kd-trees for Volume Ray-Casting

Size: px
Start display at page:

Download "kd-trees for Volume Ray-Casting"

Transcription

1 kd-trees for Volume Ray-Casting Anita Schilling Special Seminar for Computer Graphics 15. January 2009 Anita Schilling kd-trees for Volume Ray-Casting 1 / 39

2 Outline 1 Introduction 2 Ray-Voxel Intersection Techniques 3 kd-trees 4 Evaluation Anita Schilling kd-trees for Volume Ray-Casting 2 / 39

3 Introduction high-performance ray-tracing scientific visualization iso-surface ray-casting Volume Raycasting with CUDA (Marsalek & Slusallek 2008) Anita Schilling kd-trees for Volume Ray-Casting 3 / 39

4 Iso-Surface Extraction Marching Cubes simple algorithm precomputed lookup table for iso-surface/voxel intersection Anita Schilling kd-trees for Volume Ray-Casting 4 / 39

5 Iso-Surface Extraction Marching Cubes holes possible only approximation of iso-surface generates too many triangles iso-surface extraction for every iso-value necessary Anita Schilling kd-trees for Volume Ray-Casting 5 / 39

6 Iso-Surface Rendering ray-casting the iso-surface exact intersection calculation of ray with volume higher image quality Volume Ray Tracing (Marmitt et. al. 2004) Anita Schilling kd-trees for Volume Ray-Casting 6 / 39

7 Direct Ray-Casting of Iso-Surface Problems efficiently finding voxels hit by ray containing iso-surface correct intersection point calculation of ray with interpolated implicit surface of voxel Anita Schilling kd-trees for Volume Ray-Casting 7 / 39

8 Ray-Voxel Intersection correct intersection point calculation is expensive Anita Schilling kd-trees for Volume Ray-Casting 8 / 39

9 Accurate Intersection Method voxel data values ρ ijk, i, j, k {0, 1} compute density at any point (u, v, w) [0, 1] 3 using trilinear interpolation ρ(u, v, w) = i,j,k {0,1} u i v j w k ρ ijk with u 0 = u, u 1 = 1 u, v 0 = v, v 1 = 1 v, w 0 = w, w 1 = 1 w Anita Schilling kd-trees for Volume Ray-Casting 9 / 39

10 Accurate Intersection Method computing density ρ(p) of any point p V spatial location of voxel cell V = [x 0... x 1 ] [y 0... y 1 ] [z 0... z 1 ] 1 transform p = (x, y, z) into voxel unit coordinate system ( p(u p 0, v p 0, w p 0 ) = x1 p x, y 1 p y, z ) 1 p z x 1 x 0 y 1 y 0 z 1 z 0 Anita Schilling kd-trees for Volume Ray-Casting 10 / 39

11 Accurate Intersection Method Ray R(T ) = O + T D O... ray origin and D... ray direction in world coordinates passing the voxel in interval [T in, T out ] 2 transform ray R(T ) to voxel unit coordinate system r(t) = a + tb p entry = r(t in = 0) p exit = r(t out = 1) Anita Schilling kd-trees for Volume Ray-Casting 11 / 39

12 Accurate Intersection Method density at every ray point within voxel ρ(t) = ρ(r(t)) = i,j,k {0,1} (u a i + tu b i )(v a j + tv b j )(w a k + tw b k ) ρ ijk Anita Schilling kd-trees for Volume Ray-Casting 12 / 39

13 Accurate Intersection Method 3 expand to ρ(t) = At 3 + Bt 2 + Ct + D with A = ijk B = ijk C = ijk D = ijk u b i v b j w b k ρ ijk (u a i v b j w b k + ub i v a j w b k + ub i v b j w a k ) ρ ijk (u b i v a j w a k + ua i v b j w a k + ua i v a j w b k ) ρ ijk u a i v a j w a k ρ ijk Anita Schilling kd-trees for Volume Ray-Casting 13 / 39

14 Approximate Method Simple Midpoint Algorithm trading quality for speed intersection set to midpoint between entry and exit point of ray blocky artifacts at size of voxels only for performance reference Anita Schilling kd-trees for Volume Ray-Casting 14 / 39

15 Linear Interpolation Method linearly interpolate intersection point on the ray t hit = t in + (t out t in ) ρ iso ρ in ρ out ρ in significantly more costly two tri- or bilinear interpolations fails in more complex cases if function has 2 roots such that entry and exit densities are both larger or smaller than ρ iso Anita Schilling kd-trees for Volume Ray-Casting 15 / 39

