Linear quadratic regulator

Size: px
Start display at page:

Download "Linear quadratic regulator"

Transcription

1 Chapter 5 Linear quadratic regulator 5.1 Introduction The linear quadratic regulator is one of the most simple optimal controller that can be developed. It is a stable and explicit controller. Its key points are that it is ease to calculate and that it is the best optimal controller that can be done. Its main disadvantage is that can t work with constraints. Can be developed a MPC that work in a similar way than the LQR. These controllers are designed as Constrained LQR. However these controllers have a performance worse than conventional LQR. Its main advantage is the possibility to use constraints. 5.2 Problem design Considering the following discrete linear system x k+1 = Ax k + Bu k y = Cx k (5.1) The linear quadratic regulator propose the following cost function to minimize J = x Q + u R (5.2) where x is the state vector, u is the control action vector, Q is the weighting matrix to evaluate the state and R is the weighting matrix to evaluate the control action. The solution of this controller can be obtained resolving a Ricatti equation. In order to change the equilibrium point from origin to x D it s used the following modification where u = Kx + M y D, M is a matrix that resolve x = M y and K is the discrete control law 26

2 of the LQR. Supposing that the steady state can be reached, this matrix can be obtained from the following way M = (C (I 2 2 (A + BK)) 1 B) 1 (5.3) 5.3 Matlab Simulation. In order to emulate this controller it is made a scheme in Simulink/Matlab. Figure 5.1: LQR scheme (Simulink/Matlab) It is simulate two situations: a sunny day in which can be obtained a lot of energy from the solar panels and a cloudy day in which most of the energy is obtained from the storage systems. The controller LQR has a explicit control law u = K LQR x obtained resolving the Riccati 27

3 equation. In this case, the control law is obtained using the command dlqr from M atlab. It necessary to use the weighting matrixes in order to calculate the matrix K LQR. The weighting matrixes are Q y = 5 8 ; R = 1 1 K LQR =, 12, 6, 1, 5 In figure 5.1 in color cyan can be watched a full state observer. It is used to obtain the state vector x. Due to the matrix C of the linearized system is not singular, the output and the state of the system can be calculated directly from: x = C 1 y (5.4) However, the observer provide a certain degree of smoothness and it is relatively simple to make thus has been decided to calculate it and introduce it in the scheme. The observer gain is, 12 L =, 5 The economic cost function to optimize was the equation 3.1 that can be rewritten as equation 3.3. Can be watched that the real cost function of the LQR is J = v 2 R + y y D 2 Q f eco (5.5) where f eco is the economic cost function,u and v are related through equation u = v + L w (5.6) where w are the system disturbances,u are control action that attack the linearized system and v are the control action before the feedforward. Therefore this controller it is not an economic controller due to the economic cost function is not minimized. This controller will move the system to the desired operational point minimizing the equation 5.5. The problem is that it is not the economic cost function A sunny day. In this case it is supposed a sunny day and therefore there are a excess of generated energy that in a economic system must be stored in the storage system according to the minimization of a cost function, in this case the equation 3.1. This following profile represent the best condition of working and if the system is good designed the controller must have its best performance in 28

4 this case. This profile is a typical design case and was provided by L. valverde Disturbances (Sunny day): Generation and Solar Panels hours 12 Disturbances: Sunny day hours Figure 5.2: Disturbances for LQR simulation (Sunny day) 29

5 In figure 5.2(a) can be watched that the panels produce a lot of energy in a range of time. Thus the controller should has to manage this energy excess so that it is necessary to buy or waste a minimal amount of energy. It will be the main feature of a good economic controller. In order to obtain good results, the chosen weighting matrixes are: Q y = 1 1 ; R = 5 8 The weighting values in the matrix Q are increase in order to compensate the effect of the disturbances. SOC(%) Battery SOC SOC real SOC operation point MHL(%) Metal Hidrure Level (MHL) MHL real MHL operation point Figure 5.3: Curves (Sunny day):(a)soc LQR,(b)HML LQR In figure 5.3(a),(b) is shown the evolution in 24h of the storage system when the desired operational point are SOC = 6%, HML = 45% and the initial state of the storage system are SOC = 5%, HML = 5%. In this figures is exposed that the hydrogen system is only used at the beginning (5.4) in order to reach the desired operational point. This graphics show how the system converges to this steady state. It s clear that it is not a good economical behaviour due to in economically optimal-controlled system the plant never reaches a steady state. Figure 5.7 show the energy that is wasted or purchased to the GP N. It is a indicator of the 3

