Computer Aided Design Mathematical modelling and simulation Other specialised software. ENGG1811: Computing for Engineers ENGG1811: Computing for Engineers Engineering Software Computer Aided Design Mathematical modelling and simulation Other specialised software Cartoon by Roger Penwill, www.cadalyst.com/management/cad-cartoon-6373

More information

Matlab Tutorial. The value assigned to a variable can be checked by simply typing in the variable name:

Matlab Tutorial. The value assigned to a variable can be checked by simply typing in the variable name: 1 Matlab Tutorial 1- What is Matlab? Matlab is a powerful tool for almost any kind of mathematical application. It enables one to develop programs with a high degree of functionality. The user can write

More information

A Brief Introduction to MATLAB

A Brief Introduction to MATLAB A Brief Introduction to MATLAB MATLAB (Matrix Laboratory) is an interactive software system for numerical computations and graphics. As the name suggests, MATLAB was first designed for matrix computations:

More information

Purdue e-pubs. Purdue University. Jeongil Park Samsung Electronics Co. Nasir Bilal Purdue University. Douglas E. Adams Purdue University

Purdue e-pubs. Purdue University. Jeongil Park Samsung Electronics Co. Nasir Bilal Purdue University. Douglas E. Adams Purdue University Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 26 Development of a Two-Dimensional Finite Element Model of a Suction Valve for Reduction

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters

A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters ISSN (e): 2250 3005 Volume, 06 Issue, 12 December 2016 International Journal of Computational Engineering Research (IJCER) A Longitudinal Control Algorithm for Smart Cruise Control with Virtual Parameters

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

LabVIEW Basics I: Introduction Course

LabVIEW Basics I: Introduction Course www.ni.com/training LabVIEW Basics I Page 1 of 4 LabVIEW Basics I: Introduction Course Overview The LabVIEW Basics I course prepares you to develop test and measurement, data acquisition, instrument control,

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 2016 Laboratory Project #1 Assigned: January 25, 2016 Due Date: Laboratory Section on Week of February 15, 2016 Description: The purpose of this laboratory

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

2009 E09PS E09PS E09PS E09PS E09PS E09PS38 IEEE 2009 E09PS39 E09PS40 E09PS41 E09PS42 E09PS43 IEEE 2008 E09PS44

2009 E09PS E09PS E09PS E09PS E09PS E09PS38 IEEE 2009 E09PS39 E09PS40 E09PS41 E09PS42 E09PS43 IEEE 2008 E09PS44 1 CODE IEEE TRANSACTION POWER SYSTEM YEAR E09PS32 E09PS01 E09PS02 E09PS03 E09PS04 E09PS05 E09PS06 E09PS07 E09PS08 E09PS09 E09PS10 E09PS11 E09PS12 E09PS13 E09PS14 E09PS15 E09PS16 E09PS17 E09PS18 E09PS19

More information

Running Linear Inverted Pendulum Experiment

Running Linear Inverted Pendulum Experiment ASEIL Quanser Controls Lab, Bu-212E Running Linear Inverted Pendulum Experiment Contents Purpose...1 Physical Setup...1 Procedures...2 Step 1: Starting MATLAB...2 Step 2: Selecting Compiler...2 Step 3:

More information

Paul Goossens Product Director

Paul Goossens Product Director Paul Goossens Product Director June 2009 Maplesoft, a division of Waterloo Maple Inc., 2009 Maplesoft and Maple are trademarks of Waterloo Maple Inc. 2009 Maplesoft, a a division of of Waterloo Maple Inc.

More information

Experimental Fault Diagnosis in Systems Containing Finite Elements of Plate of Kirchoff by Using State Observers Methodology

Experimental Fault Diagnosis in Systems Containing Finite Elements of Plate of Kirchoff by Using State Observers Methodology Journal of Physics: Conference Series PAPER OPEN ACCESS Experimental Fault Diagnosis in Systems Containing Finite Elements of Plate of Kirchoff by Using State Observers Methodology To cite this article:

More information

Hybrid control strategy for a semi active suspension system using fuzzy logic and bio-inspired chaotic fruit fly algorithm

Hybrid control strategy for a semi active suspension system using fuzzy logic and bio-inspired chaotic fruit fly algorithm Hybrid control strategy for a semi active suspension system using fuzzy logic and bio-inspired chaotic fruit fly algorithm Vikram Bhattacharjee Department of Electrical & Computer Engineering Carnegie

More information

Page 1 of 6. ME 3200 Mechatronics I Laboratory Lab 2: LabView Computer Systems. Introduction

Page 1 of 6. ME 3200 Mechatronics I Laboratory Lab 2: LabView Computer Systems. Introduction ME 3200 Mechatronics I Laboratory Lab 2: LabView Computer Systems Introduction The purpose of this lab is to introduce the basics of creating programs in LabView for data collection and analysis. LabView