16 Neubauer s Method repeated linear interpolation t = t 0 + (t 1 t 0 ) ρ iso ρ 0 ρ 1 ρ 0 if sign(ρ(r(t)) ρ iso ) = sign(ρ 0 ρ iso ) then t 0 = t, ρ 0 = ρ(r(t)) else t 1 = t, ρ 1 = ρ(r(t)) typically 2 or 3 times fails in more complex cases falsely returns last intersection point if 3 intersections are within a voxel but 2 of them are in the first ray segment Anita Schilling kd-trees for Volume Ray-Casting 16 / 39

17 Accurate Intersection Method slow and correct or fast and sometimes incorrect methods Key Observations only need first intersection with implicit surface repeated linear interpolation does find the correct root, if the start interval contains exactly one root Anita Schilling kd-trees for Volume Ray-Casting 17 / 39

18 Accurate Intersection Method find ray parameter t where ρ(t) = ρ iso f (t) = ρ(t) ρ iso = 0 with t [t in = 0, t out = 1], smallest root of f (t) = At 3 + Bt 2 + Ct + D ρ iso in interval [0, 1] Anita Schilling kd-trees for Volume Ray-Casting 18 / 39

19 Accurate Root Finding Method 4 compute extrema e 0, e 1 of f (t) = At 3 + Bt 2 + Ct + D ρ iso with f (t) = 3At 2 + 2Bt + C = 0 5 compute density value at start point f (e 0 ) and end point f (e 1 ) of interval Anita Schilling kd-trees for Volume Ray-Casting 19 / 39

20 Accurate Root Finding Method 6 if sign(f (t in )) sign(f (e 0 )) then interval contains exactly one root else advance ray to next segment Anita Schilling kd-trees for Volume Ray-Casting 20 / 39

21 Accurate Root Finding Method 7 apply repeated linear interpolation (2-3 times) efficient computation of any density value along the ray with ρ(t) 8 transform voxel unit ray parameter t hit back to world coordinate ray parameter T hit 9 calculate intersection point p intersect = R(T hit ) Anita Schilling kd-trees for Volume Ray-Casting 21 / 39

22 Find the right voxel for intersection test every voxel whether voxel contains iso-value and ray hits voxel Anita Schilling kd-trees for Volume Ray-Casting 22 / 39

23 Uniform Grid Traversal split voxel grid into uniform macro-cells store min/max iso-values for macro-cells test whether macro-cell contains iso-value test whether ray hits macro-cell test every single voxel of macro-cell Anita Schilling kd-trees for Volume Ray-Casting 23 / 39

24 kd-tree empty space skipping in polygon ray-tracing scenes with varying primitive density kd-trees often outperform other datastructures Anita Schilling kd-trees for Volume Ray-Casting 24 / 39

25 kd-tree apply to volume data split node at center of largest dimension parent node stores min/max iso-range of children easily determined recursively test for iso-value before following down branch Anita Schilling kd-trees for Volume Ray-Casting 25 / 39

26 kd-tree middle split of scene cuts through objects better split into separate objects and empty space build kd-tree with surface area heuristic Anita Schilling kd-trees for Volume Ray-Casting 26 / 39

27 kd-tree with Surface Area Heuristic apply to volume data assumption there is always some empty space around only optimized for one iso-value for initial evaluation precompute surface area with summed area table evaluate all possible split locations on building Anita Schilling kd-trees for Volume Ray-Casting 27 / 39

28 Surface Area of Iso-Surface summed area tables for one iso-value sat(x, y) = i(x, y ) = sat(x 1, y) + i(x, y ) x x,y y y y Rectangle area SA rectangle = B x,d y x =A x,y =A y i(x, y ) SA rectangle = sat(a) + sat(c) sat(b) sat(d) Anita Schilling kd-trees for Volume Ray-Casting 28 / 39

29 Surface Area of Iso-Surface no directly computed surface area 3d summed area table for volume data SA = sat(g) + sat(e) + sat(b) + sat(d) sat(a) sat(f) sat(h) sat(c) Anita Schilling kd-trees for Volume Ray-Casting 29 / 39

30 kdtree with Surface Area Heuristic splitcost = max SA left SA left nocells left + SA right SA parent SA right nocells right splitcost = max splitcost = min SA left SA left nocells left + SA right nocells right nocells parent nocells left nocells parent + SA right SA parent nocells right nocells parent Anita Schilling kd-trees for Volume Ray-Casting 30 / 39