6 15 Hydrogen Power hours Figure 5.4: Hydrogen power P LQR H2 (Sunny day). Power grid Figure 5.5: power sypply P LQR grid (Sunny day). 31

7 performance of the controller. The cost function take into account two economic aspect, one is the minimization of the control action applied to the system. In particular P grid that show the purchased power. A economically well-controller plant must to reduce this power near to zero. In the cost function it is exposed providing a high weighting factor about this power. In this case the signal P grid is not near to zero thus it s not a good economical controller ALL Signals Hydrogen Grid batteries Pnet Panels Figure 5.6: All LQR curves (Sunny day). In figure 5.8 is shown all powers. In this graphics can be observed easily that the demand is satisfied by general power supply (P grid ) and when there are excess of energy it is wasted. It is a very bad economic performance due to the hydrogen system and batteries are not used to store the excess of energy. In figure 5.7 (a) can be watched that the demand is satisfied so this control objective is satisfied. In figure 5.7(b) is shown the evolution of the economic cost function with a average value of The cost function is mainly composed by the term J(u) which indicates the evolution of the powers of the plant. The term J(y) of the cost function is near to zero so this is another indicator that this controller is not economical A cloudy day. In a cloudy day the energy provide by solar panels will be poor. Therefore in this case the demand should be supported by the storage systems but examining the other test the more likely it will be that all the energy is provided by the GP N. The storage system will be moved to the operational point exposed above. 32

8 11 Provided Power supply Cost(no Units) Cost Function Cost function values Cost J(u) setpoint desviation J(y) Average Cost function Figure 5.7: LQR Curves:(a)Satisfaction of the (Sunny day),(b)economic cost function (Sunny day) 33

9 25 2 Disturbances (Cloudy day): Generation and Solar Panels hours 15 Disturbances: Cloudy day hours Figure 5.8: Disturbances for LQR simulation (Cloudy day) 34

10 ALL Signals Hydrogen Grid batteries Pnet Panels Figure 5.9: All LQR curves (Cloudy day). In figure 5.9 can be observed that in this case happens the same that in the previous case, the energy faults are satisfied using the energy purchased from GP N. In figure 5.1(b) can be observed that the average cost is lightly low in this case. In this case the value of the cost function is about Can be confuse that this controller has a better performance in a cloudy day than in a sunny day but this result is due to that the disturbances are smaller in this case than in the previous case. 35

11 11 Provided Power supply Cost Function Cost function values Cost J(u) setpoint desviation J(y) Average Cost function Cost(no Units) Figure 5.1: Curves: (a)satisfaction of the (Cloudy day),(b)economic cost function (Cloudy day) 36

Estimation of Unknown Disturbances in Gimbal Systems

Estimation of Unknown Disturbances in Gimbal Systems Estimation of Unknown Disturbances in Gimbal Systems Burak KÜRKÇÜ 1, a, Coşku KASNAKOĞLU 2, b 1 ASELSAN Inc., Ankara, Turkey 2 TOBB University of Economics and Technology, Ankara, Turkey a bkurkcu@aselsan.com.tr,

More information

Robust Pole Placement using Linear Quadratic Regulator Weight Selection Algorithm

Robust Pole Placement using Linear Quadratic Regulator Weight Selection Algorithm 329 Robust Pole Placement using Linear Quadratic Regulator Weight Selection Algorithm Vishwa Nath 1, R. Mitra 2 1,2 Department of Electronics and Communication Engineering, Indian Institute of Technology,

More information

Robotics: Science and Systems

Robotics: Science and Systems Robotics: Science and Systems Model Predictive Control (MPC) Zhibin Li School of Informatics University of Edinburgh Content Concepts of MPC MPC formulation Objective function and constraints Solving the

More information

Experiment 9: Inverted Pendulum using Torsion Control System

Experiment 9: Inverted Pendulum using Torsion Control System DEPARTMENT OF ELECTRICAL ENGINEERING UNIVERSITY OF MINNESOTA EE 4237 State Space Control Laboratory Experiment 9: Inverted Pendulum using Torsion Control System Objective: 1. To study the LQR design and

More information

Analysis and Modeling

Analysis and Modeling Guillaume Guérard A Complex System Approach for SMART GRID Analysis and Modeling KES 12 September 2012 1 Problematic Thesis: Optimization in complex networks. Problem: Optimization of the energy distribution

More information

Lab 2: Real-Time Automotive Suspension system Simulator

Lab 2: Real-Time Automotive Suspension system Simulator ENGG*4420 Real Time System Design Lab 2: Real-Time Automotive Suspension system Simulator TA: Aws Abu-Khudhair (aabukhud@uoguelph.ca) Due: Week of Oct. 12th Aws Abu-Khudhair ENGG*4420 1 Today s Activities

