Laser-Pointing Endoscope System for Intra-Operative

Size: px
Start display at page:

Download "Laser-Pointing Endoscope System for Intra-Operative"

Transcription

1 Proceedings of the 2001 IEEE International Conference on Robotics 8 Automation Seoul, Korea. May 21-26, 2001 Laser-Pointing Endoscope System for Intra-Operative 3D Geometric Registration Mitsuhiro Hayashibe Yoshihiko Nakamura ( [hayasibe, nakamura] eynl. t. U- tokyo. ac. j p) Department of Mechano-Informatics University of Tokyo 7-3-1, Hongo, Bunkyoku, Tokyo Japan Abstract Precise measurements of geometry should accompany robotic equipments in operating rooms if their advanhges are further pursued. For deforming organs including a liver, intraoperative geometric measurements play an essential role in computer surgery in addition, to pre-operative geometric information from CT, MRI and so on. We developed a laser-pointing endoscope using an optical galvano scanner and a 955fps hi,qh-speed camera. The laser-pointing endoscope system acquires and visualizes the shape of the area of interest in a flash of time. Applications of the system also include the touch screen interface for non-master-slave operation of surgical robots, where the 30 coordinates of the touched point on screen are measured by the system and guide a robot. Results of in-vivo experiments on a liver of pig verify the eflectiveness of the proposed system. Key Words: medical robotics, m,inimally invasive surgery, endoscope, laser scanner, 30 geometry 1 Introduction Endoscopic surgery forces surgeons to operate with mental tcnsiori under the mechanical and visual constraints. Thc visual difficulties are due to narrow sight of endoscopcs and the lack of depth perception. Minimally invasive surgery would be technologically improved if surgeons are provided with the 3D shape of internal geometry and the 3D coordinates of the point of interest, in an intuitive manner. The related and significant as well would be the issue of human interface. As minimally invasive surgery allows more and more technology involvement[l], tighter but more natural relationship between machines and surgeons are required. Thc Zeus of Computer Motion Inc.[2, 8, 91 and the (la Vinci of Intuitive Surgical Inc.[3], for instance, choose the master-slave configuration, where the human interface is still limited to direct manipulation. In this paper, we develop the laser-pointing endoscope system. We fabricate a prototype using a laser light source, a 2D optical galvano scanner, and a 955fps high-speed camera. This device allows to acquire the intraoperative 3D geometric information in a flash of time. We also propose a touch screen interface so that surgeons can intuitively indicate 3D points of interest on the 2D screen. As an application of the interface, we develope a non-master-slave manipulation system for the surgical robot. Results of in-vivo experiments for a liver of pig verify the effectiveness of the proposed. 2 The Laser-Pointing Endoscope The prototype was developed as shown in Fig.1 employing a laser light source, a 2D galvano scanner, two endoscopic optics, two cameras of different standards and a LCD monitor with touch screen interface. Being controlled by the mirrors of galvano scanner, a laser spot is projected inside the patient s body through an endoscopic optics. We used a closedloop galvano scanner (General Scanning Inc.), which responds up to 1kHz. The laser spot is captured by a 955fps high-speed camera (DALSA Inc.; 256x256 pixels, 256 gray scale) and an image capture/processing board (Viper-Digital; CORECO Inc.). The image of high speed camera is not suitable s monitoring. Information from high speed camera is used only for 3D geometric information of organs. Using a beamsplitting prism, color images of the same scope are captured by an NTSC CCD camera and presented to the surgeon as illustrated in Fig.2. The laser and camera coordinate systems are identified by OPTOTRAK (Northern Digital Inc.) attached to the devices as Fig.4. The 3D coordinates of reference points are reconstructed based on the triangulation between the high-speed camera image and the mirror angles of galvano scanner. Although the image captured through the endoscope is distorted by the relayed lens inside[lo], it is corrected and used to calculate the 3D position /01/$ IEEE 1543

2 Fig. 2: Laser Pointing Endoscope: system configuration 3 Calibrations and Measurements 3.1 Camera Calibration We adopted the parameterization and calculation method of the literature[6]. The relation between the coordinates the point P in the laser frame p and that in the camera frame p is represented as follows: centroid, and s,, sy are the camera scale factors. From Eqs.(4)-(5), we obtain where c+=zc[ H v 3 (6) T.JI = [ sxf Syf CX cy ] (8) where lp= [ ZL YL 75 1 (2) p= [ 2, Yc ZC 1 (3) p is transformed to the 2D coordinates in the image plane by perspective transformation as follows: yv=e f zc f zc -- xu - xc (4) where [ x, yv IT denotes coordinates point P in the image plane, and f is the focal distance of the camera. The transformation from the pixel unit to the unit of the camera coordinates is where [ H V 1 S,X, = cz - H, syyc = cy - V (5) P on the image, [ c, cy IT denotes the pi.xel coordinates of point implies that of the image Because + contains the unknown camera paremeters, they are determined by the camera calibration. Redundant numbers of reference points are measured to obtain the relation between the pixel coordinates in the image and the camera coordinates. The least square computation calculates $7 using pseudo-inverse matrix as follows: 11, =z,c [ H V 1 (9) 3.2 Laser and Endoscope Calibration A laser beam is projected on the internal organ through the endoscope. The end of the endoscope is inserted into the abdominal cavity and laser beam is scanned by the two mirrors of galvano scanner at the other end as illustrated in Fig.3. We made a calibration of the endoscopic optics and determined the relation between input angle and output angle. 1544

3 J YI Fig. 3: input 4 Fig. 1: Laser Pointing Endoscope: the develope1 3 prototype Input angle 4 and output are written as 4 = [ #)yaw 4)pztch 1' = apztch 1' = [ arctan(yl/zl) arctan(zi/zl) ' I (11) Assuming that the relation between $ is a 4yaw + b (') 'I'prtch = c $pitch + d (13) Again using the least square estimation, the parameters of transformation become?r = Lif@ (14) Fig. 4: Laser Frame and Camera Frame Fig.4. The 3D coordinates of the laser mark are obtained as those of the intersection between the line of laser beam LlaseT and the perspective line LcameTa. LlaseT and LcameTa are described as follows: 'p = U [ 1 tan (a$yaw + b) tan ( c $ + ~ d) ~ ]fi7) ~ where L= [ 4yaw syf v-c, (18) 0 4ppiLch Using Eqs. (1), (17), and (18), we can simultaneousn=[ a b c d]'i' (16) ly solve unknowns of lp, cp, and parametric variable U and measure of the 3D coordinates of laser spot D Measurements Triangulation between the laser scanning endoscope and the endoscopic camera (955fps) provides the 3D coordinates of the laser spot as illustrated in 1545

