Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Size: px
Start display at page:

Download "Single View Geometry. Camera model & Orientation + Position estimation. What am I?"

Transcription

1 Single View Geometry Camera model & Orientation + Position estimation What am I?

2 Vanishing point

3 Mapping from 3D to 2D Point & Line Goal:

4 Point Homogeneous coordinates represent coordinates in 2 dimensions with a 3-vector & $ % x y #! " & $ '' homogeneous '''' coords $ $ % x y 1 #!!!"

5 The projective plane Why do we need homogeneous coordinates? represent points at infinity, homographies, perspective projection, multi-view relationships What is the geometric intuition? a point in the image is a ray in projective space (0,0,0) z y x (x,y,1) (sx,sy,s) image plane Each point (x,y) on the plane is represented by a ray (sx,sy,s) all points on the ray are equivalent: (x, y, 1) (sx, sy, s)

6 Projective Lines

7 Projective lines What does a line in the image correspond to in projective space? A line is a plane of rays through origin all rays (x,y,z) satisfying: ax + by + cz = 0 in vector notation : 0 = [ a b c] x y z p A line is also represented as a homogeneous 3-vector l l

8 Line Representation a line is is the distance from the origin to the line is the norm direction of the line It can also be written as

9 Example of Line

10 0.42*pi Example of Line (2)

11 Homogeneous representation Line in Is represented by a point in : But correspondence of line to point is not unique We define set of equivalence class of vectors in R^3 - (0,0,0) As projective space

12 Projective lines from two points

13 Line passing through two points Two points: x Define a line l is the line passing two points Proof:

14 Line passing through two points More specifically,

15 Matlab codes function l = get_line_by_two_points(x, y) x1 = [x(1), y(1), 1]'; x2 = [x(2), y(2), 1]'; l = cross(x1, x2); l = l / sqrt(l(1)*l(1)+l(2)*l(2));

16 Verify p2 lies on the line >> 218*0.6+13*0.8 ans = (close) Example of Line P1 P2

17 Test line: >> p1 = [42,142,1]; >> p2=[218,13,1]; >> l = cross(p1,p2) l = Example of Line P1 P2 >> l = l/sqrt(l(1)^2+l(2)^2) l =

18 >> x = [221;23]; >> y = [218;268]; >> l = get_line_by_two_points(x,y); >> l l =

19 Projective lines from two points When does the line has the form (a, b, 0)? -all lines passing through the optical center When does the line has the form (0, 0, 1)? -line at infinity

20 Points from two lines

21 Intersection of lines Given two lines:, Define a point l X is the intersection of the two lines

22 More specifically, Intersection of lines

23 Matlab codes function x0 = get_point_by_two_line(l, l1) x0 = cross(l, l1); x0 = [x0(1)/x0(3); x0(2)/x0(3)];

24 Example of Lines Intersection

25 Point and line duality A line l is a homogeneous 3-vector It is to every point (ray) p on the line: l p=0 l p 1 p 2 l 2 l 1 p What is the line l spanned by rays p 1 and p 2? l is to p 1 and p 2 l = p 1 p 2 l is the plane normal What is the intersection of two lines l 1 and l 2? p is to l 1 and l 2 p = l 1 l 2 Points and lines are dual in projective space given any formula, can switch the meanings of points and lines to get another formula

26 Points from two lines When P has the form (x,y,0)?

27 Point at infinity Example: Consider two parallel horizontal lines: Intersection = Point at infinity in the direction of y

28 Point at infinity, Ideal points Intersection: Any point (x 1,x 2,0) is intersection of lines at infinity

29 Points at infinity Under projective transformation, All parallel lines intersects at the point at infinity One point at infinity ó one parallel line direction Where are the points at infinity in the image plane?