More information

Optimal Control Simulation Problem

Optimal Control Simulation Problem ECE-S64 001 Optimal Control Midterm his solution was prepared by Rob Allen on Feb 9, 009 he basic questions are given on the following page the solution presented includes a variety of {Q, R} which include

More information

x y

x y 10. LECTURE 10 Objectives I understand the difficulty in finding an appropriate function for a data set in general. In some cases, I can define a function type that may fit a data set well. Last time,

More information

Lab 2: Real-Time Automotive Suspension system Simulator

Lab 2: Real-Time Automotive Suspension system Simulator ENGG*4420 Real Time System Design Lab 2: Real-Time Automotive Suspension system Simulator TA: Matthew Mayhew (mmayhew@uoguelph.ca) Due: Fri. Oct 12 th / Mon Oct 15 th ENGG*4420 1 Today s Activities Lab

More information

Resilient Smart Grids

Resilient Smart Grids Resilient Smart Grids André Teixeira Kaveh Paridari, Henrik Sandberg KTH Royal Institute of Technology, Sweden SPARKS 2nd Stakeholder Workshop Cork, Ireland March 25th, 2015 Legacy Distribution Grids Main

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Software Algorithm Testing Examples

Software Algorithm Testing Examples Software algorithms used for processing large amounts of data need to be efficient, incorporating industry best practices. This is especially important for fast searching, sorting, and merging of data

More information

Trajectory Optimization

Trajectory Optimization C H A P T E R 12 Trajectory Optimization So far, we have discussed a number of ways to solve optimal control problems via state space search (e.g., Dijkstra s and Dynamic Programming/Value Iteration).

More information

Robotics 2 Iterative Learning for Gravity Compensation

Robotics 2 Iterative Learning for Gravity Compensation Robotics 2 Iterative Learning for Gravity Compensation Prof. Alessandro De Luca Control goal! regulation of arbitrary equilibium configurations in the presence of gravity! without explicit knowledge of

More information

Real time Ray-Casting of Algebraic Surfaces

Real time Ray-Casting of Algebraic Surfaces Real time Ray-Casting of Algebraic Surfaces Martin Reimers Johan Seland Center of Mathematics for Applications University of Oslo Workshop on Computational Method for Algebraic Spline Surfaces Thursday

More information

Lecture abstract. EE C128 / ME C134 Feedback Control Systems. Chapter outline. Intro, [1, p. 664] Lecture Chapter 12 Design via State Space

Lecture abstract. EE C128 / ME C134 Feedback Control Systems. Chapter outline. Intro, [1, p. 664] Lecture Chapter 12 Design via State Space EE C18 / ME C134 Feedback Control Systems Lecture Chapter 1 Design via State Space Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley

More information

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET

Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET Multiple-Choice Test Spline Method Interpolation COMPLETE SOLUTION SET 1. The ollowing n data points, ( x ), ( x ),.. ( x, ) 1, y 1, y n y n quadratic spline interpolation the x-data needs to be (A) equally

More information

Control 2. Keypoints: Given desired behaviour, determine control signals Inverse models:

Control 2. Keypoints: Given desired behaviour, determine control signals Inverse models: Control 2 Keypoints: Given desired behaviour, determine control signals Inverse models: Inverting the forward model for simple linear dynamic system Problems for more complex systems Open loop control:

More information

CHAPTER 3 MODELING OF DEAERATOR AND SIMULATION OF FAULTS

CHAPTER 3 MODELING OF DEAERATOR AND SIMULATION OF FAULTS 27 CHAPTER 3 MODELING OF DEAERATOR AND SIMULATION OF FAULTS 3.1 INTRODUCTION Modeling plays an important role in the prediction and assessment of plant performance. There are two ways of getting the model

More information

A Virtual Environment for Industrial Control Systems: A Nonlinear Use-Case in Attack Detection, Identification, and Response

A Virtual Environment for Industrial Control Systems: A Nonlinear Use-Case in Attack Detection, Identification, and Response ACSAC ICSS 2018 A Virtual Environment for Industrial Control Systems: A Nonlinear Use-Case in Attack Detection, Identification, and Response Andrés F. Murillo Joint work with Luis F. Cómbita, Andrea Calderón,

More information

Get the Design Right, the Rest is Automatic An Adaptive MPC Technology

Get the Design Right, the Rest is Automatic An Adaptive MPC Technology Get the Design Right, the Rest is Automatic An Adaptive MPC Technology Contents 1. Introduction Yucai Zhu Tai-Ji Control Best, The Netherlands 2. The Architecture of the Adaptive MPC 3. How does it Work?