4 4 Experiment 4.1 3D Pointing Interface In the current endoscopic surgery, surgeons have to mentally extract necessary inj'ormation from the image of endoscope. In other words; they must judge the distance and the size of object using their sense. The surgeons would feel less tired if they were released from the mental load. The 3D pointing interface works as follows: (1) the surgeon toughes the screen of endoscopic image at a point of interest. (2) the laser marker is controlled using the galvano scanner so that its position in the endoscopic image converges to the point of interest. (3) Once converged, the 3D coordinates in the camera frame of the point of reference are recovered. We tested the interface and measurements in in-vivo experiments on the liver of a pig. This system could provide the surgeon with the 3D coordinates of the point of interest in real-time. 'The response time from the touch on screen to the output of 3D coordinates was approximately 0.5 second. We will share the trace data that shows how the laser spot were controlled and converged to the target point on the liver. Figure 5 shows the trace of 3D coordinates while the laser marker converges to the point of interest on the liver of pig. This interface could be used to locally illuminate the interest area as shown in Fig.6. It will be useful for intraoperative communication tool under teleoperative environment. tracking(955fps) and laser coni,rol using differential vector in the image. In every frame, differential vector between present laser point and destination is calculated. And laser beam is projected to the direction of the differential vector according to its size until the difference has turned into subthreshold as illustrated in Fig.7. I Fig. 6: Marking on the liver /I Mestination Fig. 7: Convergence in endoscopic image E16 3 hi r' 4.2 3D Geometric Registration Figure 8 shows the scanned surface of 50yen coin by Laser-Pointing Endoscope. The hole on 50yen coin could be measured and the error is within 1%. The scanned 3D data is automatically redescribed in Virtual Reality Modeling Language 2.0 by the our developed program. The shape of liver is easily percieved by www browser with VRML plug-in software. The surface is composed from numerous triangle patches. Fig. 5: The 3D trace of laser mark on the liver The touch screen interface assists a surgeon to intuitively indicate the point of interest on the 2D monitor screen (NTSC). The galvano scanner actively controls the laser spot inside the patient to locate it in the 2D monitor screen (NTSC) at the indicated point by the surgeon. And this system is realized by high speed Fig. 8: Scanned surface of 50yen coin 1546

5 In order to investigate the optical conditions, we scanned tlic 3D shape of pig s liver in laparotomy. Even with the wet and shinny surface condition, it was possible to obtain the 3D positional data using a semiconductor laser light source. The laser power was 15mW. We scanned the area of 20cm square and obtained the 4000 points data. Sampling time took 1.2ms for each point, and the total measuring time was approximakly 5.0 seconds. Fig.9 show the reconstructed 3D VRML image of the scanned liver in in-vivo experiment. Fig. 10: The device settings in laparoscopic surgery Fig. 9: 3D VRML image of liver in laparotomy The image of Fig.9 was obtained after the abdomen was opened. The primal purpose of this research is to obtain 3D geometry under the laparoscopic surgery. We made an iri-vivo experiment under the laparoscopy to obtain the intraoperative 3D geometry as shown in Fig.10. We scanned the area of 8cm square and obtained the 400 points data. Sampling time took 1.2ms for cach point including the calculation time for 3D position, and the total measuring time was 0.5 seconds. The intraoperative 3D geometry of the liver surface could be quickly obtained as Fig.11. The obtained information could be used; for example, for the local surgeon to provide the robotic equipment; controller with a reference point, or for the remote mentoring doctors to numerically measure the location, length, and/or area of interest inside the patient s body. 4.3 Wide Area Registration Due to the narrow sight of the endoscope, the area which is able to be observed is limited for the surgeon. Therefore, it is easy to imagine the possibility of collisions between the organ and forceps of surgical robot in the out of view from the endoscope. To overcome the narrow view, 3D geometry of the region in the out of view is registered into the virtual space. We made an additioiial registration of the data sheet obtained by the scanning. The data sheet contains 400 referent points and is captured within 0.5 second. We made a measurement of the cylinder. The data sheet was Fig. 11: 3D VRML image of liver in laparoscopy added into the virtual space after the position and direction of endoscope is changed to get the different view. Fig.12 shows the three data sheet and the right of it is the side view of them. 4.4 Non-Master-Slave Operation The present interface of surgical robot is limited to master-slave configuration. In the robotic telesurgery using master-slave, the large amount of image data must be transmitted through general network. It brings the difficulties of time delay. As the application of 3D pointing interface, the 3D position of destination for the surgical robot can be obtained from the 2D input on the touch screen.the surgeons have been able to guide the surgical robot to the place where it should approach at the end by the intuitive touch input on the endoscopic image. As shown in Fig.13, The forceps attached to surgical robot could be guided to the object by non-master-slave operation. AESOP (Computer Motion Inc.) is adopted as the surgical robot to have the forceps. 1547