30 Line at infinity A line passing all points at infinity: Because :

31 Ideal points and lines y (sx,sy,0) (a,b,0) y z x image plane Ideal point ( point at infinity ) p (x, y, 0) parallel to image plane It has infinite image coordinates Ideal line l (a, b, 0) parallel to image plane z x image plane Corresponds to a line in the image (finite coordinates)

32 Comparing heights Vanishing Point

33 Measuring height Camera height

34 Measuring height v z r vanishing line (horizon) v x v t 0 H t R H v y b 0 b

35 Focal Length

36 A Lighting Reproduction Approach to Live-Action Compositing, P. Debevec 2002

37 FOV depends of Focal Length f f Smaller FOV = larger Focal Length

38 Field of View (Zoom)

39 Field of View (Zoom)

40 Large Focal Length compresses depth 400 mm 200 mm 100 mm 50 mm 28 mm 17 mm Michael Reichmann

41

42 Nikon s mm f/5.6-8p lens.

43 Nikon s mm f/5.6-8p lens.

44

45 " /012'+$3+/4$&'()5$2 35'0:+$3 +>5'?+!6 ;<=6 $%&'()*+,+-+. ;<=66!! # 36+!+3$(10+0'27)8 366+!+3$(10+0'27)8 9,+!+:5*)12('+)$+$%&'()+, 9.+!+:5*)12('+)$+$%&'()+.

46 Canon D30 takes image with 2160x1440 pixels. What is the pixel size?

47 What f to make tower appear half the size of image?

48 Fix f=50mm, D2 =? in order to make the tower 1/3 size of image?

49 D1=? to make human the same height as tower?

50 What f to make tower appear twice as big as before (2/3 the height)?

51 Setting f =100mm, D1=? in order to keep the original size of human? (1/3 the height)

52 Lens distortion with focal length

53

54

55 Lens distortion with focal length

56

57

58 Camera projection model The overall goal is to compute 3D geometry of the scene from just 2D images. We will first study 3D->2D camera projection using linear algebra.

59 The Pinhole Camera Light enters a darkened chamber through a pinhole opening and forms an image on the further surface

60 The Pinhole Camera Model

61 Ideal case: y c Projection equation: x = f X / Z y = f Y / Z y z c z y p f C x c Zx = f X Zy = f Y Z = Z

62 Step 1: Camera projection matrix Zx = f X Zy = f Y Z = Z y c f f X c Y c Z c 1 = x y 1 Z c y z c z y p x c f C P 0 X = x

63 Step 2: Intrinsic camera parameters: map camera coordinate to pixel coordinate y c K α x s p x 0 α y p y (3x3 submatrix) x y z Optical world x y z = y Pixel world z c z y p x c f C α x, α y is pixel scaling factor p x, p y is the principle point (where optical axis hits image plane) s is the slant factor, when the image plane is not normal to the optical axis

64 Combine the Intrinsic camera parameters α x s p x 0 α y p y f f X c Y c Z c 1 = x y 1 K (Calibration matrix) α x f s p x 0 0 α y f p y P 0 X = x x c y c z c 1 = x y z P = [K, 0] = K [I, 0]

65 Step 3: External parameters: rotation and translation map the world to camera coordinates 3x3 3x1 (R,t) Camera coordinate y c World coordinate y z c z y p f C x c

66 Combining Internal and External parameters 1) (R,t) Camera coordinate y c World coordinate y z c z y p f C 2) x c 1) Translate the world coordinate into the camera coordinate 2) Translate the camera coordinate into the pixel coordinate

67 Combining Internal and External parameters (R,t) Camera coordinate y c World coordinate After simplication: y z c z y p f C x c x = K [R, t] X pixel world

68 Special case, planar world, homograph X= (xw,yw,zw=0,1) x = K [R, t] X Expand: x = K r1 r2 r3 t xw yw zw=0 1 World coordinate y z c z (R,t) y c y p C f x c Camera coordinate

69 Special case, planar world, homograph X= (xw,yw,zw=0,1) (R,t) After simplication: x = K r1 r2 t xw yw World coordinate y z c z y c y p C f x c Camera coordinate 1 We have the homographic mapping: X = K H3x3 X