31 kd-tree with Surface Area Heuristic 3 possibilities 1 SA parent = 0 no further split 2 SA parent = nocells parent split in center of largest dimension 3 0 < SA parent < nocells parent evaluate every possible split location if maximum node dimension treshold then no split Anita Schilling kd-trees for Volume Ray-Casting 31 / 39

32 Evaluation Datasets Dataset Dimensions Resolution Inner Ear bit Mouse Skeleton bit Teddy Bear bit Tooth bit Engine bit Head bit Neghip bit Anita Schilling kd-trees for Volume Ray-Casting 32 / 39

33 Evaluation Results Threshold Tree No. of Nodes Max. Depth Build Time Render Time Engine with ρ iso = 0 4 kd ,31 15,27 4 SAH ,34 86,52 8 kd ,34 34,16 8 SAH ,17 85,95 Engine with ρ iso = kd ,21 2,49 4 SAH ,79 4,16 8 kd ,34 5,93 8 SAH ,23 4,23 Anita Schilling kd-trees for Volume Ray-Casting 33 / 39

34 Evaluation Engine Dataset Anita Schilling kd-trees for Volume Ray-Casting 34 / 39

35 Evaluation Results (2) Threshold Tree No. of Nodes Max. Depth Build Time Render Time Neghip with ρ iso = kd ,004 2,97 4 SAH ,4 4,12 8 kd ,01 10,18 8 SAH ,38 4,47 Neghip with ρ iso = kd ,04 1,81 4 SAH ,34 2,87 8 kd ,02 4,83 8 SAH ,34 3,1 Anita Schilling kd-trees for Volume Ray-Casting 35 / 39

36 Evaluation Neghip Dataset Anita Schilling kd-trees for Volume Ray-Casting 36 / 39

37 Evaluation Results (3) Dataset Theshold Tree Intersect Calls Ray-Box Tests Volume Access Engine 4 kd ρ iso = 0 4 SAH kd SAH Engine 4 kd ρ iso = SAH kd SAH Neghip 4 kd ρ iso = SAH kd SAH Neghip 4 kd ρ iso = SAH kd SAH Anita Schilling kd-trees for Volume Ray-Casting 37 / 39

38 In Progress Conclusion normal kd-tree performs better heuristic kd-tree needs less intersection calls hybrid kd-tree empty space around center of volume data set cut away empty space cells with heuristic if ratio of SA to number of cells gets large enough use normal kd-tree Anita Schilling kd-trees for Volume Ray-Casting 38 / 39

39 The End. Thank you for your attention. Anita Schilling kd-trees for Volume Ray-Casting 39 / 39

40 Literature G. Marmitt, A. Kleer, I. Wald, H. Friedrich, P. Slusallek: Fast and Accurate Ray Voxel Intersection Techniques for Iso-Surface Ray Tracing, Vision, Modeling and Visualization (VMV), I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, H-P. Seidel: Faster Isosurface Ray Tracing using Implicit KD-Trees, IEEE Transactions on Visualization and Computer Graphics (IEEE VIS), V. Havran: Heuristic Ray Shooting Algorithms, PhD dissertation, CVUT, Prague Anita Schilling kd-trees for Volume Ray-Casting 40 / 39

Fast and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing

Fast and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing Fast and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing Gerd Marmitt, Andreas Kleer, Ingo Wald, Heiko Friedrich, and Philipp Slusallek Computer Graphics Group, Saarland University

More information

Indirect Volume Rendering

Indirect Volume Rendering Indirect Volume Rendering Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Contour tracing Marching cubes Marching tetrahedra Optimization octree-based range query Weiskopf/Machiraju/Möller

More information

Acceleration Data Structures

Acceleration Data Structures CT4510: Computer Graphics Acceleration Data Structures BOCHANG MOON Ray Tracing Procedure for Ray Tracing: For each pixel Generate a primary ray (with depth 0) While (depth < d) { Find the closest intersection

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

Isosurface Rendering. CSC 7443: Scientific Information Visualization

Isosurface Rendering. CSC 7443: Scientific Information Visualization Isosurface Rendering What is Isosurfacing? An isosurface is the 3D surface representing the locations of a constant scalar value within a volume A surface with the same scalar field value Isosurfaces form

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell eading! equired:! Watt, sections 12.5.3 12.5.4, 14.7! Further reading:! A. Glassner.