6 References Fig. 12: Registration of out-of-view area [l] Marc 0. Schurr. Robotic Deviccs for Advanced Endoscopic Surgical Proccdures. Journal of thc Robotics Society of Japan CYOL.18 No.1 pp.16-19, 2000 D [a] Computer Motion Inc.. Internet Home Page. [3] Gary S.Guthart. The Intuitive Telesurgery System. Proceedings of the 1E:EE International Conference on Robotics and Automation, pp , [4] S.Baba, H.Kawakami, Y.Nakamura. Laser pointing endoscope for Minimally Invasive Surgery. Proceedings of Robomech 99, 1P ,1999. [5] Y.Nakamura, M.Hayashibe. Laser-Pointing Endoscope System for Natural 3D Interface between Robotic Equipments and Surgeons. Proceedings of Medicine Meets Virtual Reality 2001, pp , [6] H.Zuang, K.Wang, and ZSRoth. Simultaneous Calibration of a Robot and a Hand-Mounded Camera. IEEE Trans. on Robotics and Automation, vol.11, no.5, pp , Fig. 13: The guided forceps by non-master-slave operat,ion 5 Conclusion We developed the laser-pointing endoscope system. The intuitive iriterface to be an intra operative support for surgeons was designed and fabricated using a touch screen and a high-speed camera. The invivo measurement of the pig s liver was carried out. The intraoperativc 3D geometric registration was realized under laparoscopic surgery. Preliminary results of in-vivo experiments verified the functionality and showed the performance. We proposed and realized non-master-slave operation for the surgical robot. Acknowledgements This work was supported in part through Development of Surgical Robotic Systems (PI: Prof. MD. T.Tsuji) under the Research for the Future Program, the Japan Society for the Promotion of Science; and through Telecommunications Advanccment Organization of Japan (PI: Prof. M.M-itsuishi). And I appreciate H.Shimizu for the measurement of device coordinates using OPTOTRAK. [7] N.J.Soper. Essentials of laparoscopy. Quality Medical Pii.blishin.g, [8] H.Reichenspurner, R.I>amiano, M.Mack, D.Boehm, B.Meiser, R.Elgass, B.Reichart. Use of the voice-controlled and computer-assisted surgical system Zeus for endoscopic coronary artery bypass grafting. J Thorac Curdiovusc Surg, Vol. 118, NO. 1: pp , [9] Y.F.Wang D.R.Uecker, C.Lee and Y.Wang. A speech-directed multi-modal man-machine interface for robotically enhanced surgery. Proceedings of the First International Symposium on. Medical Robotics and Com.puter Assisted Surgery, pp , [lo] H.Haneishi, Y.Yagihashi, Y.Miyake. A new method for distortion correction of electronic endoscope images. IEEE Trans. Med. Imag., Vol. 14, pp , September

Intraoperative Fast 3D Shape Recovery of Abdominal Organs in Laparoscopy

Intraoperative Fast 3D Shape Recovery of Abdominal Organs in Laparoscopy Intraoperative Fast 3D Shape Recovery of Abdominal Organs in Laparoscopy Mitsuhiro Hayashibe 1, Naoki Suzuki 1, Asaki Hattori 1, and Yoshihiko Nakamura 2 1 Institute for High Dimensional Medical Imaging,

More information

Navigation System for ACL Reconstruction Using Registration between Multi-Viewpoint X-ray Images and CT Images

Navigation System for ACL Reconstruction Using Registration between Multi-Viewpoint X-ray Images and CT Images Navigation System for ACL Reconstruction Using Registration between Multi-Viewpoint X-ray Images and CT Images Mamoru Kuga a*, Kazunori Yasuda b, Nobuhiko Hata a, Takeyoshi Dohi a a Graduate School of

More information

3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery

3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery 3D Ultrasound System Using a Magneto-optic Hybrid Tracker for Augmented Reality Visualization in Laparoscopic Liver Surgery Masahiko Nakamoto 1, Yoshinobu Sato 1, Masaki Miyamoto 1, Yoshikazu Nakamjima

More information

Fully Automatic Endoscope Calibration for Intraoperative Use

Fully Automatic Endoscope Calibration for Intraoperative Use Fully Automatic Endoscope Calibration for Intraoperative Use Christian Wengert, Mireille Reeff, Philippe C. Cattin, Gábor Székely Computer Vision Laboratory, ETH Zurich, 8092 Zurich, Switzerland {wengert,

More information

Data Fusion Virtual Surgery Medical Virtual Reality Team. Endo-Robot. Database Functional. Database

Data Fusion Virtual Surgery Medical Virtual Reality Team. Endo-Robot. Database Functional. Database 2017 29 6 16 GITI 3D From 3D to 4D imaging Data Fusion Virtual Surgery Medical Virtual Reality Team Morphological Database Functional Database Endo-Robot High Dimensional Database Team Tele-surgery Robotic

More information

AUTOMATIC DETECTION OF ENDOSCOPE IN INTRAOPERATIVE CT IMAGE: APPLICATION TO AUGMENTED REALITY GUIDANCE IN LAPAROSCOPIC SURGERY

AUTOMATIC DETECTION OF ENDOSCOPE IN INTRAOPERATIVE CT IMAGE: APPLICATION TO AUGMENTED REALITY GUIDANCE IN LAPAROSCOPIC SURGERY AUTOMATIC DETECTION OF ENDOSCOPE IN INTRAOPERATIVE CT IMAGE: APPLICATION TO AUGMENTED REALITY GUIDANCE IN LAPAROSCOPIC SURGERY Summary of thesis by S. Bernhardt Thesis director: Christophe Doignon Thesis

More information

Development of a Robotic Laser Surgical Tool with an Integrated Video Endoscope

Development of a Robotic Laser Surgical Tool with an Integrated Video Endoscope Development of a Robotic Laser Surgical Tool with an Integrated Video Endoscope Takashi Suzuki 1, Youhei Nishida 1, Etsuko Kobayashi 1, Takayuki Tsuji 1, Tsuneo Fukuyo 2, Michihiro Kaneda 3, Kozo Konishi

More information

Physiological Motion Compensation in Minimally Invasive Robotic Surgery Part I

Physiological Motion Compensation in Minimally Invasive Robotic Surgery Part I Physiological Motion Compensation in Minimally Invasive Robotic Surgery Part I Tobias Ortmaier Laboratoire de Robotique de Paris 18, route du Panorama - BP 61 92265 Fontenay-aux-Roses Cedex France Tobias.Ortmaier@alumni.tum.de

More information

MR-Mirror: A Complex of Real and Virtual Mirrors

MR-Mirror: A Complex of Real and Virtual Mirrors MR-Mirror: A Complex of Real and Virtual Mirrors Hideaki Sato 1, Itaru Kitahara 1, and Yuichi Ohta 1 1 Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering,

More information

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: ,

3D Sensing and Reconstruction Readings: Ch 12: , Ch 13: , 3D Sensing and Reconstruction Readings: Ch 12: 12.5-6, Ch 13: 13.1-3, 13.9.4 Perspective Geometry Camera Model Stereo Triangulation 3D Reconstruction by Space Carving 3D Shape from X means getting 3D coordinates