70 Special case: rotating camera x = K [R, t] X with t = 0 Expand: x = K [R] X World coordinate y z c z (R,t) y p f x c y c C Camera coordinate X = xw yw zw This is also a homography with H = R

71 Panoramas x = K [R] X

72 Visual Odometry: Overview 1) The transformation (R,t) tells us how to rotate + move the world coordinate to the camera coordinate. 2) In the following slides, we will see 1) how to get the world reference s frame orientation+position from (R,t), 2) how to get the pan/tilt/yaw angles from R 3) If we want to know the camera orientation+position, we need to look at its inverse transform, which we should see is, 1) The computation of the camera pan/tilt/yaw angle is the same as in the previous case World coordinate y z c z (R,t) y p f x c y c C

73 Recover Camera orientation Case 1: single vanishing point (zdirection)

74 Pan/tilt/yaw angles Pan : rotation around y-axis Yaw :rotation around z-axis Tilt : rotation around x-axis z x y x y z

75 Rotation: Pan/Tilt/Yaw Given the 3x3 rotation matrix R, we can recover, pan/tilt/yaw angle, and vise. vica. y cam z world, (0,0,1) T x cam,

76 The basic idea is that if we can see the north star, we know how to oriented ourselves (minus yaw angle) (why?) And the ``north star is just the point of infinity in some direction (R,t) Camera coordinate y c World coordinate y z c z y p f C x c

77 Seeing the vanishing point can tell us: Camera projection equation: K R t x=k [R,t] X, or x w y w z w t w = x c y c z c [R,t]= t r 1 r 2 r 3 Columns of R matrix = image of vanishing points of world-space axes! r 1,r 2,r 3 == image of x,y,z axis vanishing points r 1 r 2 r 3 t = r 3 z-direction (need to normalize to norm =1) vanishing point

78 Recover Pan/Tilt angle from z-vanishing point Geometric explanation: Pan Tilt The alignment between z-axis of the world and image is defined only by the pan/tilt angle: y cam z world, (0,0,1) T r3 = x cam, z cam Note: tilt angle with rotation around x-axis is positive when pointing down in this figure

79 Sanity check Vanishing point in z

80 In this example, we are walking down a track, the ground is tilted up(we are going up the hill). Assume we are b meter tall. We see two parallel lines to our left and right, with x = 1,-1. A line on the ground is described by equation y = az - b, where a is the slope the ground. Image plane y z x x = 1 y = az -b x = -1 Ground plane So we know: y y = az -b Tilt angle z

81 As a line gets far away, z -> infinity. If (1,y,z) is a point on this line, its image is f(1/z,y/z). As z -> infinity, 1/z -> 0. What about y/z? y/z = (az-b)/z = a - b/z -> a. So a point on the line appears at: (0,a). Image plane x VanishingPoint (0,a) y z y = az - b Ground plane

82 z world, (0,0,1) T r z = = Now, we check x (0,a) y z y = az - b

83 Recover Pan/Tilt angle from z-vanishing point Geometric explanation: Pan Tilt The alignment between z-axis of the world and image is defined only by the pan/tilt angle: y cam z world, (0,0,1) T r 3 = x cam, z cam

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometry Camera model & Orientation + Position estimation What am I? Vanishing points & line http://www.wetcanvas.com/ http://pennpaint.blogspot.com/ http://www.joshuanava.biz/perspective/in-other-words-the-observer-simply-points-in-thesame-direction-as-the-lines-in-order-to-find-their-vanishing-point.html

More information

Single View Geometry. Camera model & Orientation + Position estimation. Jianbo Shi. What am I? University of Pennsylvania GRASP

Single View Geometry. Camera model & Orientation + Position estimation. Jianbo Shi. What am I? University of Pennsylvania GRASP Single View Geometry Camera model & Orientation + Position estimation Jianbo Shi What am I? 1 Camera projection model The overall goal is to compute 3D geometry of the scene from just 2D images. We will

More information

Single View Geometry. Camera model & Orientation + Position estimation. What am I?

