A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems

Size: px
Start display at page:

Download "A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems"

Transcription

1 1 / 33 A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems Speaker: Julie Nutini Joint work with Warren Hare University of British Columbia (Okanagan) III Latin American Workshop on Optimization and Control January 10-13, 2012

2 2 / 33 Table of Contents 1 Introduction 2 AGS Algorithm 3 Robust AGS Algorithm 4 Numerical Results 5 Conclusion

3 3 / 33 Setting We assume that our problem is of the form min x f (x) where f (x) = max{f i : i = 1,..., N}, where each f i is continuously differentiable, i.e., f i C 1, BUT we cannot compute f i.

4 Active Set/Gradients Definition We define the active set of f at a point x to be the set of indices A( x) = {i : f ( x) = f i ( x)}. The set of active gradients of f at x is denoted by { f i ( x)} i A( x). 4 / 33

5 5 / 33 Clarke Subdifferential for Finite Max Function Proposition (Proposition , Clarke 90) Let f = max{f i : i = 1,..., N}. If f i C 1 for each i A( x), then f ( x) = conv{ f i ( x)} i A( x).

6 Method of Steepest Descent 1. Initialize: Set d 0 = Proj(0 f ). 2. Step Length: Find t k by solving min t k >0 {f (x k + t k d k )}. 3. Update: Set x k+1 = x k + t k d k. Increase k = k + 1. Loop. 6 / 33

7 7 / 33 AGS Algorithm - General Idea Replace f with an approximate subdifferential Find an approximate direction of steepest descent Minimize along nondifferentiable ridges

8 8 / 33 Approximate Gradient Sampling Algorithm (AGS Algorithm)

9 9 / 33 AGS Algorithm 1 Initialize 2 Generate Approximate Subdifferential: Sample Y = [x k, y 1,..., y m ] from around x k such that max y i x k k. i=1,...,m Calculate an approximate gradient A f i for each i A(x k ) and set G k = conv{ A f i (x k )} i A(x k ). 3 Direction: Set d k = Proj(0 G k ). 4 Check Stopping Conditions 5 (Armijo) Line Search 6 Update and Loop

10 10 / 33 Convergence AGS Algorithm

11 Remark We define the approximate subdifferential of f at x as G( x) = conv{ A f i ( x)} i A( x), where A f i ( x) is the approximate gradient of f i at x. 11 / 33

12 12 / 33 Lemma Suppose there exists an ε > 0 such that A f i ( x) f i ( x) ε. Then 1 for all w G( x), v f ( x) such that w v ε, and 2 for all v f ( x), w G( x) such that w v ε.

13 13 / 33 Proof. 1. By definition, for all w G( x) there exists a set of α i such that w = α i A f i ( x), where α i 0, α i = 1. i A( x) i A( x) Using the same α i as above, we see that v = α i f i ( x) f ( x). i A( x) Then w v = α i A f i ( x)) α i f i ( x) ε. i A( x) i A( x) Hence, for all w G( x), there exists a v f ( x) such that w v ε. (1)

14 14 / 33 Convergence Theorem Let {x k } k=0 be generated by the AGS algorithm. Suppose there exists a K such that given any set Y generated in Step 1 of the AGS algorithm, A f i (x k ) satisfies A f i (x k ) f i (x k ) K k, where k = max y i x k. y i Y Suppose t k is bounded away from 0. Then either 1 f (x k ), or 2 d k 0, k 0 and every cluster point x of the sequence {x k } k=0 satisfies 0 f ( x).

15 15 / 33 Convergence - Proof Proof - Outline. 1. The direction of steepest descent is Proj(0 f (x k )). 2. By previous lemma, G(x k ) is a good approximate of f (x k ). 3. So we can show that Proj(0 G(x k )) is still a descent direction (approximate direction of steepest descent). 4. Thus, we can show that convergence holds.