More information

Computed Photography - Final Project Endoscope Exploration on Knee Surface

Computed Photography - Final Project Endoscope Exploration on Knee Surface 15-862 Computed Photography - Final Project Endoscope Exploration on Knee Surface Chenyu Wu Robotics Institute, Nov. 2005 Abstract Endoscope is widely used in the minimally invasive surgery. However the

More information

Improved Navigated Spine Surgery Utilizing Augmented Reality Visualization

Improved Navigated Spine Surgery Utilizing Augmented Reality Visualization Improved Navigated Spine Surgery Utilizing Augmented Reality Visualization Zein Salah 1,2, Bernhard Preim 1, Erck Elolf 3, Jörg Franke 4, Georg Rose 2 1Department of Simulation and Graphics, University

More information

A 3-D Scanner Capturing Range and Color for the Robotics Applications

A 3-D Scanner Capturing Range and Color for the Robotics Applications J.Haverinen & J.Röning, A 3-D Scanner Capturing Range and Color for the Robotics Applications, 24th Workshop of the AAPR - Applications of 3D-Imaging and Graph-based Modeling, May 25-26, Villach, Carinthia,

More information

A Study of Medical Image Analysis System

A Study of Medical Image Analysis System Indian Journal of Science and Technology, Vol 8(25), DOI: 10.17485/ijst/2015/v8i25/80492, October 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 A Study of Medical Image Analysis System Kim Tae-Eun

More information

Generating 3D Meshes from Range Data

Generating 3D Meshes from Range Data Princeton University COS598B Lectures on 3D Modeling Generating 3D Meshes from Range Data Robert Kalnins Robert Osada Overview Range Images Optical Scanners Error sources and solutions Range Surfaces Mesh

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

2D and 3d In-Vivo Imaging for Robotic Surgery. Peter K. Allen Department of Computer Science Columbia University

2D and 3d In-Vivo Imaging for Robotic Surgery. Peter K. Allen Department of Computer Science Columbia University 2D and 3d In-Vivo Imaging for Robotic Surgery Peter K. Allen Department of Computer Science Columbia University CU Robotics Medical Devices 1. In-vivo imaging device (mono) 2. In-vivo imaging device (stereo)

More information

(b) (a) 394 H. Liao et al. Fig.1 System configuration

(b) (a) 394 H. Liao et al. Fig.1 System configuration 394 H. Liao et al. PC 3-D Voxel Data MRI etc. RS232C RGB IP Display Optical Tracking System Probe control equipment Fig.1 System configuration We use optical 3-D tracking system to track the position of

More information

Endoscopic Reconstruction with Robust Feature Matching

Endoscopic Reconstruction with Robust Feature Matching Endoscopic Reconstruction with Robust Feature Matching Students: Xiang Xiang Mentors: Dr. Daniel Mirota, Dr. Gregory Hager and Dr. Russell Taylor Abstract Feature matching based 3D reconstruction is a

More information

Research on Laser Positioning Technology of CMOS Triangulation for Precision Surgery

Research on Laser Positioning Technology of CMOS Triangulation for Precision Surgery Research on Laser Positioning Technology of CMOS Triangulation for Precision Surgery Abstract Huihui Zhang a, Haiyan Jin b, Na Shao c and Shunhua Wang d, * Qingdao Municipal Hospital, Qingdao 266000, China

More information

A 3D photographic capsule endoscope system with full field of view

A 3D photographic capsule endoscope system with full field of view A 3D photographic capsule endoscope system with full field of view Mang Ou-Yang 1, Wei-De Jeng *,2, Chien-Cheng Lai 2, Yi-Chinn Kung 1 and Kuan-Heng Tao 1 1 Department of electrical engineering, National

More information

Projector Calibration for Pattern Projection Systems

Projector Calibration for Pattern Projection Systems Projector Calibration for Pattern Projection Systems I. Din *1, H. Anwar 2, I. Syed 1, H. Zafar 3, L. Hasan 3 1 Department of Electronics Engineering, Incheon National University, Incheon, South Korea.

More information

Thin Plate Spline Feature Point Matching for Organ Surfaces in Minimally Invasive Surgery Imaging

Thin Plate Spline Feature Point Matching for Organ Surfaces in Minimally Invasive Surgery Imaging Thin Plate Spline Feature Point Matching for Organ Surfaces in Minimally Invasive Surgery Imaging Bingxiong Lin, Yu Sun and Xiaoning Qian University of South Florida, Tampa, FL., U.S.A. ABSTRACT Robust

More information

Depth Camera Calibration and Knife Tip Position Estimation for Liver Surgery Support System

Depth Camera Calibration and Knife Tip Position Estimation for Liver Surgery Support System Depth Camera Calibration and Knife Tip Position Estimation for Liver Surgery Support System Masanao Koeda 1, Akio Tsukushi 1, Hiroshi Noborio 1, Katsuhiko Onishi 1, Kiminori Mizushino 2, Takahiro Kunii

More information

A 100Hz Real-time Sensing System of Textured Range Images

A 100Hz Real-time Sensing System of Textured Range Images A 100Hz Real-time Sensing System of Textured Range Images Hidetoshi Ishiyama Course of Precision Engineering School of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551,

More information

Vision-Based 3D Fingertip Interface for Spatial Interaction in 3D Integral Imaging System

Vision-Based 3D Fingertip Interface for Spatial Interaction in 3D Integral Imaging System International Conference on Complex, Intelligent and Software Intensive Systems Vision-Based 3D Fingertip Interface for Spatial Interaction in 3D Integral Imaging System Nam-Woo Kim, Dong-Hak Shin, Dong-Jin

More information

Ray tracing based fast refraction method for an object seen through a cylindrical glass

Ray tracing based fast refraction method for an object seen through a cylindrical glass 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Ray tracing based fast refraction method for an object seen through a cylindrical

More information

Handy Rangefinder for Active Robot Vision

Handy Rangefinder for Active Robot Vision Handy Rangefinder for Active Robot Vision Kazuyuki Hattori Yukio Sato Department of Electrical and Computer Engineering Nagoya Institute of Technology Showa, Nagoya 466, Japan Abstract A compact and high-speed

More information

Compact Forceps Manipulator Using Friction Wheel Mechanism and Gimbals Mechanism for Laparoscopic Surgery