Single View Geometry. Camera model & Orientation + Position estimation. What am I? Single View Geometr Camera model & Orientation + Position estimation What am I? Ideal case: c Projection equation: x = f X / Z = f Y / Z c p f C x c Zx = f X Z = f Y Z = Z Step 1: Camera projection matrix

More information

Linear Algebra Simplified

Linear Algebra Simplified Linear Algebra Simplified Readings http://szeliski.org/book/drafts/szeliskibook_20100903_draft.pdf -2.1.5 for camera geometry, -2.1.3, 2.1.4 for rotation representation Inner (dot) Product v w α 3 3 2

More information

Image Warping, Linear Algebra CIS581

Image Warping, Linear Algebra CIS581 Image Warping, Linear Algebra CIS581 From Plane to Plane Degree of freedom Translation: # correspondences? How many correspondences needed for translation? How many Degrees of Freedom? What is the transformation

More information

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM

CIS 580, Machine Perception, Spring 2015 Homework 1 Due: :59AM CIS 580, Machine Perception, Spring 2015 Homework 1 Due: 2015.02.09. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Camera Model, Focal Length and

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Classes

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2014 Steve

More information

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz

Epipolar Geometry Prof. D. Stricker. With slides from A. Zisserman, S. Lazebnik, Seitz Epipolar Geometry Prof. D. Stricker With slides from A. Zisserman, S. Lazebnik, Seitz 1 Outline 1. Short introduction: points and lines 2. Two views geometry: Epipolar geometry Relation point/line in two

More information

Scene Modeling for a Single View

Scene Modeling for a Single View on to 3D Scene Modeling for a Single View We want real 3D scene walk-throughs: rotation translation Can we do it from a single photograph? Reading: A. Criminisi, I. Reid and A. Zisserman, Single View Metrology

More information

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM

CIS 580, Machine Perception, Spring 2016 Homework 2 Due: :59AM CIS 580, Machine Perception, Spring 2016 Homework 2 Due: 2015.02.24. 11:59AM Instructions. Submit your answers in PDF form to Canvas. This is an individual assignment. 1 Recover camera orientation By observing

More information

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482

Rigid Body Motion and Image Formation. Jana Kosecka, CS 482 Rigid Body Motion and Image Formation Jana Kosecka, CS 482 A free vector is defined by a pair of points : Coordinates of the vector : 1 3D Rotation of Points Euler angles Rotation Matrices in 3D 3 by 3

More information

Computer Vision Project-1

Computer Vision Project-1 University of Utah, School Of Computing Computer Vision Project- Singla, Sumedha sumedha.singla@utah.edu (00877456 February, 205 Theoretical Problems. Pinhole Camera (a A straight line in the world space

More information

N-Views (1) Homographies and Projection

N-Views (1) Homographies and Projection CS 4495 Computer Vision N-Views (1) Homographies and Projection Aaron Bobick School of Interactive Computing Administrivia PS 2: Get SDD and Normalized Correlation working for a given windows size say

More information

Field of View (Zoom)

Field of View (Zoom) Image Projection Field of View (Zoom) Large Focal Length compresses depth 400 mm 200 mm 100 mm 50 mm 28 mm 17 mm 1995-2005 Michael Reichmann FOV depends of Focal Length f f Smaller FOV = larger Focal

More information

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania

Image Formation. Antonino Furnari. Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania Image Formation Antonino Furnari Image Processing Lab Dipartimento di Matematica e Informatica Università degli Studi di Catania furnari@dmi.unict.it 18/03/2014 Outline Introduction; Geometric Primitives

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Sameer Agarwal LECTURE 1 Image Formation 1.1. The geometry of image formation We begin by considering the process of image formation when a

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 13: Projection, Part 2 Perspective study of a vase by Paolo Uccello Szeliski 2.1.3-2.1.6 Reading Announcements Project 2a due Friday, 8:59pm Project 2b out Friday