More information

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li

Parallel Physically Based Path-tracing and Shading Part 3 of 2. CIS565 Fall 2012 University of Pennsylvania by Yining Karl Li Parallel Physically Based Path-tracing and Shading Part 3 of 2 CIS565 Fall 202 University of Pennsylvania by Yining Karl Li Jim Scott 2009 Spatial cceleration Structures: KD-Trees *Some portions of these

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016

Accelerating Geometric Queries. Computer Graphics CMU /15-662, Fall 2016 Accelerating Geometric Queries Computer Graphics CMU 15-462/15-662, Fall 2016 Geometric modeling and geometric queries p What point on the mesh is closest to p? What point on the mesh is closest to p?

More information

EDAN30 Photorealistic Computer Graphics. Seminar 2, Bounding Volume Hierarchy. Magnus Andersson, PhD student

EDAN30 Photorealistic Computer Graphics. Seminar 2, Bounding Volume Hierarchy. Magnus Andersson, PhD student EDAN30 Photorealistic Computer Graphics Seminar 2, 2012 Bounding Volume Hierarchy Magnus Andersson, PhD student (magnusa@cs.lth.se) This seminar We want to go from hundreds of triangles to thousands (or

More information

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm

Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Improving Memory Space Efficiency of Kd-tree for Real-time Ray Tracing Byeongjun Choi, Byungjoon Chang, Insung Ihm Department of Computer Science and Engineering Sogang University, Korea Improving Memory

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

Geometric Structures 2. Quadtree, k-d stromy

Geometric Structures 2. Quadtree, k-d stromy Geometric Structures 2. Quadtree, k-d stromy Martin Samuelčík samuelcik@sccg.sk, www.sccg.sk/~samuelcik, I4 Window and Point query From given set of points, find all that are inside of given d-dimensional

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26]

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Visualization Images are used to aid in understanding of data Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Tumor SCI, Utah Scientific Visualization Visualize large

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Accelerated Raytracing

Accelerated Raytracing Accelerated Raytracing Why is Acceleration Important? Vanilla ray tracing is really slow! mxm pixels, kxk supersampling, n primitives, average ray path length of d, l lights, 2 recursive ray casts per

More information

Advanced 3D-Data Structures

Advanced 3D-Data Structures Advanced 3D-Data Structures Eduard Gröller, Martin Haidacher Institute of Computer Graphics and Algorithms Vienna University of Technology Motivation For different data sources and applications different

More information

Interactive Isosurface Ray Tracing of Large Octree Volumes

Interactive Isosurface Ray Tracing of Large Octree Volumes Interactive Isosurface Ray Tracing of Large Octree Volumes Aaron Knoll, Ingo Wald, Steven Parker, and Charles Hansen Scientific Computing and Imaging Institute University of Utah 2006 IEEE Symposium on

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Spatial Data Structures

Spatial Data Structures Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) [Angel 9.10] Outline Ray tracing review what rays matter? Ray tracing speedup faster

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

Bounding Volume Hierarchies. CS 6965 Fall 2011

Bounding Volume Hierarchies. CS 6965 Fall 2011 Bounding Volume Hierarchies 2 Heightfield 3 C++ Operator? #include int main() { int x = 10; while( x --> 0 ) // x goes to 0 { printf("%d ", x); } } stackoverflow.com/questions/1642028/what-is-the-name-of-this-operator

More information

B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes

B-KD Trees for Hardware Accelerated Ray Tracing of Dynamic Scenes B-KD rees for Hardware Accelerated Ray racing of Dynamic Scenes Sven Woop Gerd Marmitt Philipp Slusallek Saarland University, Germany Outline Previous Work B-KD ree as new Spatial Index Structure DynR

More information

Previously... contour or image rendering in 2D

Previously... contour or image rendering in 2D Volume Rendering Visualisation Lecture 10 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Previously... contour or image rendering in 2D 2D Contour line

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

Intersection Acceleration

Intersection Acceleration Advanced Computer Graphics Intersection Acceleration Matthias Teschner Computer Science Department University of Freiburg Outline introduction bounding volume hierarchies uniform grids kd-trees octrees

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Speeding Up Ray Tracing. Optimisations. Ray Tracing Acceleration