Compact Forceps Manipulator Using Friction Wheel Mechanism and Gimbals Mechanism for Laparoscopic Surgery Compact Manipulator Using Friction Wheel Mechanism and Gimbals Mechanism for Laparoscopic Surgery Takashi Suzuki, Youichi Katayama, Etsuko Kobayashi, and Ichiro Sakuma Institute of Environmental Studies,

More information

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR

Laser sensors. Transmitter. Receiver. Basilio Bona ROBOTICA 03CFIOR Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The receiver measures the time of flight (back and

More information

An Endoscope With 2 DOFs Steering of Coaxial Nd:YAG Laser Beam for Fetal Surgery [Yamanaka et al. 2010, IEEE trans on Mechatronics]

An Endoscope With 2 DOFs Steering of Coaxial Nd:YAG Laser Beam for Fetal Surgery [Yamanaka et al. 2010, IEEE trans on Mechatronics] An Endoscope With 2 DOFs Steering of Coaxial Nd:YAG Laser Beam for Fetal Surgery [Yamanaka et al. 2010, IEEE trans on Mechatronics] GEORGE DWYER Automatic Tracking Algorithm in Coaxial Near-infrared Laser

More information

THE COLORED COMPARISON OF THE WALL SCULPTURE WITH 3D LASER SCANNER AND ORTHOPHOTO

THE COLORED COMPARISON OF THE WALL SCULPTURE WITH 3D LASER SCANNER AND ORTHOPHOTO THE COLORED COMPARISON OF THE WALL SCULPTURE WITH 3D LASER SCANNER AND ORTHOPHOTO Hirotoshi KURASHIGE, Jun KATO, Shozo NISHIMURA Creative Department, Keisoku Research Consultant Co, 1-665-1 Fukuda, Higashi-ku,

More information

ENGN D Photography / Spring 2018 / SYLLABUS

ENGN D Photography / Spring 2018 / SYLLABUS ENGN 2502 3D Photography / Spring 2018 / SYLLABUS Description of the proposed course Over the last decade digital photography has entered the mainstream with inexpensive, miniaturized cameras routinely

More information

3D Ultrasound Reconstruction By The 3 Cons: Michael Golden Khayriyyah Munir Omid Nasser Bigdeli

3D Ultrasound Reconstruction By The 3 Cons: Michael Golden Khayriyyah Munir Omid Nasser Bigdeli 3D Ultrasound Reconstruction By The 3 Cons: Michael Golden Khayriyyah Munir Omid Nasser Bigdeli Client Contact: Dr. Joseph McIsaac Hartford Hospital 80 Seymour St. PO Box 5037 Hartford, CT 06102 (860)

More information

Mirror Based Framework for Human Body Measurement

Mirror Based Framework for Human Body Measurement 362 Mirror Based Framework for Human Body Measurement 1 Takeshi Hashimoto, 2 Takayuki Suzuki, 3 András Rövid 1 Dept. of Electrical and Electronics Engineering, Shizuoka University 5-1, 3-chome Johoku,

More information

3D Object Model Acquisition from Silhouettes

3D Object Model Acquisition from Silhouettes 4th International Symposium on Computing and Multimedia Studies 1 3D Object Model Acquisition from Silhouettes Masaaki Iiyama Koh Kakusho Michihiko Minoh Academic Center for Computing and Media Studies

More information

Motion Control of a Master-Slave Minimally Invasive Surgical Robot Based on the Hand-Eye-Coordination

Motion Control of a Master-Slave Minimally Invasive Surgical Robot Based on the Hand-Eye-Coordination Motion Control of a Master-Slave Minimally Invasive Surgical Robot Based on the Hand-Eye-Coordination Aolin Tang, Qixin Cao, Hongbing Tan, Masakatsu G. Fujie 2, Tiewen Pan 3, State Key Lab of Mechanical

More information

Three-Dimensional Measurement of Objects in Liquid with an Unknown Refractive Index Using Fisheye Stereo Camera

Three-Dimensional Measurement of Objects in Liquid with an Unknown Refractive Index Using Fisheye Stereo Camera Three-Dimensional Measurement of Objects in Liquid with an Unknown Refractive Index Using Fisheye Stereo Camera Kazuki Sakamoto, Alessandro Moro, Hiromitsu Fujii, Atsushi Yamashita, and Hajime Asama Abstract

More information

Optimal Planning of Robotically Assisted Heart Surgery: Transfer Precision in the Operating Room

Optimal Planning of Robotically Assisted Heart Surgery: Transfer Precision in the Operating Room Optimal Planning of Robotically Assisted Heart Surgery: Transfer Precision in the Operating Room Ève Coste-Manière 1, Louaï Adhami 1, Fabien Mourgues 1, Olivier Bantiche 1, David Le 2, David Hunt 2, Nick

More information

Basilio Bona DAUIN Politecnico di Torino

Basilio Bona DAUIN Politecnico di Torino ROBOTICA 03CFIOR DAUIN Politecnico di Torino Mobile & Service Robotics Sensors for Robotics 3 Laser sensors Rays are transmitted and received coaxially The target is illuminated by collimated rays The

More information

Measurements using three-dimensional product imaging

Measurements using three-dimensional product imaging ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Special Issue 3/2010 41 46 7/3 Measurements using

More information

Kohei Arai Graduate School of Science and Engineering Saga University Saga City, Japan

Kohei Arai Graduate School of Science and Engineering Saga University Saga City, Japan (IJRI) International Journal of dvanced Research in rtificial Intelligence, Method for 3D Object Reconstruction Using Several Portions of 2D Images from the Different spects cquired with Image Scopes Included

More information

Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder

Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder Bio-Medical Materials and Engineering 24 (204) 2665 2672 DOI 0.3233/BME-4083 IOS Press 2665 Real-time 3D visual tracking of laparoscopic instruments for robotized endoscope holder Zijian Zhao School of

More information

Optimized Design of 3D Laser Triangulation Systems

Optimized Design of 3D Laser Triangulation Systems The Scan Principle of 3D Laser Triangulation Triangulation Geometry Example of Setup Z Y X Target as seen from the Camera Sensor Image of Laser Line The Scan Principle of 3D Laser Triangulation Detektion