More information

Agenda. Rotations. Camera models. Camera calibration. Homographies

Agenda. Rotations. Camera models. Camera calibration. Homographies Agenda Rotations Camera models Camera calibration Homographies D Rotations R Y = Z r r r r r r r r r Y Z Think of as change of basis where ri = r(i,:) are orthonormal basis vectors r rotated coordinate

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

Camera Model and Calibration. Lecture-12

Camera Model and Calibration. Lecture-12 Camera Model and Calibration Lecture-12 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Structure from Motion. Prof. Marco Marcon

Structure from Motion. Prof. Marco Marcon Structure from Motion Prof. Marco Marcon Summing-up 2 Stereo is the most powerful clue for determining the structure of a scene Another important clue is the relative motion between the scene and (mono)

More information

METRIC PLANE RECTIFICATION USING SYMMETRIC VANISHING POINTS

METRIC PLANE RECTIFICATION USING SYMMETRIC VANISHING POINTS METRIC PLANE RECTIFICATION USING SYMMETRIC VANISHING POINTS M. Lefler, H. Hel-Or Dept. of CS, University of Haifa, Israel Y. Hel-Or School of CS, IDC, Herzliya, Israel ABSTRACT Video analysis often requires

More information

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models

Cameras and Radiometry. Last lecture in a nutshell. Conversion Euclidean -> Homogenous -> Euclidean. Affine Camera Model. Simplified Camera Models Cameras and Radiometry Last lecture in a nutshell CSE 252A Lecture 5 Conversion Euclidean -> Homogenous -> Euclidean In 2-D Euclidean -> Homogenous: (x, y) -> k (x,y,1) Homogenous -> Euclidean: (x, y,

More information

Camera model and multiple view geometry

Camera model and multiple view geometry Chapter Camera model and multiple view geometry Before discussing how D information can be obtained from images it is important to know how images are formed First the camera model is introduced and then

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, Breaking out of 2D now we are ready to break out of 2D And enter the

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

CS201 Computer Vision Camera Geometry

CS201 Computer Vision Camera Geometry CS201 Computer Vision Camera Geometry John Magee 25 November, 2014 Slides Courtesy of: Diane H. Theriault (deht@bu.edu) Question of the Day: How can we represent the relationships between cameras and the

More information

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important.

Homogeneous Coordinates. Lecture18: Camera Models. Representation of Line and Point in 2D. Cross Product. Overall scaling is NOT important. Homogeneous Coordinates Overall scaling is NOT important. CSED44:Introduction to Computer Vision (207F) Lecture8: Camera Models Bohyung Han CSE, POSTECH bhhan@postech.ac.kr (",, ) ()", ), )) ) 0 It is

More information

Single-view 3D Reconstruction

Single-view 3D Reconstruction Single-view 3D Reconstruction 10/12/17 Computational Photography Derek Hoiem, University of Illinois Some slides from Alyosha Efros, Steve Seitz Notes about Project 4 (Image-based Lighting) You can work

More information

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection

CHAPTER 3. Single-view Geometry. 1. Consequences of Projection CHAPTER 3 Single-view Geometry When we open an eye or take a photograph, we see only a flattened, two-dimensional projection of the physical underlying scene. The consequences are numerous and startling.

More information

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication

DD2423 Image Analysis and Computer Vision IMAGE FORMATION. Computational Vision and Active Perception School of Computer Science and Communication DD2423 Image Analysis and Computer Vision IMAGE FORMATION Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 8, 2013 1 Image formation Goal:

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models /2/ Projective Geometry and Camera Models Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Note about HW Out before next Tues Prob: covered today, Tues Prob2: covered next Thurs Prob3:

More information

Agenda. Rotations. Camera calibration. Homography. Ransac

Agenda. Rotations. Camera calibration. Homography. Ransac Agenda Rotations Camera calibration Homography Ransac Geometric Transformations y x Transformation Matrix # DoF Preserves Icon translation rigid (Euclidean) similarity affine projective h I t h R t h sr