16 16 / 33 Robust Approximate Gradient Sampling Algorithm (Robust AGS Algorithm)

17 Visual Consider the function f (x) = max{f 1 (x), f 2 (x), f 3 (x)} where f 1 (x) = x x 2 2 f 2 (x) = (2 x 1 ) 2 + (2 x 2 ) 2 f 3 (x) = 2 exp(x 2 x 1 ). 17 / 33

18 18 / 33 Visual Representation Contour plot - nondifferentiable ridges

19 19 / 33 Visual Representation Regular AGS algorithm:

20 20 / 33 Visual Representation Robust AGS algorithm:

21 21 / 33 Robust Approximate Gradient Sampling Algorithm Definition Let Y = [x k, y 1, y 2,..., y m ] be a set of sampled points. The robust active set of f on Y is A(Y ) = A(y i ). y i Y

22 22 / 33 Robust Approximate Gradient Sampling Algorithm 1 Initialize 2 Generate Approximate Subdifferential: Calculate an approximate gradient A f i for each i A(Y ) and set G k = conv{ A f i (x k )} i A(x k ), and GY k = conv{ Af i (x k )} i A(Y ). 3 Direction: Set d k = Proj(0 G k ) and dy k = Proj(0 Gk Y ). 4 Check Stopping Conditions: Use d k to check stopping conditions. 5 (Armijo) Line Search: Use dy k for the search direction. 6 Update and Loop

23 23 / 33 Convergence Robust AGS Algorithm

24 24 / 33 Robust Convergence Theorem Let {x k } k=0 be generated by the robust AGS algorithm. Suppose there exists a K such that given any set Y generated in Step 1 of the robust AGS algorithm, A f i (x k ) satisfies A f i (x k ) f i (x k ) K k, where k = max y i x k. y i Y Suppose t k is bounded away from 0. Then either 1 f (x k ), or 2 d k 0, k 0 and every cluster point x of the sequence {x k } k=0 satisfies 0 f ( x).

25 25 / 33 Numerical Results

26 26 / 33 Approximate Gradients Requirement In order for convergence to be guaranteed in the AGS algorithm, A f i (x k ) must satisfy an error bound for each of the active f i : A f i (x k ) f i (x k ) K, where K > 0 and is bounded above. We used the following 3 approximate gradients: 1 Simplex Gradient (see Lemma 6.2.1, Kelley 99) 2 Centered Simplex Gradient (see Lemma 6.2.5, Kelley 99) 3 Gupal Estimate (see Theorem 3.8, Hare and Nutini 11)

27 27 / 33 Numerical Results - Overview Implementation was done in MATLAB 24 nonsmooth test problems (Lukšan-Vlček, 00) 25 trials for each problem Quality (improvement of digits of accuracy) measured by ( Fmin F ) log F 0 F

28 28 / 33 Numerical Results - Goal Determine any notable numerical differences between: 1 Version of the AGS Algorithm 1. Regular 2. Robust 2 Approximate Gradient 1. Simplex Gradient 2. Centered Simplex Gradient 3. Gupal Estimate Thus, 6 different versions of our algorithm were compared.

29 29 / 33 Performance Profile Performance Profile on AGS Algorithm (successful improvement of 1 digit) Simplex Robust Simplex Centered Simplex Robust Centered Simplex Gupal Robust Gupal ρ(τ) τ

30 30 / 33 Performance Profile Performance Profile on AGS Algorithm (successful improvement of 3 digits) Simplex Robust Simplex Centered Simplex Robust Centered Simplex Gupal Robust Gupal ρ(τ) τ

31 31 / 33 Conclusion Approximate gradient sampling algorithm for finite minimax problems Robust version Convergence (0 f ( x)) Numerical tests Notes: We have numerical results for a robust stopping condition. There is future work in developing the theoretical analysis. We are currently working on an application in seismic retrofitting.

32 32 / 33 Thank you!

33 33 / 33 References 1 J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15(2005), pp W. Hare and J. Nutini. A derivative-free approximate gradient sampling algorithm for finite minimax problems. Submitted to SIAM J. Optim., K. C. Kiwiel. A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization, SIAM J. Optim., 20(2010), pp C. T. Kelley. Iterative methods for optimization, SIAM, Philadelphia, PA, L. Lukšan and J. Vlček. Test Problems for Nonsmooth Unconstrained and Linearly Constrained Optimization. Technical Report V-798, ICS AS CR, February 2000.