More information

Illumination Position Estimation for 3D Soft-Tissue Reconstruction in Robotic Minimally Invasive Surgery

Illumination Position Estimation for 3D Soft-Tissue Reconstruction in Robotic Minimally Invasive Surgery Illumination Position Estimation for 3D Soft-Tissue Reconstruction in Robotic Minimally Invasive Surgery Danail Stoyanov, Dan Elson and Guang-Zhong Yang Abstract For robotic assisted minimally invasive

More information

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks Du-Yih Tsai, Masaru Sekiya and Yongbum Lee Department of Radiological Technology, School of Health Sciences, Faculty of

More information

Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation [Yang et al. 2014, Comp Med Imaging and Graphics]

Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation [Yang et al. 2014, Comp Med Imaging and Graphics] Vision-based endoscope tracking for 3D ultrasound image-guided surgical navigation [Yang et al. 2014, Comp Med Imaging and Graphics] Gustavo Sato dos Santos IGI Journal Club 23.10.2014 Motivation Goal:

More information

Sensor-aided Milling with a Surgical Robot System

Sensor-aided Milling with a Surgical Robot System 1 Sensor-aided Milling with a Surgical Robot System Dirk Engel, Joerg Raczkowsky, Heinz Woern Institute for Process Control and Robotics (IPR), Universität Karlsruhe (TH) Engler-Bunte-Ring 8, 76131 Karlsruhe

More information

Extraction of 3D Scene Structure from a Video for the Generation of 3D Visual and Haptic Representations

Extraction of 3D Scene Structure from a Video for the Generation of 3D Visual and Haptic Representations Extraction of 3D Scene Structure from a Video for the Generation of 3D Visual and Haptic Representations K. Moustakas, G. Nikolakis, D. Tzovaras and M. G. Strintzis Informatics and Telematics Institute

More information

3D Models from Range Sensors. Gianpaolo Palma

3D Models from Range Sensors. Gianpaolo Palma 3D Models from Range Sensors Gianpaolo Palma Who Gianpaolo Palma Researcher at Visual Computing Laboratory (ISTI-CNR) Expertise: 3D scanning, Mesh Processing, Computer Graphics E-mail: gianpaolo.palma@isti.cnr.it

More information

3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera

3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera 3D Environment Measurement Using Binocular Stereo and Motion Stereo by Mobile Robot with Omnidirectional Stereo Camera Shinichi GOTO Department of Mechanical Engineering Shizuoka University 3-5-1 Johoku,

More information

Virtual Endoscopy: Modeling the Navigation in 3D Brain Volumes

Virtual Endoscopy: Modeling the Navigation in 3D Brain Volumes ACBME-137 Virtual Endoscopy: Modeling the Navigation in 3D Brain Volumes Aly A. Farag and Charles B. Sites Computer Vision and Image Processing Laboratory University of Louisville, KY 40292 Stephen Hushek

More information

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation.

3D Sensing. 3D Shape from X. Perspective Geometry. Camera Model. Camera Calibration. General Stereo Triangulation. 3D Sensing 3D Shape from X Perspective Geometry Camera Model Camera Calibration General Stereo Triangulation 3D Reconstruction 3D Shape from X shading silhouette texture stereo light striping motion mainly

More information

A Robust Two Feature Points Based Depth Estimation Method 1)

A Robust Two Feature Points Based Depth Estimation Method 1) Vol.31, No.5 ACTA AUTOMATICA SINICA September, 2005 A Robust Two Feature Points Based Depth Estimation Method 1) ZHONG Zhi-Guang YI Jian-Qiang ZHAO Dong-Bin (Laboratory of Complex Systems and Intelligence

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

3D Modeling of Objects Using Laser Scanning

3D Modeling of Objects Using Laser Scanning 1 3D Modeling of Objects Using Laser Scanning D. Jaya Deepu, LPU University, Punjab, India Email: Jaideepudadi@gmail.com Abstract: In the last few decades, constructing accurate three-dimensional models

More information

INFORMATION TECHNOLOGY FOR NEXT-GENERATION OF SURGICAL ENVIRONMENTS

INFORMATION TECHNOLOGY FOR NEXT-GENERATION OF SURGICAL ENVIRONMENTS University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2006 INFORMATION TECHNOLOGY FOR NEXT-GENERATION OF SURGICAL ENVIRONMENTS JESUS CABAN University of Kentucky, jesuscaban@gmail.com

More information

T-SCAN 3 3D DIGITIZING

T-SCAN 3 3D DIGITIZING T-SCAN 3 3D DIGITIZING 2 T-SCAN 3: THE HANDHELD LASER SCANNER Launching the innovative concept of an intuitive-to-use high-precision laser scanner a few years ago, Steinbichler Optotechnik, as the first

More information

3D Models from Contours: Further Identification of Unexposed Areas

3D Models from Contours: Further Identification of Unexposed Areas 3D Models from Contours: Further Identification of Unexposed Areas Jiang Yu Zheng and Fumio Kishino ATR Communication Systems Research Laboratory 2-2 Hikaridai, Seika, Soraku, Kyoto 619-02, Japan Abstract

More information

Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot

Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot Suturing in Confined Spaces: Constrained Motion Control of a Hybrid 8-DoF Robot Ankur Kapoor 1, Nabil Simaan 2, Russell H. Taylor 1 1 ERC-CISST Department of Computer Science Johns Hopkins University 2

More information

A Novel Laser Guidance System for Alignment of Linear Surgical Tools: Its Principles and Performance Evaluation as a Man Machine System

A Novel Laser Guidance System for Alignment of Linear Surgical Tools: Its Principles and Performance Evaluation as a Man Machine System A Novel Laser Guidance System for Alignment of Linear Surgical Tools: Its Principles and Performance Evaluation as a Man Machine System Toshihiko Sasama 1, Nobuhiko Sugano 2, Yoshinobu Sato 1, Yasuyuki

More information

Design and Implementation of a Laparoscope Calibration Method for Augmented Reality Navigation

Design and Implementation of a Laparoscope Calibration Method for Augmented Reality Navigation Design and Implementation of a Laparoscope Calibration Method for Augmented Reality Navigation M. Schwalbe 1, M. Fusaglia 1, P. Tinguely 2, H. Lu 1, S. Weber 1 1 ARTORG Center for Biomedical Engineering,