More information

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor

COSC579: Scene Geometry. Jeremy Bolton, PhD Assistant Teaching Professor COSC579: Scene Geometry Jeremy Bolton, PhD Assistant Teaching Professor Overview Linear Algebra Review Homogeneous vs non-homogeneous representations Projections and Transformations Scene Geometry The

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

But First: Multi-View Projective Geometry

But First: Multi-View Projective Geometry View Morphing (Seitz & Dyer, SIGGRAPH 96) Virtual Camera Photograph Morphed View View interpolation (ala McMillan) but no depth no camera information Photograph But First: Multi-View Projective Geometry

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Introduction to Homogeneous coordinates

Introduction to Homogeneous coordinates Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically

More information

CSCI 5980: Assignment #3 Homography

CSCI 5980: Assignment #3 Homography Submission Assignment due: Feb 23 Individual assignment. Write-up submission format: a single PDF up to 3 pages (more than 3 page assignment will be automatically returned.). Code and data. Submission

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu Reference Most slides are adapted from the following notes: Some lecture notes on geometric

More information

Perspective projection and Transformations

Perspective projection and Transformations Perspective projection and Transformations The pinhole camera The pinhole camera P = (X,,) p = (x,y) O λ = 0 Q λ = O λ = 1 Q λ = P =-1 Q λ X = 0 + λ X 0, 0 + λ 0, 0 + λ 0 = (λx, λ, λ) The pinhole camera

More information

Midterm Exam Solutions

Midterm Exam Solutions Midterm Exam Solutions Computer Vision (J. Košecká) October 27, 2009 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with other fellow

More information

Projective geometry for Computer Vision

Projective geometry for Computer Vision Department of Computer Science and Engineering IIT Delhi NIT, Rourkela March 27, 2010 Overview Pin-hole camera Why projective geometry? Reconstruction Computer vision geometry: main problems Correspondence

More information

Unit 3 Multiple View Geometry

Unit 3 Multiple View Geometry Unit 3 Multiple View Geometry Relations between images of a scene Recovering the cameras Recovering the scene structure http://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1.html 3D structure from images Recover

More information

Agenda. Perspective projection. Rotations. Camera models

Agenda. Perspective projection. Rotations. Camera models Image formation Agenda Perspective projection Rotations Camera models Light as a wave + particle Light as a wave (ignore for now) Refraction Diffraction Image formation Digital Image Film Human eye Pixel

More information

Compositing a bird's eye view mosaic

Compositing a bird's eye view mosaic Compositing a bird's eye view mosaic Robert Laganiere School of Information Technology and Engineering University of Ottawa Ottawa, Ont KN 6N Abstract This paper describes a method that allows the composition

More information

Projective Geometry and Camera Models

Projective Geometry and Camera Models Projective Geometry and Camera Models Computer Vision CS 43 Brown James Hays Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth Administrative Stuff My Office hours, CIT 375 Monday and

More information

521466S Machine Vision Exercise #1 Camera models

521466S Machine Vision Exercise #1 Camera models 52466S Machine Vision Exercise # Camera models. Pinhole camera. The perspective projection equations or a pinhole camera are x n = x c, = y c, where x n = [x n, ] are the normalized image coordinates,

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2016 NAME: Problem Score Max Score 1 6 2 8 3 9 4 12 5 4 6 13 7 7 8 6 9 9 10 6 11 14 12 6 Total 100 1 of 8 1. [6] (a) [3] What camera setting(s)

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

1 Projective Geometry

1 Projective Geometry CIS8, Machine Perception Review Problem - SPRING 26 Instructions. All coordinate systems are right handed. Projective Geometry Figure : Facade rectification. I took an image of a rectangular object, and

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Nov 2009 Perspective projection and affine motion Goals Today Perspective projection 3D motion Wed Projects Friday Regularization and robust statistics