More information

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, 205 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations 205 / 29 Thought Experiment

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Javad Lavaei. Department of Electrical Engineering Columbia University

Javad Lavaei. Department of Electrical Engineering Columbia University Graph Theoretic Algorithm for Nonlinear Power Optimization Problems Javad Lavaei Department of Electrical Engineering Columbia University Joint work with: Ramtin Madani, Ghazal Fazelnia and Abdulrahman

More information

Automatic Control Industrial robotics

Automatic Control Industrial robotics Automatic Control Industrial robotics Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Prof. Luca Bascetta Industrial robots

More information

Unleash the Power of FREE DeltaV Model Predictive Control (MPC) Session ID:

Unleash the Power of FREE DeltaV Model Predictive Control (MPC) Session ID: Unleash the Power of FREE DeltaV Model Predictive Control (MPC) Session ID: 6-14908 DISCLAIMER The information and/or opinions expressed in this presentation are those of the authors and do not necessarily

More information

Self-optimizing control From key performance indicators to control of biological systems

Self-optimizing control From key performance indicators to control of biological systems Self-optimizing control From key performance indicators to control of biological systems Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Technology (NTNU) Trondheim

More information

Written exams of Robotics 2

Written exams of Robotics 2 Written exams of Robotics 2 http://www.diag.uniroma1.it/~deluca/rob2_en.html All materials are in English, unless indicated (oldies are in Year Date (mm.dd) Number of exercises Topics 2018 07.11 4 Inertia

More information

Computation of the Constrained Infinite Time Linear Quadratic Optimal Control Problem

Computation of the Constrained Infinite Time Linear Quadratic Optimal Control Problem Computation of the Constrained Infinite Time Linear Quadratic Optimal Control Problem July 5, Introduction Abstract Problem Statement and Properties In this paper we will consider discrete-time linear

More information

Targeting Nominal GDP or Prices: Expectation Dynamics and the Interest Rate Lower Bound

Targeting Nominal GDP or Prices: Expectation Dynamics and the Interest Rate Lower Bound Targeting Nominal GDP or Prices: Expectation Dynamics and the Interest Rate Lower Bound Seppo Honkapohja, Bank of Finland Kaushik Mitra, University of Saint Andrews *Views expressed do not necessarily

More information

The Interpolating Polynomial

The Interpolating Polynomial Math 45 Linear Algebra David Arnold David-Arnold@Eureka.redwoods.cc.ca.us Abstract A polynomial that passes through a given set of data points is called an interpolating polynomial. In this exercise you

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

Motivation Thermal Modeling

Motivation Thermal Modeling Motivation Thermal Modeling First approach (Physical Buildings) Second Approach (Simulation Models) Model-Based Optimal Control Design Robust MPC Comparing Different Control Strategies Co-design of Control

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

Exercises Unit 4. Graphics User Interface

Exercises Unit 4. Graphics User Interface Exercises Unit 4. Graphics User Interface Working period: Seventh and Eighth weeks Due date: 21 April 2013 Submit only one file name_e4.pdf containing the solution to the following exercises. Include the

More information

Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation

Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation Fast Automated Estimation of Variance in Discrete Quantitative Stochastic Simulation November 2010 Nelson Shaw njd50@uclive.ac.nz Department of Computer Science and Software Engineering University of Canterbury,

More information

Replacing f(x) with k f(x) and. Adapted from Walch Education

Replacing f(x) with k f(x) and. Adapted from Walch Education Replacing f(x) with k f(x) and f(k x) Adapted from Walch Education Graphing and Points of Interest In the graph of a function, there are key points of interest that define the graph and represent the characteristics

More information

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be

In Homework 1, you determined the inverse dynamics model of the spinbot robot to be Robot Learning Winter Semester 22/3, Homework 2 Prof. Dr. J. Peters, M.Eng. O. Kroemer, M. Sc. H. van Hoof Due date: Wed 6 Jan. 23 Note: Please fill in the solution on this sheet but add sheets for the

More information

EE6102 Multivariable Control Systems

EE6102 Multivariable Control Systems EE612 Multivariable Control Systems Homework Assignments for Part 2 Prepared by Ben M. Chen Department of Electrical & Computer Engineering National University of Singapore April 21, 212 EE612 Multivariable

More information

Homework # 2 Due: October 6. Programming Multiprocessors: Parallelism, Communication, and Synchronization