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Introduction. Optimization

Introduction. Optimization Introduction to Optimization Amy Langville SAMSI Undergraduate Workshop N.C. State University SAMSI 6/1/05 GOAL: minimize f(x 1, x 2, x 3, x 4, x 5 ) = x 2 1.5x 2x 3 + x 4 /x 5 PRIZE: $1 million # of independent

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

IDENTIFYING ACTIVE MANIFOLDS

IDENTIFYING ACTIVE MANIFOLDS Algorithmic Operations Research Vol.2 (2007) 75 82 IDENTIFYING ACTIVE MANIFOLDS W.L. Hare a a Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. A.S. Lewis b b School of ORIE,

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Generalized Nash Equilibrium Problem: existence, uniqueness and

Generalized Nash Equilibrium Problem: existence, uniqueness and Generalized Nash Equilibrium Problem: existence, uniqueness and reformulations Univ. de Perpignan, France CIMPA-UNESCO school, Delhi November 25 - December 6, 2013 Outline of the 7 lectures Generalized

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

Convex Optimization Lecture 2

Convex Optimization Lecture 2 Convex Optimization Lecture 2 Today: Convex Analysis Center-of-mass Algorithm 1 Convex Analysis Convex Sets Definition: A set C R n is convex if for all x, y C and all 0 λ 1, λx + (1 λ)y C Operations that

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

Lecture Notes 2: The Simplex Algorithm

Lecture Notes 2: The Simplex Algorithm Algorithmic Methods 25/10/2010 Lecture Notes 2: The Simplex Algorithm Professor: Yossi Azar Scribe:Kiril Solovey 1 Introduction In this lecture we will present the Simplex algorithm, finish some unresolved

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Multivariate Numerical Optimization

Multivariate Numerical Optimization Jianxin Wei March 1, 2013 Outline 1 Graphics for Function of Two Variables 2 Nelder-Mead Simplex Method 3 Steepest Descent Method 4 Newton s Method 5 Quasi-Newton s Method 6 Built-in R Function 7 Linear

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

Performance Evaluation of an Interior Point Filter Line Search Method for Constrained Optimization

Performance Evaluation of an Interior Point Filter Line Search Method for Constrained Optimization 6th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING, Venice, Italy, November 21-23, 2007 18 Performance Evaluation of an Interior Point Filter Line Search Method for Constrained

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method 11 Appendix C: Steepest Descent / Gradient Search Method In the module on Problem Discretization

More information

Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles

Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles INTERNATIONAL JOURNAL OF MATHEMATICS MODELS AND METHODS IN APPLIED SCIENCES Comparison of Interior Point Filter Line Search Strategies for Constrained Optimization by Performance Profiles M. Fernanda P.

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

A direct search method for smooth and nonsmooth unconstrained optimization

A direct search method for smooth and nonsmooth unconstrained optimization ANZIAM J. 48 (CTAC2006) pp.c927 C948, 2008 C927 A direct search method for smooth and nonsmooth unconstrained optimization C. J. Price 1 M. Reale 2 B. L. Robertson 3 (Received 24 August 2006; revised 4

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Nonsmooth Optimization and Related Topics

Nonsmooth Optimization and Related Topics Nonsmooth Optimization and Related Topics Edited by F. H. Clarke University of Montreal Montreal, Quebec, Canada V. F. Dem'yanov Leningrad State University Leningrad, USSR I and F. Giannessi University

More information

ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA

ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA CONSIGLIO NAZIONALE DELLE RICERCHE G. Di Pillo, S. Lucidi, L. Palagi, M. Roma A CONTROLLED RANDOM SEARCH ALGORITHM WITH LOCAL NEWTON-TYPE SEARCH FOR GLOBAL