More information

COMP 558 lecture 19 Nov. 17, 2010

COMP 558 lecture 19 Nov. 17, 2010 COMP 558 lecture 9 Nov. 7, 2 Camera calibration To estimate the geometry of 3D scenes, it helps to know the camera parameters, both external and internal. The problem of finding all these parameters is

More information

CV: 3D to 2D mathematics. Perspective transformation; camera calibration; stereo computation; and more

CV: 3D to 2D mathematics. Perspective transformation; camera calibration; stereo computation; and more CV: 3D to 2D mathematics Perspective transformation; camera calibration; stereo computation; and more Roadmap of topics n Review perspective transformation n Camera calibration n Stereo methods n Structured

More information

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004

Augmented Reality II - Camera Calibration - Gudrun Klinker May 11, 2004 Augmented Reality II - Camera Calibration - Gudrun Klinker May, 24 Literature Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2. (Section 5,

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003

CS 664 Slides #9 Multi-Camera Geometry. Prof. Dan Huttenlocher Fall 2003 CS 664 Slides #9 Multi-Camera Geometry Prof. Dan Huttenlocher Fall 2003 Pinhole Camera Geometric model of camera projection Image plane I, which rays intersect Camera center C, through which all rays pass

More information

Assignment 2 : Projection and Homography

Assignment 2 : Projection and Homography TECHNISCHE UNIVERSITÄT DRESDEN EINFÜHRUNGSPRAKTIKUM COMPUTER VISION Assignment 2 : Projection and Homography Hassan Abu Alhaija November 7,204 INTRODUCTION In this exercise session we will get a hands-on

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

Geometric camera models and calibration

Geometric camera models and calibration Geometric camera models and calibration http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 13 Course announcements Homework 3 is out. - Due October

More information

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka

CS223b Midterm Exam, Computer Vision. Monday February 25th, Winter 2008, Prof. Jana Kosecka CS223b Midterm Exam, Computer Vision Monday February 25th, Winter 2008, Prof. Jana Kosecka Your name email This exam is 8 pages long including cover page. Make sure your exam is not missing any pages.

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois

Pinhole Camera Model 10/05/17. Computational Photography Derek Hoiem, University of Illinois Pinhole Camera Model /5/7 Computational Photography Derek Hoiem, University of Illinois Next classes: Single-view Geometry How tall is this woman? How high is the camera? What is the camera rotation? What

More information

Computer Vision Projective Geometry and Calibration

Computer Vision Projective Geometry and Calibration Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

Vision Review: Image Formation. Course web page:

Vision Review: Image Formation. Course web page: Vision Review: Image Formation Course web page: www.cis.udel.edu/~cer/arv September 10, 2002 Announcements Lecture on Thursday will be about Matlab; next Tuesday will be Image Processing The dates some

More information

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction

Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Computer Vision I - Algorithms and Applications: Multi-View 3D reconstruction Carsten Rother 09/12/2013 Computer Vision I: Multi-View 3D reconstruction Roadmap this lecture Computer Vision I: Multi-View

More information

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the

Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the Camera Projection Models We will introduce different camera projection models that relate the location of an image point to the coordinates of the corresponding 3D points. The projection models include:

More information

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry

55:148 Digital Image Processing Chapter 11 3D Vision, Geometry 55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography Estimating homography from point correspondence

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji

CMPSCI 670: Computer Vision! Image formation. University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji CMPSCI 670: Computer Vision! Image formation University of Massachusetts, Amherst September 8, 2014 Instructor: Subhransu Maji MATLAB setup and tutorial Does everyone have access to MATLAB yet? EdLab accounts

More information

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah

Camera Models and Image Formation. Srikumar Ramalingam School of Computing University of Utah Camera Models and Image Formation Srikumar Ramalingam School of Computing University of Utah srikumar@cs.utah.edu VisualFunHouse.com 3D Street Art Image courtesy: Julian Beaver (VisualFunHouse.com) 3D

More information

3D Vision Real Objects, Real Cameras. Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun,