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement

Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement Curved Projection Integral Imaging Using an Additional Large-Aperture Convex Lens for Viewing Angle Improvement Joobong Hyun, Dong-Choon Hwang, Dong-Ha Shin, Byung-Goo Lee, and Eun-Soo Kim In this paper,

More information

Stackable 4-BAR Mechanisms and Their Robotic Applications

Stackable 4-BAR Mechanisms and Their Robotic Applications The 010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-, 010, Taipei, Taiwan Stackable 4-BAR Mechanisms and Their Robotic Applications Hoyul Lee and Youngjin Choi Abstract

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

ACHIEVE A NEW PERSPECTIVE

ACHIEVE A NEW PERSPECTIVE 3D Imaging Solution ACHIEVE A NEW PERSPECTIVE The only HD 3D system with a fully flexible direction of view. 3D from the surgeon s point of view enters the surgical field at last Introducing a new 3D imaging

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

Dense 3-D Reconstruction of an Outdoor Scene by Hundreds-baseline Stereo Using a Hand-held Video Camera

Dense 3-D Reconstruction of an Outdoor Scene by Hundreds-baseline Stereo Using a Hand-held Video Camera Dense 3-D Reconstruction of an Outdoor Scene by Hundreds-baseline Stereo Using a Hand-held Video Camera Tomokazu Satoy, Masayuki Kanbaray, Naokazu Yokoyay and Haruo Takemuraz ygraduate School of Information

More information

Endoscopic Navigation for Minimally Invasive Suturing

Endoscopic Navigation for Minimally Invasive Suturing Endoscopic Navigation for Minimally Invasive Suturing Christian Wengert 1, Lukas Bossard 1, Armin Häberling 1, Charles Baur 2, Gábor Székely 1, and Philippe C. Cattin 1 1 Computer Vision Laboratory, ETH

More information

A High Speed Face Measurement System

A High Speed Face Measurement System A High Speed Face Measurement System Kazuhide HASEGAWA, Kazuyuki HATTORI and Yukio SATO Department of Electrical and Computer Engineering, Nagoya Institute of Technology Gokiso, Showa, Nagoya, Japan, 466-8555

More information

Towards Projector-based Visualization for Computer-assisted CABG at the Open Heart

Towards Projector-based Visualization for Computer-assisted CABG at the Open Heart Towards Projector-based Visualization for Computer-assisted CABG at the Open Heart Christine Hartung 1, Claudia Gnahm 1, Stefan Sailer 1, Marcel Schenderlein 1, Reinhard Friedl 2, Martin Hoffmann 3, Klaus

More information

Visual Tracking of Unknown Moving Object by Adaptive Binocular Visual Servoing

Visual Tracking of Unknown Moving Object by Adaptive Binocular Visual Servoing Visual Tracking of Unknown Moving Object by Adaptive Binocular Visual Servoing Minoru Asada, Takamaro Tanaka, and Koh Hosoda Adaptive Machine Systems Graduate School of Engineering Osaka University, Suita,

More information

An easy calibration for oblique-viewing endoscopes

An easy calibration for oblique-viewing endoscopes 28 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 28 An easy calibration for oblique-viewing endoscopes Chenyu Wu and Branislav Jaramaz Abstract Oblique-viewing

More information

ScienceDirect. The use of Optical Methods for Leak Testing Dampers

ScienceDirect. The use of Optical Methods for Leak Testing Dampers Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 69 ( 2014 ) 788 794 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2013 The use of Optical

More information

Measurement of Head-to-Trunk Orientation Using Handheld 3D Optical Apparatus

Measurement of Head-to-Trunk Orientation Using Handheld 3D Optical Apparatus Measurement of Head-to-Trunk Orientation Using Handheld 3D Optical Apparatus Urban PAVLOVČIČ*, Janez DIACI, Janez MOŽINA, Matija JEZERŠEK Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana,

More information

Projection simulator to support design development of spherical immersive display

Projection simulator to support design development of spherical immersive display Projection simulator to support design development of spherical immersive display Wataru Hashimoto, Yasuharu Mizutani, and Satoshi Nishiguchi Faculty of Information Sciences and Technology, Osaka Institute

More information

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any)

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any) Address: Hong Kong Polytechnic University, Phase 8, Hung Hom, Kowloon, Hong Kong. Telephone: (852) 3400 8441 Email: cnerc.steel@polyu.edu.hk Website: https://www.polyu.edu.hk/cnerc-steel/ Project Title:

More information

ToF/RGB Sensor Fusion for Augmented 3-D Endoscopy using a Fully Automatic Calibration Scheme

ToF/RGB Sensor Fusion for Augmented 3-D Endoscopy using a Fully Automatic Calibration Scheme ToF/RGB Sensor Fusion for Augmented 3-D Endoscopy using a Fully Automatic Calibration Scheme Sven Haase 1, Christoph Forman 1,2, Thomas Kilgus 3, Roland Bammer 2, Lena Maier-Hein 3, Joachim Hornegger 1,4

More information

Image Transformations & Camera Calibration. Mašinska vizija, 2018.

Image Transformations & Camera Calibration. Mašinska vizija, 2018. Image Transformations & Camera Calibration Mašinska vizija, 2018. Image transformations What ve we learnt so far? Example 1 resize and rotate Open warp_affine_template.cpp Perform simple resize

More information

Registration of Moving Surfaces by Means of One-Shot Laser Projection

Registration of Moving Surfaces by Means of One-Shot Laser Projection Registration of Moving Surfaces by Means of One-Shot Laser Projection Carles Matabosch 1,DavidFofi 2, Joaquim Salvi 1, and Josep Forest 1 1 University of Girona, Institut d Informatica i Aplicacions, Girona,

More information

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER INTRODUCTION The DIGIBOT 3D Laser Digitizer is a high performance 3D input device which combines laser ranging technology, personal

More information

A model-based approach for tool tracking in laparoscopy

A model-based approach for tool tracking in laparoscopy A model-based approach for tool tracking in laparoscopy Potential applications and evaluation challenges Sandrine Voros (INSERM), TIMC-IMAG laboratory Computer Assisted Medical Interventions (CAMI) team

More information

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES

FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES FAST REGISTRATION OF TERRESTRIAL LIDAR POINT CLOUD AND SEQUENCE IMAGES Jie Shao a, Wuming Zhang a, Yaqiao Zhu b, Aojie Shen a a State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing

More information

All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them.