More information

for Approximating the Analytic Center of a Polytope Abstract. The analytic center of a polytope P + = fx 0 : Ax = b e T x =1g log x j

for Approximating the Analytic Center of a Polytope Abstract. The analytic center of a polytope P + = fx 0 : Ax = b e T x =1g log x j A Lagrangian Relaxation Method for Approximating the Analytic Center of a Polytope Masakazu Kojima y Nimrod Megiddo z Shinji Mizuno x September 1992 Abstract. The analytic center of a polytope P + = fx

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

Extending the search space of time-domain adjoint-state FWI with randomized implicit time shifts

Extending the search space of time-domain adjoint-state FWI with randomized implicit time shifts Extending the search space of time-domain adjoint-state FWI with randomized implicit time shifts Mathias Louboutin * and Felix J. Herrmann Seismic Laboratory for Imaging and Modeling (SLIM), The University

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Lecture 19 Subgradient Methods. November 5, 2008

Lecture 19 Subgradient Methods. November 5, 2008 Subgradient Methods November 5, 2008 Outline Lecture 19 Subgradients and Level Sets Subgradient Method Convergence and Convergence Rate Convex Optimization 1 Subgradients and Level Sets A vector s is a

More information

Lecture 6 - Multivariate numerical optimization

Lecture 6 - Multivariate numerical optimization Lecture 6 - Multivariate numerical optimization Björn Andersson (w/ Jianxin Wei) Department of Statistics, Uppsala University February 13, 2014 1 / 36 Table of Contents 1 Plotting functions of two variables

More information

Distributed non-convex optimization

Distributed non-convex optimization Distributed non-convex optimization Behrouz Touri Assistant Professor Department of Electrical and Computer Engineering University of California San Diego/University of Colorado Boulder AFOSR Computational

More information

Convex Analysis and Minimization Algorithms I

Convex Analysis and Minimization Algorithms I Jean-Baptiste Hiriart-Urruty Claude Lemarechal Convex Analysis and Minimization Algorithms I Fundamentals With 113 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 22 2019 Outline Practical issues in Linear Regression Outliers Categorical variables Lab

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 4: 5th February 2019 Outline 1 / 23 Which function is different from others? Figure: Functions 2 / 23 Definition of Convex Function Definition. A function f (x) : R n R is convex if (i) dom(f )

More information

A Multilevel Proximal Gradient Algorithm for a Class of Composite Optimization Problems

A Multilevel Proximal Gradient Algorithm for a Class of Composite Optimization Problems A Multilevel Proximal Gradient Algorithm for a Class of Composite Optimization Problems Panos Parpas May 9, 2017 Abstract Composite optimization models consist of the minimization of the sum of a smooth

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

USING SAMPLING AND SIMPLEX DERIVATIVES IN PATTERN SEARCH METHODS

USING SAMPLING AND SIMPLEX DERIVATIVES IN PATTERN SEARCH METHODS USING SAMPLING AND SIMPLEX DERIVATIVES IN PATTERN SEARCH METHODS A. L. CUSTÓDIO AND L. N. VICENTE Abstract. Pattern search methods can be made more efficient if past function evaluations are appropriately

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Introduction to unconstrained optimization - derivative-free methods

Introduction to unconstrained optimization - derivative-free methods Introduction to unconstrained optimization - derivative-free methods Jussi Hakanen Post-doctoral researcher Office: AgC426.3 jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Nesterov's Smoothing Technique and Minimizing Differences of Convex Functions for Hierarchical Clustering

Nesterov's Smoothing Technique and Minimizing Differences of Convex Functions for Hierarchical Clustering Portland State University PDXScholar Mathematics and Statistics Faculty Publications and Presentations Fariborz Maseeh Department of Mathematics and Statistics 3-017 Nesterov's Smoothing Technique and

More information

Lagrangian methods for the regularization of discrete ill-posed problems. G. Landi

Lagrangian methods for the regularization of discrete ill-posed problems. G. Landi Lagrangian methods for the regularization of discrete ill-posed problems G. Landi Abstract In many science and engineering applications, the discretization of linear illposed problems gives rise to large

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Linear Discriminant Functions: Gradient Descent and Perceptron Convergence

Linear Discriminant Functions: Gradient Descent and Perceptron Convergence Linear Discriminant Functions: Gradient Descent and Perceptron Convergence The Two-Category Linearly Separable Case (5.4) Minimizing the Perceptron Criterion Function (5.5) Role of Linear Discriminant

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Optimization by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Optimization II. 2. Solving Optimization Problems III. 3. How do we Find x f(x) = 0 IV.