3D Vision Real Objects, Real Cameras. Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun, 3D Vision Real Objects, Real Cameras Chapter 11 (parts of), 12 (parts of) Computerized Image Analysis MN2 Anders Brun, anders@cb.uu.se 3D Vision! Philisophy! Image formation " The pinhole camera " Projective

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 4 th, 2017 Yong Jae Lee UC Davis Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 2 Alignment problem In alignment, we will

More information

Camera Calibration. COS 429 Princeton University

Camera Calibration. COS 429 Princeton University Camera Calibration COS 429 Princeton University Point Correspondences What can you figure out from point correspondences? Noah Snavely Point Correspondences X 1 X 4 X 3 X 2 X 5 X 6 X 7 p 1,1 p 1,2 p 1,3

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

Projective geometry, camera models and calibration

Projective geometry, camera models and calibration Projective geometry, camera models and calibration Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in January 6, 2008 The main problems in computer vision Image

More information

Robot Vision: Projective Geometry

Robot Vision: Projective Geometry Robot Vision: Projective Geometry Ass.Prof. Friedrich Fraundorfer SS 2018 1 Learning goals Understand homogeneous coordinates Understand points, line, plane parameters and interpret them geometrically

More information

Camera model and calibration

Camera model and calibration and calibration AVIO tristan.moreau@univ-rennes1.fr Laboratoire de Traitement du Signal et des Images (LTSI) Université de Rennes 1. Mardi 21 janvier 1 AVIO tristan.moreau@univ-rennes1.fr and calibration

More information

Computer Graphics: Geometric Transformations

Computer Graphics: Geometric Transformations Computer Graphics: Geometric Transformations Geometric 2D transformations By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, 1 Outlines 1. Basic 2D transformations 2. Matrix Representation of 2D transformations

More information

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin.

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin. More Mosaic Madness Jeffrey Martin (jeffrey-martin.com) CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2018 Steve Seitz and Rick

More information

Perspective Projection in Homogeneous Coordinates

Perspective Projection in Homogeneous Coordinates Perspective Projection in Homogeneous Coordinates Carlo Tomasi If standard Cartesian coordinates are used, a rigid transformation takes the form X = R(X t) and the equations of perspective projection are

More information

C / 35. C18 Computer Vision. David Murray. dwm/courses/4cv.

C / 35. C18 Computer Vision. David Murray.   dwm/courses/4cv. C18 2015 1 / 35 C18 Computer Vision David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/4cv Michaelmas 2015 C18 2015 2 / 35 Computer Vision: This time... 1. Introduction; imaging geometry;

More information

Lecture 7 Measurement Using a Single Camera. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016

Lecture 7 Measurement Using a Single Camera. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Lecture 7 Measurement Using a Single Camera Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 If I have an image containing a coin, can you tell me the diameter of that coin? Contents

More information

Single-view metrology

Single-view metrology Single-view metrology Magritte, Personal Values, 952 Many slides from S. Seitz, D. Hoiem Camera calibration revisited What if world coordinates of reference 3D points are not known? We can use scene features

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Image warping and stitching

Image warping and stitching Image warping and stitching May 5 th, 2015 Yong Jae Lee UC Davis PS2 due next Friday Announcements 2 Last time Interactive segmentation Feature-based alignment 2D transformations Affine fit RANSAC 3 Alignment

More information

Image Formation I Chapter 2 (R. Szelisky)

Image Formation I Chapter 2 (R. Szelisky) Image Formation I Chapter 2 (R. Selisky) Guido Gerig CS 632 Spring 22 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified from

More information

Calibrating an Overhead Video Camera

Calibrating an Overhead Video Camera Calibrating an Overhead Video Camera Raul Rojas Freie Universität Berlin, Takustraße 9, 495 Berlin, Germany http://www.fu-fighters.de Abstract. In this section we discuss how to calibrate an overhead video

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 05/11/2015 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Image Formation I Chapter 1 (Forsyth&Ponce) Cameras Guido Gerig CS 632 Spring 213 cknowledgements: Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/cs28.html) Some slides modified

More information