Speeding Up Ray Tracing. Optimisations. Ray Tracing Acceleration Speeding Up Ray Tracing nthony Steed 1999, eline Loscos 2005, Jan Kautz 2007-2009 Optimisations Limit the number of rays Make the ray test faster for shadow rays the main drain on resources if there are

More information

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016

Ray Tracing. Computer Graphics CMU /15-662, Fall 2016 Ray Tracing Computer Graphics CMU 15-462/15-662, Fall 2016 Primitive-partitioning vs. space-partitioning acceleration structures Primitive partitioning (bounding volume hierarchy): partitions node s primitives

More information

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement:

Iso-surface cell search. Iso-surface Cells. Efficient Searching. Efficient search methods. Efficient iso-surface cell search. Problem statement: Iso-Contouring Advanced Issues Iso-surface cell search 1. Efficiently determining which cells to examine. 2. Using iso-contouring as a slicing mechanism 3. Iso-contouring in higher dimensions 4. Texturing

More information

Volume Illumination, Contouring

Volume Illumination, Contouring Volume Illumination, Contouring Computer Animation and Visualisation Lecture 0 tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Overview -

More information

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment Visualisatie BMT Lecture overview Assignment Arjan Kok a.j.f.kok@tue.nl 1 Makes it possible to see inside or behind objects Complement of transparency is opacity Opacity defined by alpha value with range

More information

Efficient Volumetric Ray Casting for Isosurface Rendering

Efficient Volumetric Ray Casting for Isosurface Rendering Efficient Volumetric Ray Casting for Isosurface Rendering Jae Jeong Choi 1 Byeong-Seok Shin 2 Yeong Gil Shin 1 Kevin Cleary 3 1. Department of Computer Science, Seoul National University, Seoul, Republic

More information

Computer Graphics. - Spatial Index Structures - Philipp Slusallek

Computer Graphics. - Spatial Index Structures - Philipp Slusallek Computer Graphics - Spatial Index Structures - Philipp Slusallek Overview Last lecture Overview of ray tracing Ray-primitive intersections Today Acceleration structures Bounding Volume Hierarchies (BVH)

More information

Real Time Ray Tracing

Real Time Ray Tracing Real Time Ray Tracing Programação 3D para Simulação de Jogos Vasco Costa Ray tracing? Why? How? P3DSJ Real Time Ray Tracing Vasco Costa 2 Real time ray tracing : example Source: NVIDIA P3DSJ Real Time

More information

Ray Casting of Trimmed NURBS Surfaces on the GPU

Ray Casting of Trimmed NURBS Surfaces on the GPU Ray Casting of Trimmed NURBS Surfaces on the GPU Hans-Friedrich Pabst Jan P. Springer André Schollmeyer Robert Lenhardt Christian Lessig Bernd Fröhlich Bauhaus University Weimar Faculty of Media Virtual

More information

Accelerating Ray-Tracing

Accelerating Ray-Tracing Lecture 9: Accelerating Ray-Tracing Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric Modeling

More information

Applications of Explicit Early-Z Culling

Applications of Explicit Early-Z Culling Applications of Explicit Early-Z Culling Jason L. Mitchell ATI Research Pedro V. Sander ATI Research Introduction In past years, in the SIGGRAPH Real-Time Shading course, we have covered the details of

More information

Hello, Thanks for the introduction

Hello, Thanks for the introduction Hello, Thanks for the introduction 1 In this paper we suggest an efficient data-structure for precomputed shadows from point light or directional light-sources. Because, in fact, after more than four decades

More information

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz

CS 563 Advanced Topics in Computer Graphics QSplat. by Matt Maziarz CS 563 Advanced Topics in Computer Graphics QSplat by Matt Maziarz Outline Previous work in area Background Overview In-depth look File structure Performance Future Point Rendering To save on setup and

More information

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Rendering Computer Animation and Visualisation Lecture 9 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Volume Data Usually, a data uniformly distributed

More information

Fast BVH Construction on GPUs

Fast BVH Construction on GPUs Fast BVH Construction on GPUs Published in EUROGRAGHICS, (2009) C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, D. Manocha University of North Carolina at Chapel Hill NVIDIA University of California

More information

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Visible-Surface Determination Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm Scan-Line Algorithm

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

New Reliable Algorithm of Ray Tracing. through Hexahedral Mesh

New Reliable Algorithm of Ray Tracing. through Hexahedral Mesh Applied Mathematical Sciences, Vol. 8, 2014, no. 24, 1171-1176 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4159 New Reliable Algorithm of Ray Tracing through Hexahedral Mesh R. P.