Homework # 2 Due: October 6. Programming Multiprocessors: Parallelism, Communication, and Synchronization ECE669: Parallel Computer Architecture Fall 2 Handout #2 Homework # 2 Due: October 6 Programming Multiprocessors: Parallelism, Communication, and Synchronization 1 Introduction When developing multiprocessor

More information

3.1 Generating Inverses of Functions 263

3.1 Generating Inverses of Functions 263 3.1 Generating Inverses of Functions FOCUSING QUESTION What is the inverse of a function? LEARNING OUTCOMES I can compare and contrast the key attributes of a function and its inverse when I have the function

More information

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics School of Mechanical Aerospace and Civil Engineering CFD-1 T. J. Craft George Begg Building, C41 Msc CFD-1 Reading: J. Ferziger, M. Peric, Computational Methods for Fluid Dynamics H.K. Versteeg, W. Malalasekara,

More information

System Acceptance Testing & Performance Evaluation of Battery Energy Storage Systems

System Acceptance Testing & Performance Evaluation of Battery Energy Storage Systems System Acceptance Testing & Performance Evaluation of Battery Energy Storage Systems Battery Energy Storage System Testing Quanta Technology offers field testing of Battery Energy Storage Systems (BESSs)

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation Math 2 Spring 2017 Unit 5 Bundle Transformational Graphing and Inverse Variation 1 Contents Transformations of Functions Day 1... 3 Transformations with Functions Day 1 HW... 10 Transformations with Functions

More information

MODEL-FREE Q-LEARNING OPTIMAL RESOURCE ALLOCATION IN UNCERTAIN COMMUNICATION NETWORKS

MODEL-FREE Q-LEARNING OPTIMAL RESOURCE ALLOCATION IN UNCERTAIN COMMUNICATION NETWORKS MODEL-FREE Q-LEARNING OPTIMAL RESOURCE ALLOCATION IN UNCERTAIN COMMUNICATION NETWORKS G.CETIN Department of Electrical & Biomedical engineering University of Nevada, Reno Reno, USA M. Sami Fadali Department

More information

Pipelining. Quiz 2 (next week) will cover materials through Tuesday s lecture. Lab 3 is due tonight. what Seymour Cray taught the laundry industry

Pipelining. Quiz 2 (next week) will cover materials through Tuesday s lecture. Lab 3 is due tonight. what Seymour Cray taught the laundry industry Pipelining what Seymour Cray taught the laundry industry Quiz 2 (next week) will cover materials through Tuesday s lecture. Lab 3 is due tonight. L09 - Pipelining 1 Forget 6.004 lets solve a Real Problem

More information

Hybrid Controller for an Unmanned Ground Vehicle with Non-linear/Hybrid Dynamics

Hybrid Controller for an Unmanned Ground Vehicle with Non-linear/Hybrid Dynamics Hybrid Controller for an Unmanned Ground Vehicle with Non-linear/Hybrid Dynamics James Goppert School of Aeronautics and Astronautics Engineering Purdue University West Lafayette, Indiana 4797 245 Email:

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

Hvordan tænker vi uddannelse i industriel IT?

Hvordan tænker vi uddannelse i industriel IT? Hvordan tænker vi uddannelse i industriel IT? John Bagterp Jørgensen Technical University of Denmark Dansk Automationsselskab (Dau) Hvordan bygger vi IT ind i automationsuddannelserne October 25, 2017,

More information

Decentralized Formation Control of Autonomous Mobile Robots

Decentralized Formation Control of Autonomous Mobile Robots Decentralized Formation Control of Autonomous Mobile Robots Edwin Carvalho, Miguel Pedro Silva and Carlos Cardeira IDMEC/IST, Technical University of Lisbon Av. Rovisco Pais, 1049-001 Lisboa, Portugal

More information

Robust Control of Bipedal Humanoid (TPinokio)

Robust Control of Bipedal Humanoid (TPinokio) Available online at www.sciencedirect.com Procedia Engineering 41 (2012 ) 643 649 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) Robust Control of Bipedal Humanoid (TPinokio)

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

System Theory, Modeling and Controls

System Theory, Modeling and Controls System Theory, Modeling and Controls Y7.FS2 Leader: Iqbal Husain, NC State University Co-PIs: Aranya Chakrabortty and Alex Huang (NCSU), Raja Ayannar (ASU), Chris Edrington (FSU) and Alex Stankovic (Tufts

More information

QUADRATIC AND CUBIC GRAPHS

QUADRATIC AND CUBIC GRAPHS NAME SCHOOL INDEX NUMBER DATE QUADRATIC AND CUBIC GRAPHS KCSE 1989 2012 Form 3 Mathematics Working Space 1. 1989 Q22 P1 (a) Using the grid provided below draw the graph of y = -2x 2 + x + 8 for values