More information

Computational Machine Learning, Fall 2015 Homework 4: stochastic gradient algorithms

Computational Machine Learning, Fall 2015 Homework 4: stochastic gradient algorithms Computational Machine Learning, Fall 2015 Homework 4: stochastic gradient algorithms Due: Tuesday, November 24th, 2015, before 11:59pm (submit via email) Preparation: install the software packages and

More information

The Mesh Adaptive Direct Search Algorithm for Discrete Blackbox Optimization

The Mesh Adaptive Direct Search Algorithm for Discrete Blackbox Optimization The Mesh Adaptive Direct Search Algorithm for Discrete Blackbox Optimization Sébastien Le Digabel Charles Audet Christophe Tribes GERAD and École Polytechnique de Montréal ICCOPT, Tokyo 2016 08 08 BBO:

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

Projection-Based Methods in Optimization

Projection-Based Methods in Optimization Projection-Based Methods in Optimization Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences University of Massachusetts Lowell Lowell, MA

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY

PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY PROJECTION ONTO A POLYHEDRON THAT EXPLOITS SPARSITY WILLIAM W. HAGER AND HONGCHAO ZHANG Abstract. An algorithm is developed for projecting a point onto a polyhedron. The algorithm solves a dual version

More information

An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems

An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems Kim-Chuan Toh Sangwoon Yun Abstract The affine rank minimization problem, which consists of finding a matrix

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

AM 221: Advanced Optimization Spring 2016

AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 2 Wednesday, January 27th 1 Overview In our previous lecture we discussed several applications of optimization, introduced basic terminology,

More information

INTRODUCTION AN INTRODUCTION TO DIRECT OPTIMIZATION METHODS. SIMPLE EXAMPLE: COMPASS SEARCH (Con t) SIMPLE EXAMPLE: COMPASS SEARCH

INTRODUCTION AN INTRODUCTION TO DIRECT OPTIMIZATION METHODS. SIMPLE EXAMPLE: COMPASS SEARCH (Con t) SIMPLE EXAMPLE: COMPASS SEARCH AN INTRODUCTION TO DIRECT OPTIMIZATION METHODS B Arnaud Bistoquet 03/30/04 INTRODUCTION Goal: minimization of a real-valued function f(), R n f() is differentiable + derivative-based f() can be computed

More information

Solution Methodologies for. the Smallest Enclosing Circle Problem

Solution Methodologies for. the Smallest Enclosing Circle Problem Solution Methodologies for the Smallest Enclosing Circle Problem Sheng Xu 1 Robert M. Freund 2 Jie Sun 3 Tribute. We would like to dedicate this paper to Elijah Polak. Professor Polak has made substantial

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

not made or distributed for profit or commercial advantage and that copies

not made or distributed for profit or commercial advantage and that copies Copyright 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms

Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 5, SEPTEMBER 2002 1225 Efficient Tuning of SVM Hyperparameters Using Radius/Margin Bound and Iterative Algorithms S. Sathiya Keerthi Abstract This paper

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

C3 Numerical methods

C3 Numerical methods Verulam School C3 Numerical methods 138 min 108 marks 1. (a) The diagram shows the curve y =. The region R, shaded in the diagram, is bounded by the curve and by the lines x = 1, x = 5 and y = 0. The region

More information

control polytope. These points are manipulated by a descent method to compute a candidate global minimizer. The second method is described in Section

control polytope. These points are manipulated by a descent method to compute a candidate global minimizer. The second method is described in Section Some Heuristics and Test Problems for Nonconvex Quadratic Programming over a Simplex Ivo Nowak September 3, 1998 Keywords:global optimization, nonconvex quadratic programming, heuristics, Bezier methods,