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 2, 3, 4 of Physically Based Rendering by Pharr&Humphreys An Introduction to Ray tracing by Glassner Topics today

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome!

INFOGR Computer Graphics. J. Bikker - April-July Lecture 11: Acceleration. Welcome! INFOGR Computer Graphics J. Bikker - April-July 2015 - Lecture 11: Acceleration Welcome! Today s Agenda: High-speed Ray Tracing Acceleration Structures The Bounding Volume Hierarchy BVH Construction BVH

More information

Spatial Data Structures for Computer Graphics

Spatial Data Structures for Computer Graphics Spatial Data Structures for Computer Graphics Page 1 of 65 http://www.cse.iitb.ac.in/ sharat November 2008 Spatial Data Structures for Computer Graphics Page 1 of 65 http://www.cse.iitb.ac.in/ sharat November

More information

Ray Intersection Acceleration

Ray Intersection Acceleration Ray Intersection Acceleration Image Synthesis Torsten Möller Reading Physically Based Rendering by Pharr&Humphreys Chapter 2 - rays and transformations Chapter 3 - shapes Chapter 4 - intersections and

More information

Interactive Implicit Modeling with Hierarchical Spatial Caching

Interactive Implicit Modeling with Hierarchical Spatial Caching Interactive Implicit Modeling with Hierarchical Spatial Caching Ryan Schmidt 1, Brian Wyvill 1, Eric Galin 2 1 University of Calgary, Canada 2 LIRIS-CNRS, Université Claude Bernard Lyon 1, France Outline

More information

Stackless Ray Traversal for kd-trees with Sparse Boxes

Stackless Ray Traversal for kd-trees with Sparse Boxes Stackless Ray Traversal for kd-trees with Sparse Boxes Vlastimil Havran Czech Technical University e-mail: havranat f el.cvut.cz Jiri Bittner Czech Technical University e-mail: bittnerat f el.cvut.cz November

More information

Acceleration Data Structures. Michael Doggett Department of Computer Science Lund university

Acceleration Data Structures. Michael Doggett Department of Computer Science Lund university Acceleration Data Structures Michael Doggett Department of Computer Science Lund university Ray tracing So far ray tracing sampling object intersections Today How do we make it faster? Performance = rays

More information

Soft Shadow Volumes for Ray Tracing with Frustum Shooting

Soft Shadow Volumes for Ray Tracing with Frustum Shooting Soft Shadow Volumes for Ray Tracing with Frustum Shooting Thorsten Harter Markus Osswald Chalmers University of Technology Chalmers University of Technology University Karlsruhe University Karlsruhe Ulf

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/60-01: Data Visualization Isosurfacing and Volume Rendering Dr. David Koop Fields and Grids Fields: values come from a continuous domain, infinitely many values - Sampled at certain positions to

More information

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305

Ray Tracing with Spatial Hierarchies. Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing with Spatial Hierarchies Jeff Mahovsky & Brian Wyvill CSC 305 Ray Tracing Flexible, accurate, high-quality rendering Slow Simplest ray tracer: Test every ray against every object in the scene

More information

Polygonization of Implicit Surfaces

Polygonization of Implicit Surfaces Polygonization of Implicit Surfaces Hongxin Zhang and Jieqing Feng 2007-01-11 State Key Lab of CAD&CG Zhejiang University Contents Polygonization of Implicit Surfaces Other Methods for Displaying Implicit

More information

Ray Tracing Acceleration. CS 4620 Lecture 22

Ray Tracing Acceleration. CS 4620 Lecture 22 Ray Tracing Acceleration CS 4620 Lecture 22 2014 Steve Marschner 1 Topics Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes

More information

Scalar Field Visualization. Some slices used by Prof. Mike Bailey

Scalar Field Visualization. Some slices used by Prof. Mike Bailey Scalar Field Visualization Some slices used by Prof. Mike Bailey Scalar Fields The approximation of certain scalar function in space f(x,y,z). Most of time, they come in as some scalar values defined on

More information

Lecture 2 - Acceleration Structures

Lecture 2 - Acceleration Structures INFOMAGR Advanced Graphics Jacco Bikker - November 2017 - February 2018 Lecture 2 - Acceleration Structures Welcome! I x, x = g(x, x ) ε x, x + න S ρ x, x, x I x, x dx Today s Agenda: Problem Analysis