More information

Power System Network Simulator (PSNsim)

Power System Network Simulator (PSNsim) The PSNsim is hardware simulator that simulates all parts of power system from generation to utilization. The PSNsim is a scaled down model of the real power system that provides an experimental environment

More information

2. Linear Regression and Gradient Descent

2. Linear Regression and Gradient Descent Pattern Recognition And Machine Learning - EPFL - Fall 2015 Emtiyaz Khan, Timur Bagautdinov, Carlos Becker, Ilija Bogunovic & Ksenia Konyushkova 2. Linear Regression and Gradient Descent 2.1 Goals The

More information

The PageRank Citation Ranking

The PageRank Citation Ranking October 17, 2012 Main Idea - Page Rank web page is important if it points to by other important web pages. *Note the recursive definition IR - course web page, Brian home page, Emily home page, Steven

More information

ANN-Based Modeling for Load and Main Steam Pressure Characteristics of a 600MW Supercritical Power Generating Unit

ANN-Based Modeling for Load and Main Steam Pressure Characteristics of a 600MW Supercritical Power Generating Unit ANN-Based Modeling for Load and Main Steam Pressure Characteristics of a 600MW Supercritical Power Generating Unit Liangyu Ma, Zhiyuan Gao Automation Department, School of Control and Computer Engineering

More information

Perspective Mappings. Contents

Perspective Mappings. Contents Perspective Mappings David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes Numerical Analysis of Shock Tube Problem by using TVD and Schemes Dr. Mukkarum Husain, Dr. M. Nauman Qureshi, Syed Zaid Hasany IST Karachi, Email: mrmukkarum@yahoo.com Abstract Computational Fluid Dynamics

More information

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE

A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Geometric Modeling Notes A MATRIX FORMULATION OF THE CUBIC BÉZIER CURVE Kenneth I. Joy Institute for Data Analysis and Visualization Department of Computer Science University of California, Davis Overview

More information

Intermediate Production Storage Dimensioning Using Occupancy-dependent Key Performance Indicators

Intermediate Production Storage Dimensioning Using Occupancy-dependent Key Performance Indicators Intermediate Production Storage Dimensioning Using Occupancy-dependent Key Performance Indicators Realize innovation. Key Performance Measures of a Storage Facility Contents The Full and Empty Portion

More information

A data model for supplying a Data Center with several energy sources. 18 juillet Inès de Courchelle IRIT/LAAS

A data model for supplying a Data Center with several energy sources. 18 juillet Inès de Courchelle IRIT/LAAS A data model for supplying a Data Center with several energy sources Inès de Courchelle IRIT/LAAS idecourc@irit.fr Tom Guérout LAAS-CNRS tguerout@laas.fr Yann Labit LAAS-CNRS ylabit@laas.fr Thierry Monteil

More information

qpoases - Online Active Set Strategy for Fast Linear MPC

qpoases - Online Active Set Strategy for Fast Linear MPC qpoases - Online Active Set Strategy for Fast Linear MPC Moritz Diehl, Hans Joachim Ferreau, Lieboud Vanden Broeck, Jan Swevers Dept. ESAT and Center of Excellence for Optimization in Engineering OPTEC

More information

Data Exchange Design and A Textured State Estimation Algorithm For Distributed Multi-Utility Operations In Electric Power Market.

Data Exchange Design and A Textured State Estimation Algorithm For Distributed Multi-Utility Operations In Electric Power Market. Data Exchange Design and A Textured State Estimation Algorithm For Distributed Multi-Utility Operations In Electric Power Market Jiansheng Lei Advisor: Dr. Garng M. Huang Department of Electrical Engineering

More information

Model predictive control to autonomous helicopter flight

Model predictive control to autonomous helicopter flight Model predictive control to autonomous helicopter flight Zillinger Molenaar, P.J.H. Published: 01/01/2007 Document Version Publisher s PDF, also known as Version of Record (includes final page, issue and

More information

Kevin James. MTHSC 102 Section 1.5 Polynomial Functions and Models

Kevin James. MTHSC 102 Section 1.5 Polynomial Functions and Models MTHSC 102 Section 1.5 Polynomial Functions and Models Definition A quadratic function is a function whose second differences are constant. It achieves either a local max or a local min and has no inflection

More information

Vodafone Sustainability & Innovation in emerging market

Vodafone Sustainability & Innovation in emerging market Second Green Power for Mobile Regional Special Working Group Hosted by Safaricom 15 th 16 th March 2011, Mombasa, Kenya Vodafone Sustainability & Innovation in emerging market Mohammed Belfqih Senior Manager