More information

Linear quadratic regulator

Linear quadratic regulator Chapter 5 Linear quadratic regulator 5.1 Introduction The linear quadratic regulator is one of the most simple optimal controller that can be developed. It is a stable and explicit controller. Its key

More information

Modeling Mechanical System using SIMULINK

Modeling Mechanical System using SIMULINK Modeling Mechanical System using SIMULINK Mechanical System We will consider a toy train consisting of an engine and a car as shown in Figure. Assuming that the train only travels in one direction, we

More information

Final project: Design problem

Final project: Design problem ME309 Homework #5 Final project: Design problem Select one of the analysis problems listed below to solve. Your solution, along with a description of your analysis process, should be handed in as a final

More information

LMS Virtual.Lab Noise and Vibration

LMS Virtual.Lab Noise and Vibration LMS Virtual.Lab Noise and Vibration LMS Virtual.Lab Noise and Vibration From component to system-level noise and vibration prediction 2 LMS Virtual.Lab Noise and Vibration LMS Virtual.Lab Noise and Vibration

More information

Role of Kinematic Analysis in tuning the Dynamic Behavior of a Formula Car

Role of Kinematic Analysis in tuning the Dynamic Behavior of a Formula Car gopalax -International Journal of Technology And Engineering System(IJTES): Jan March 2011- Vol.2.No.3. Role of Kinematic Analysis in tuning the Dynamic Behavior of a Formula Car K. J. Prashanth 1, Ashish

More information

LAB 2: Linear Equations and Matrix Algebra. Preliminaries

LAB 2: Linear Equations and Matrix Algebra. Preliminaries Math 250C, Section C2 Hard copy submission Matlab # 2 1 Revised 07/13/2016 LAB 2: Linear Equations and Matrix Algebra In this lab you will use Matlab to study the following topics: Solving a system of

More information

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G.

VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. VIBRATION ISOLATION USING A MULTI-AXIS ROBOTIC PLATFORM G. Satheesh Kumar, Y. G. Srinivasa and T. Nagarajan Precision Engineering and Instrumentation Laboratory Department of Mechanical Engineering Indian

More information

Ensemble QLAB. Stand-Alone, 1-4 Axes Piezo Motion Controller. Control 1 to 4 axes of piezo nanopositioning stages in open- or closed-loop operation

Ensemble QLAB. Stand-Alone, 1-4 Axes Piezo Motion Controller. Control 1 to 4 axes of piezo nanopositioning stages in open- or closed-loop operation Ensemble QLAB Motion Controllers Ensemble QLAB Stand-Alone, 1-4 Axes Piezo Motion Controller Control 1 to 4 axes of piezo nanopositioning stages in open- or closed-loop operation Configurable open-loop

More information

Leveraging Integrated Concurrent Engineering for vehicle dynamics simulation. Manuel CHENE MSC.Software France

Leveraging Integrated Concurrent Engineering for vehicle dynamics simulation. Manuel CHENE MSC.Software France Leveraging Integrated Concurrent Engineering for vehicle dynamics simulation Manuel CHENE MSC.Software France Agenda Challenge of vehicle dynamic simulation: frequency domain coverage necessity for a multi

More information

ECE 463 Lab 1: Introduction to LabVIEW

ECE 463 Lab 1: Introduction to LabVIEW ECE 463 Lab 1: Introduction to LabVIEW 1. Introduction The purpose of the lab session of ECE463 is to apply/practice the digital communication theory on software-defined radios (USRPs). USRP is coupled

More information

Analytically Redundancy Based IFDI Scheme for Semi-Active Suspension Systems in Motorcycle

Analytically Redundancy Based IFDI Scheme for Semi-Active Suspension Systems in Motorcycle Journal of Physics: Conference Series PAPER OPEN ACCESS Analytically Redundancy Based IFDI Scheme for Semi-Active Suspension Systems in Motorcycle To cite this article: D Capriglione et al 2018 J. Phys.:

More information

Mr. C s Math III Exam is Tue 1/14/14 in the Presentation Center please be there for 11:20 Check-In and Test Return. You may not leave early (sorry)

Mr. C s Math III Exam is Tue 1/14/14 in the Presentation Center please be there for 11:20 Check-In and Test Return. You may not leave early (sorry) Mr. C s Math III Exam is Tue 1/14/14 in the Presentation Center please be there for 11:20 Check-In and Test Return Make Sure You Bring: Your Tests to return Calculator w/ good batteries Pencils/Erasers

More information

From Motion diagrams to Position and Velocity Graphs

From Motion diagrams to Position and Velocity Graphs From Motion diagrams to Position and Velocity Graphs Name: Group Members: Date: TA s Name: Apparatus: Aluminum track and a support, cart, plastic ruler, tape timer, and pencil Objectives: 1) To be familiar

More information