All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them. All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them. - Aristotle University of Texas at Arlington Introduction

More information

Comp 471 / Cart 498: Final Project Proposal

Comp 471 / Cart 498: Final Project Proposal Pierre-Luc Bertrand Ramzy Hissin Justin Mereb Eric Zaino Comp 471 / Cart 498: Final Project Proposal Work Presented to Dr. Sha Xin Wei Concordia University October 23, 2006 Taste of Reality A Project on

More information

CSE 4392/5369. Dr. Gian Luca Mariottini, Ph.D.

CSE 4392/5369. Dr. Gian Luca Mariottini, Ph.D. University of Texas at Arlington CSE 4392/5369 Introduction to Vision Sensing Dr. Gian Luca Mariottini, Ph.D. Department of Computer Science and Engineering University of Texas at Arlington WEB : http://ranger.uta.edu/~gianluca

More information

DEVELOPMENT OF REAL TIME 3-D MEASUREMENT SYSTEM USING INTENSITY RATIO METHOD

DEVELOPMENT OF REAL TIME 3-D MEASUREMENT SYSTEM USING INTENSITY RATIO METHOD DEVELOPMENT OF REAL TIME 3-D MEASUREMENT SYSTEM USING INTENSITY RATIO METHOD Takeo MIYASAKA and Kazuo ARAKI Graduate School of Computer and Cognitive Sciences, Chukyo University, Japan miyasaka@grad.sccs.chukto-u.ac.jp,

More information

Three Dimensional Measurement of Object s Surface in Water Using the Light Stripe Projection Method

Three Dimensional Measurement of Object s Surface in Water Using the Light Stripe Projection Method Three Dimensional Measurement of Object s Surface in Water Using the Light Stripe Projection Method Atsushi Yamashita, Hirokazu Higuchi, Toru Kaneko and Yoshimasa Kawata Department of Mechanical Engineering

More information

Mech. Engineering, Comp. Science, and Rad. Oncology Departments. Schools of Engineering and Medicine, Bio-X Program, Stanford University

Mech. Engineering, Comp. Science, and Rad. Oncology Departments. Schools of Engineering and Medicine, Bio-X Program, Stanford University Mech. Engineering, Comp. Science, and Rad. Oncology Departments Schools of Engineering and Medicine, Bio-X Program, Stanford University 1 Conflict of Interest Nothing to disclose 2 Imaging During Beam

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

3D X-ray Laminography with CMOS Image Sensor Using a Projection Method for Reconstruction of Arbitrary Cross-sectional Images

3D X-ray Laminography with CMOS Image Sensor Using a Projection Method for Reconstruction of Arbitrary Cross-sectional Images Ke Engineering Materials Vols. 270-273 (2004) pp. 192-197 online at http://www.scientific.net (2004) Trans Tech Publications, Switzerland Online available since 2004/08/15 Citation & Copright (to be inserted

More information

A Method for Tracking the Camera Motion of Real Endoscope by Epipolar Geometry Analysis and Virtual Endoscopy System

A Method for Tracking the Camera Motion of Real Endoscope by Epipolar Geometry Analysis and Virtual Endoscopy System A Method for Tracking the Camera Motion of Real Endoscope by Epipolar Geometry Analysis and Virtual Endoscopy System Kensaku Mori 1,2, Daisuke Deguchi 2, Jun-ichi Hasegawa 3, Yasuhito Suenaga 2, Jun-ichiro

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Augmenting Reality with Projected Interactive Displays

Augmenting Reality with Projected Interactive Displays Augmenting Reality with Projected Interactive Displays Claudio Pinhanez IBM T.J. Watson Research Center, P.O. Box 218 Yorktown Heights, N.Y. 10598, USA Abstract. This paper examines a steerable projection

More information

MONO-IMAGE INTERSECTION FOR ORTHOIMAGE REVISION

MONO-IMAGE INTERSECTION FOR ORTHOIMAGE REVISION MONO-IMAGE INTERSECTION FOR ORTHOIMAGE REVISION Mohamed Ibrahim Zahran Associate Professor of Surveying and Photogrammetry Faculty of Engineering at Shoubra, Benha University ABSTRACT This research addresses

More information

Experimental Results of 2D Depth-Depth Matching Algorithm Based on Depth Camera Kinect v1

Experimental Results of 2D Depth-Depth Matching Algorithm Based on Depth Camera Kinect v1 ISSN 2188-8116 Applied Science and Computer Science Publications Experimental Results of 2D Depth-Depth Matching Algorithm Based on Depth Camera Kinect v1 Hiroshi Noborio, Kaoru Watanabe, Masahiro Yagi,

More information

HIGH SPEED 3-D MEASUREMENT SYSTEM USING INCOHERENT LIGHT SOURCE FOR HUMAN PERFORMANCE ANALYSIS

HIGH SPEED 3-D MEASUREMENT SYSTEM USING INCOHERENT LIGHT SOURCE FOR HUMAN PERFORMANCE ANALYSIS HIGH SPEED 3-D MEASUREMENT SYSTEM USING INCOHERENT LIGHT SOURCE FOR HUMAN PERFORMANCE ANALYSIS Takeo MIYASAKA, Kazuhiro KURODA, Makoto HIROSE and Kazuo ARAKI School of Computer and Cognitive Sciences,

More information

Use of Ultrasound and Computer Vision for 3D Reconstruction

Use of Ultrasound and Computer Vision for 3D Reconstruction Use of Ultrasound and Computer Vision for 3D Reconstruction Ruben Machucho-Cadena 1, Eduardo Moya-Sánchez 1, Sergio de la Cruz-Rodríguez 2, and Eduardo Bayro-Corrochano 1 1 CINVESTAV, Unidad Guadalajara,

More information

A Full-Range of 3D Body Scanning Solutions

A Full-Range of 3D Body Scanning Solutions Abstract A Full-Range of 3D Body Scanning Solutions Jean-Loup RENNESSON TELMAT Industrie SA, Soultz, France TELMAT extends its range of 3D body scanning solutions named SYMCAD to fulfill a wide scope of

More information