More information

Controller Calibration using a Global Dynamic Engine Model

Controller Calibration using a Global Dynamic Engine Model 23.09.2011 Controller Calibration using a Global Dynamic Engine Model Marie-Sophie Vogels Johannes Birnstingl Timo Combé CONTENT Introduction Description of Global Dynamic Model Concept Controller Calibration

More information

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

8 Piecewise Polynomial Interpolation

8 Piecewise Polynomial Interpolation Applied Math Notes by R. J. LeVeque 8 Piecewise Polynomial Interpolation 8. Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to

More information

Student Exploration: Quadratics in Polynomial Form

Student Exploration: Quadratics in Polynomial Form Name: Date: Student Exploration: Quadratics in Polynomial Form Vocabulary: axis of symmetry, parabola, quadratic function, vertex of a parabola Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t An implicit WENO scheme for steady-state computation of scalar hyperbolic equations Sigal Gottlieb Mathematics Department University of Massachusetts at Dartmouth 85 Old Westport Road North Dartmouth,

More information

The Different Types of UPS Systems

The Different Types of UPS Systems White Paper 1 Revision 7 by Neil Rasmussen > Executive summary There is much confusion in the marketplace about the different types of UPS systems and their characteristics. Each of these UPS types is

More information

Variational Integration Methods for Simulating and Designing Systems with Simultaneous Impact. Todd Murphey Northwestern University June 27, 2010

Variational Integration Methods for Simulating and Designing Systems with Simultaneous Impact. Todd Murphey Northwestern University June 27, 2010 Variational Integration Methods for Simulating and Designing Systems with Simultaneous Impact Todd Murphey Northwestern University June 27, 2010 Purpose of Simulation Simulation provides a way to predict

More information

A distributed real-time optimisation approach suited to traffic signalling

A distributed real-time optimisation approach suited to traffic signalling A distributed real-time optimisation approach suited to traffic signalling Ronny Kutadinata, Will Moase, Chris Manzie Melbourne School of Engineering, The University of Melbourne, Victoria, Australia Outline

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

6-2 Matrix Multiplication, Inverses and Determinants

6-2 Matrix Multiplication, Inverses and Determinants Find AB and BA, if possible. 4. A = B = A = ; B = A is a 2 1 matrix and B is a 1 4 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of

More information

Communication module Xcom-232i

Communication module Xcom-232i Communication module User Manual Studer Innotec SA 2017 V 1.3.0 4O9D COMMUNICATION MODULE XCOM-232I: USER MANUAL V 1.3.0 Copyright 2017 Studer Innotec SA ABOUT THE SOFTWARE This document applies to software

More information

Workshop Matlab/Simulink in Drives and Power electronics Lecture 3

Workshop Matlab/Simulink in Drives and Power electronics Lecture 3 Workshop Matlab/Simulink in Drives and Power electronics Lecture 3 : DC-Motor Control design Ghislain REMY Jean DEPREZ 1 / 29 Workshop Program 8 lectures will be presented based on Matlab/Simulink : 1

More information

Connection and configuration of a CDP with Fronius MB inverters

Connection and configuration of a CDP with Fronius MB inverters Connection and configuration of a CDP with Fronius MB inverters APPLICATION NOTES (M028E0601-03-16A) 2 Application notes CDP SAFETY PRECAUTIONS Follow the warnings described in this manual with the symbols

More information

The purpose of blending in a petroleum refinery is to mix

The purpose of blending in a petroleum refinery is to mix BLENDING OPTIMIZATION SYSTEM SASAKI Shigehiko * 1 SUGAWARA Hideaki * 1 ISHIGURI Atsuki * 1 KUBO Kenji * 1 We have developed a blending optimization system which calculates optimum blend ratios, based on

More information

Implicit schemes for wave models

Implicit schemes for wave models Implicit schemes for wave models Mathieu Dutour Sikirić Rudjer Bo sković Institute, Croatia and Universität Rostock April 17, 2013 I. Wave models Stochastic wave modelling Oceanic models are using grids

More information

Pipelining. Handouts: Lecture Slides Reminder: Quiz 2 tomorrow! It s that time of the semester again First trip to the laundry

Pipelining. Handouts: Lecture Slides Reminder: Quiz 2 tomorrow! It s that time of the semester again First trip to the laundry Pipelining It s that time of the semester again First trip to the laundry Handouts: Lecture Slides Reminder: Quiz 2 tomorrow! L09 - Pipelining 1 Forget 6.004 lets solve a Real Problem INPUT: dirty laundry