More information

Delaunay-based derivative-free optimization via global surrogates, part II: convex constraints

Delaunay-based derivative-free optimization via global surrogates, part II: convex constraints DOI.7/s898-6-433-5 Delaunay-based derivative-free optimization via global surrogates, part II: convex constraints Pooriya Beyhaghi Thomas R. Bewley Received: 9 May 25 / Accepted: 8 April 26 Springer Science+Business

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs 11 3.1 Forms of linear programs... 12 3.2 Basic feasible solutions... 13 3.3 The geometry of linear programs... 14 3.4 Local search among basic feasible solutions... 15 3.5 Organization in tableaus...

More information

A generic column generation principle: derivation and convergence analysis

A generic column generation principle: derivation and convergence analysis A generic column generation principle: derivation and convergence analysis Torbjörn Larsson, Athanasios Migdalas and Michael Patriksson Linköping University Post Print N.B.: When citing this work, cite

More information

Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations

Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations Ian Mitchell Department of Computer Science University of British Columbia Outline Path Planning

More information

An iteration of the simplex method (a pivot )

An iteration of the simplex method (a pivot ) Recap, and outline of Lecture 13 Previously Developed and justified all the steps in a typical iteration ( pivot ) of the Simplex Method (see next page). Today Simplex Method Initialization Start with

More information

Persistence stability for geometric complexes

Persistence stability for geometric complexes Lake Tahoe - December, 8 2012 NIPS workshop on Algebraic Topology and Machine Learning Persistence stability for geometric complexes Frédéric Chazal Joint work with Vin de Silva and Steve Oudot (+ on-going

More information

The Capacity of Wireless Networks

The Capacity of Wireless Networks The Capacity of Wireless Networks Piyush Gupta & P.R. Kumar Rahul Tandra --- EE228 Presentation Introduction We consider wireless networks without any centralized control. Try to analyze the capacity of

More information

H = {(1,0,0,...),(0,1,0,0,...),(0,0,1,0,0,...),...}.

H = {(1,0,0,...),(0,1,0,0,...),(0,0,1,0,0,...),...}. II.4. Compactness 1 II.4. Compactness Note. Conway states on page 20 that the concept of compactness is an extension of benefits of finiteness to infinite sets. I often state this idea as: Compact sets

More information

Finding Euclidean Distance to a Convex Cone Generated by a Large Number of Discrete Points

Finding Euclidean Distance to a Convex Cone Generated by a Large Number of Discrete Points Submitted to Operations Research manuscript (Please, provide the manuscript number!) Finding Euclidean Distance to a Convex Cone Generated by a Large Number of Discrete Points Ali Fattahi Anderson School

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Quantitative Macroeconomics Raül Santaeulàlia-Llopis MOVE-UAB and Barcelona GSE Fall 2018 Raül Santaeulàlia-Llopis (MOVE-UAB,BGSE) QM: Numerical Optimization Fall 2018 1 / 46 1 Introduction

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1.

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1. ACTA MATHEMATICA VIETNAMICA Volume 21, Number 1, 1996, pp. 59 67 59 A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM NGUYEN DINH DAN AND

More information

Delay-minimal Transmission for Energy Constrained Wireless Communications

Delay-minimal Transmission for Energy Constrained Wireless Communications Delay-minimal Transmission for Energy Constrained Wireless Communications Jing Yang Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, M0742 yangjing@umd.edu

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Proximal operator and methods

Proximal operator and methods Proximal operator and methods Master 2 Data Science, Univ. Paris Saclay Robert M. Gower Optimization Sum of Terms A Datum Function Finite Sum Training Problem The Training Problem Convergence GD I Theorem

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

15. Cutting plane and ellipsoid methods

15. Cutting plane and ellipsoid methods EE 546, Univ of Washington, Spring 2012 15. Cutting plane and ellipsoid methods localization methods cutting-plane oracle examples of cutting plane methods ellipsoid method convergence proof inequality

More information