More information

CSE 554 Lecture 5: Contouring (faster)

CSE 554 Lecture 5: Contouring (faster) CSE 554 Lecture 5: Contouring (faster) Fall 2016 CSE554 Contouring II Slide 1 Review Iso-contours Points where a function evaluates to be a given value (iso-value) Smooth thresholded boundaries Contouring

More information

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11. Chapter 11 Global Illumination Part 1 Ray Tracing Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.3 CG(U), Chap.11 Part 1:Ray Tracing 1 Can pipeline graphics renders images

More information

Contouring and Isosurfaces. Ronald Peikert SciVis Contouring 2-1

Contouring and Isosurfaces. Ronald Peikert SciVis Contouring 2-1 Contouring and Isosurfaces Ronald Peikert SciVis 2007 - Contouring 2-1 What are contours? Set of points where the scalar field s has a given value c: Examples in 2D: height contours on maps isobars on

More information

Shear-Warp Volume Rendering. Volume Rendering Overview

Shear-Warp Volume Rendering. Volume Rendering Overview Shear-Warp Volume Rendering R. Daniel Bergeron Department of Computer Science University of New Hampshire Durham, NH 03824 From: Lacroute and Levoy, Fast Volume Rendering Using a Shear-Warp- Factorization

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

Ray Tracing. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620: Lecture 37 Ray Tracing 1 Announcements Review session Tuesday 7-9, Phillips 101 Posted notes on slerp and perspective-correct texturing Prelim on Thu in B17 at 7:30pm 2 Basic ray tracing Basic

More information

Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 13b Ray Tracing (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Raytracing Global illumination-based rendering method Simulates

More information

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization Volume visualization Volume visualization Volumes are special cases of scalar data: regular 3D grids of scalars, typically interpreted as density values. Each data value is assumed to describe a cubic

More information

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur

MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur MSBVH: An Efficient Acceleration Data Structure for Ray Traced Motion Blur Leonhard Grünschloß Martin Stich Sehera Nawaz Alexander Keller August 6, 2011 Principles of Accelerated Ray Tracing Hierarchical

More information

Level Set Extraction from Gridded 2D and 3D Data

Level Set Extraction from Gridded 2D and 3D Data Level Set Extraction from Gridded 2D and 3D Data David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Fast kd-tree Construction for 3D-Rendering Algorithms Like Ray Tracing

Fast kd-tree Construction for 3D-Rendering Algorithms Like Ray Tracing Fast kd-tree Construction for 3D-Rendering Algorithms Like Ray Tracing Sajid Hussain and Håkan Grahn Blekinge Institute of Technology SE-371 79 Karlskrona, Sweden {sajid.hussain,hakan.grahn}@bth.se http://www.bth.se/tek/paarts

More information

Point Cloud Filtering using Ray Casting by Eric Jensen 2012 The Basic Methodology

Point Cloud Filtering using Ray Casting by Eric Jensen 2012 The Basic Methodology Point Cloud Filtering using Ray Casting by Eric Jensen 01 The Basic Methodology Ray tracing in standard graphics study is a method of following the path of a photon from the light source to the camera,

More information

Scalar Algorithms -- surfaces

Scalar Algorithms -- surfaces Scalar Algorithms -- surfaces Color Mapping Slicing Clipping Contouring / iso-surface 1 Sources of Scalar Data Sensors CT/MRI Surface Scanners: laser/range scans Simulations CFD/FEM Mathematical Implicit

More information

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments?

Homework 1: Implicit Surfaces, Collision Detection, & Volumetric Data Structures. Loop Subdivision. Loop Subdivision. Questions/Comments? Homework 1: Questions/Comments? Implicit Surfaces,, & Volumetric Data Structures Loop Subdivision Shirley, Fundamentals of Computer Graphics Loop Subdivision SIGGRAPH 2000 course notes Subdivision for

More information

Acceleration Structures. CS 6965 Fall 2011

Acceleration Structures. CS 6965 Fall 2011 Acceleration Structures Run Program 1 in simhwrt Lab time? Program 2 Also run Program 2 and include that output Inheritance probably doesn t work 2 Boxes Axis aligned boxes Parallelepiped 12 triangles?