More information

Trajectory Planning of Redundant Planar Mechanisms for Reducing Task Completion Duration

Trajectory Planning of Redundant Planar Mechanisms for Reducing Task Completion Duration Trajectory Planning of Redundant Planar Mechanisms for Reducing Task Completion Duration Emre Uzunoğlu 1, Mehmet İsmet Can Dede 1, Gökhan Kiper 1, Ercan Mastar 2, Tayfun Sığırtmaç 2 1 Department of Mechanical

More information

Future Grid Initiative

Future Grid Initiative Future Grid Initiative Enabling renewable energy resources Vijay Vittal Director, Power Systems Engineering Research Center Professor, Arizona State University Workshop objectives PSERC has embarked on

More information

QP-Collide: A New Approach to Collision Treatment

QP-Collide: A New Approach to Collision Treatment QP-Collide: A New Approach to Collision Treatment Laks Raghupathi François Faure Co-encadre par Marie-Paule CANI EVASION/GRAVIR INRIA Rhône-Alpes, Grenoble Teaser Video Classical Physical Simulation Advance

More information

Newsletter Issue 96 October 2004 MODELING OF PLANT CONTROLLERS USING THE PSS/E TO MATLAB-SIMULINK INTERFACE (PMSI) IN PSS/E 30

Newsletter Issue 96 October 2004 MODELING OF PLANT CONTROLLERS USING THE PSS/E TO MATLAB-SIMULINK INTERFACE (PMSI) IN PSS/E 30 Power Technology Newsletter Issue 96 October 2004 MODELING OF PLANT CONTROLLERS USING THE PSS/E TO MATLAB-SIMULINK INTERFACE (PMSI) IN PSS/E 30 Kah Leong, Koo Consultant kahleong.koo@shawgrp.com Modeling

More information

Creating Interactive Workbooks Using MS Excel Sarah Mabrouk, Framingham State College

Creating Interactive Workbooks Using MS Excel Sarah Mabrouk, Framingham State College Creating Interactive Workbooks Using MS Excel Sarah Mabrouk, Framingham State College Overview: MS Excel provides powerful calculation, statistical, graphing, and general data analysis and organizational

More information

Polynomial Graph Features: 1. Must be a smooth continuous curve (no holes, or sharp corners) Graphing Polynomial Functions

Polynomial Graph Features: 1. Must be a smooth continuous curve (no holes, or sharp corners) Graphing Polynomial Functions 3.4 - Graphing Polynomial Functions 1. Notice that the graph is a smooth continuous curve. 2. The graph also has several "turning points", which are local maximums and minimums. P(x)=(1/30)(x+3)(x-2) 2

More information

Erlang. Joe Armstrong.

Erlang. Joe Armstrong. Erlang Joe Armstrong joe.armstrong@ericsson.com 1 Who is Joe? Inventor of Erlang, UBF, Open Floppy Grid Chief designer of OTP Founder of the company Bluetail Currently Software Architect Ericsson Current

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Control Part 4 Other control strategies These slides are devoted to two advanced control approaches, namely Operational space control Interaction

More information

Numerical methods in plasmonics. The method of finite elements

Numerical methods in plasmonics. The method of finite elements Numerical methods in plasmonics The method of finite elements Outline Why numerical methods The method of finite elements FDTD Method Examples How do we understand the world? We understand the world through

More information

Exploration Assignment #1. (Linear Systems)

Exploration Assignment #1. (Linear Systems) Math 0280 Introduction to Matrices and Linear Algebra Exploration Assignment #1 (Linear Systems) Acknowledgment The MATLAB assignments for Math 0280 were developed by Jonathan Rubin with the help of Matthew

More information

Real-Time Hardware-in-the- Loop Co-Simulation Platform for Microgrid Analysis

Real-Time Hardware-in-the- Loop Co-Simulation Platform for Microgrid Analysis Real-Time Hardware-in-the- Loop Co-Simulation Platform for Microgrid Analysis Martine Chlela, Carlos Rangel, Geza Joos McGill University Electric Energy Systems Laboratory 5-8 September 2017 Outline 2

More information

Homework 2. Anbang Xu. I have usually interacted with 3 non-desktop user interfaces as following:

Homework 2. Anbang Xu. I have usually interacted with 3 non-desktop user interfaces as following: Homework 2 Anbang Xu 1. Thinking about user interface design. I have usually interacted with 3 non-desktop user interfaces as following: (a) (b) (c) Figure1. 3 of my non-desktop user interfaces (a) Cell

More information