More information

Advanced Ray Tracing

Advanced Ray Tracing Advanced Ray Tracing Thanks to Fredo Durand and Barb Cutler The Ray Tree Ni surface normal Ri reflected ray Li shadow ray Ti transmitted (refracted) ray 51 MIT EECS 6.837, Cutler and Durand 1 Ray Tree

More information

Raytracing CS148 AS3. Due :59pm PDT

Raytracing CS148 AS3. Due :59pm PDT Raytracing CS148 AS3 Due 2010-07-25 11:59pm PDT We start our exploration of Rendering - the process of converting a high-level object-based description of scene into an image. We will do this by building

More information

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects

Topics. Ray Tracing II. Intersecting transformed objects. Transforming objects Topics Ray Tracing II CS 4620 Lecture 16 Transformations in ray tracing Transforming objects Transformation hierarchies Ray tracing acceleration structures Bounding volumes Bounding volume hierarchies

More information

GPU-based Volume Rendering. Michal Červeňanský

GPU-based Volume Rendering. Michal Červeňanský GPU-based Volume Rendering Michal Červeňanský Outline Volume Data Volume Rendering GPU rendering Classification Speed-up techniques Other techniques 2 Volume Data Describe interior structures Liquids,

More information

Ray Tracing. Foley & Van Dam, Chapters 15 and 16

Ray Tracing. Foley & Van Dam, Chapters 15 and 16 Ray Tracing Foley & Van Dam, Chapters 15 and 16 Ray Tracing Visible Surface Ray Tracing (Ray Casting) Examples Efficiency Issues Computing Boolean Set Operations Recursive Ray Tracing Determine visibility

More information

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2 Visualisatie BMT Fundamental algorithms Arjan Kok a.j.f.kok@tue.nl Lecture overview Classification of algorithms Scalar algorithms Vector algorithms Tensor algorithms Modeling algorithms 1 2 Visualization

More information

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71

Display. Introduction page 67 2D Images page 68. All Orientations page 69 Single Image page 70 3D Images page 71 Display Introduction page 67 2D Images page 68 All Orientations page 69 Single Image page 70 3D Images page 71 Intersecting Sections page 71 Cube Sections page 72 Render page 73 1. Tissue Maps page 77

More information

Volume Illumination and Segmentation

Volume Illumination and Segmentation Volume Illumination and Segmentation Computer Animation and Visualisation Lecture 13 Institute for Perception, Action & Behaviour School of Informatics Overview Volume illumination Segmentation Volume

More information

Ray Tracing Foley & Van Dam, Chapters 15 and 16

Ray Tracing Foley & Van Dam, Chapters 15 and 16 Foley & Van Dam, Chapters 15 and 16 (Ray Casting) Examples Efficiency Issues Computing Boolean Set Operations Recursive Determine visibility of a surface by tracing rays of light from the viewer s eye

More information

Ray Tracing with Sparse Boxes

Ray Tracing with Sparse Boxes Ray Tracing with Sparse Boxes Vlastimil Havran Czech Technical University Jiří Bittner Czech Technical University Vienna University of Technology Figure : (left) A ray casted view of interior of a larger

More information

Ray Tracing Acceleration. CS 4620 Lecture 20

Ray Tracing Acceleration. CS 4620 Lecture 20 Ray Tracing Acceleration CS 4620 Lecture 20 2013 Steve Marschner 1 Will this be on the exam? or, Prelim 2 syllabus You can expect emphasis on topics related to the assignment (Shaders 1&2) and homework

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 2: Meshes properties Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Meshes properties Working with DCEL representation One connected component with simple

More information

CIS 4930/ SCIENTIFICVISUALIZATION

CIS 4930/ SCIENTIFICVISUALIZATION CIS 4930/6930-902 SCIENTIFICVISUALIZATION ISOSURFACING Paul Rosen Assistant Professor University of South Florida slides credits Tricoche and Meyer ADMINISTRATIVE Read (or watch video): Kieffer et al,

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

AN EXPERIMENTAL COMPARISON OF ACCELERATION SCHEMES FOR DENSELY OCCLUDED ENVIRONMENTS

AN EXPERIMENTAL COMPARISON OF ACCELERATION SCHEMES FOR DENSELY OCCLUDED ENVIRONMENTS SIGNAL - IMAGE - COMMUNICATIONS FRE CNRS n 2731 AN EXPERIMENTAL COMPARISON OF ACCELERATION SCHEMES FOR DENSELY OCCLUDED ENVIRONMENTS D. FRADIN, D. MENEVEAUX RAPPORT DE RECHERCHE n 26 - Janvier 26 SIC,

More information