1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1

Size: px
Start display at page:

Download "1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1"

Transcription

1 .7 Transformations.7. Eercises To see all of the help resources associated with this section, click OSttS Chapter b. Suppose (, ) is on the graph of = f(). In Eercises - 8, use Theorem.7 to find a point on the graph of the given transformed function.. = f() +. = f( + ). = f(). = f( ). = f() 6. = f() 7. = f() 8. = f( ) 9. = f( ) + 0. = f( + ). = 0 f(). = f(). = f( ). = f( + ) +. = f( ) 7 6. = f 7. = f() f( ) 8. = 7 For help with Eercises 9 -, click on one or more of the resources below: Horizontal and vertical shift transformations Horizontal and vertical scaling transformations Reflections across the or ais Multiple transformations The complete graph of = f() is given below. In Eercises 9-7, use it and Theorem.7 to graph the given transformed function. (, ) (, ) (0, 0) The graph for E = f() + 0. = f(). = f( + ). = f( ). = f(). = f()

2 6 Relations and Functions. = f() 6. = f( ) 7. = f( ) 8. Some of the answers to Eercises 9-7 above should be the same. Which ones match up? What properties of the graph of = f() contribute to the duplication? The complete graph of = f() is given below. In Eercises 9-7, use it and Theorem.7 to graph the given transformed function. (0, ) (, 0) (, 0) (, ) The graph for E = f() 0. = f( + ). = f(). = f(). = f(). = f( ). = f( + ) 6. = f() 7. = f( + ) The complete graph of = f() is given below. In Eercises 8-9, use it and Theorem.7 to graph the given transformed function. (0, ) (, 0) (, 0) The graph for E g() = f() + 9. h() = f() 0. j() = f ( )

3 .7 Transformations 7. a() = f( + ). b() = f( + ). c() = f(). d() = f(). k() = f ( ) 6. m() = f() 7. n() = f( ) 6 8. p() = + f( ) 9. q() = f + The complete graph of = S() is given below. (, ) (, 0) (0, 0) (, ) (, 0) The graph of = S() The purpose of Eercises 0 - is to graph = S( + ) + b graphing each transformation, one step at a time. 0. = S () = S( + ). = S () = S ( ) = S( + ). = S () = S () = S( + ). = S () = S () + = S( + ) + Let f() =. Find a formula for a function g whose graph is obtained from f from the given sequence of transformations.. () shift right units; () shift down units. () shift down units; () shift right units 6. () reflect across the -ais; () shift up unit 7. () shift up unit; () reflect across the -ais 8. () shift left unit; () reflect across the -ais; () shift up units 9. () reflect across the -ais; () shift left unit; () shift up units 60. () shift left units; () vertical stretch b a factor of ; () shift down units 6. () shift left units; () shift down units; () vertical stretch b a factor of

4 8 Relations and Functions 6. () shift right units; () horizontal shrink b a factor of ; () shift up unit 6. () horizontal shrink b a factor of ; () shift right units; () shift up unit 6. The graph of = f() = is given below on the left and the graph of = g() is given on the right. Find a formula for g based on transformations of the graph of f. Check our answer b confirming that the points shown on the graph of g satisf the equation = g() = = g() 6. For man common functions, the properties of Algebra make a horizontal scaling the same as a vertical scaling b (possibl) a different factor. For eample, we stated earlier that 9 =. With the help of our classmates, find the equivalent vertical scaling produced b the horizontal scalings = (), =, = 7 and = ( ). What about = ( ), =, = 7 and = ( )? 66. We mentioned earlier in the section that, in general, the order in which transformations are applied matters, et in our first eample with two transformations the order did not matter. (You could perform the shift to the left followed b the shift down or ou could shift down and then left to achieve the same result.) With the help of our classmates, determine the situations in which order does matter and those in which it does not. 67. What happens if ou reflect an even function across the -ais? 68. What happens if ou reflect an odd function across the -ais? 69. What happens if ou reflect an even function across the -ais? 70. What happens if ou reflect an odd function across the -ais? 7. How would ou describe smmetr about the origin in terms of reflections? 7. As we saw in Eample.7., the viewing window on the graphing calculator affects how we see the transformations done to a graph. Using two different calculators, find viewing windows so that f() = on the one calculator looks like g() = on the other.

5 .7 Transformations 9 Checkpoint Quiz.7. The complete graph of = f() is given below. (0, ) (, ) (, ) (, 0) = f() Let g() = f. Sketch the graph of = g(). From our graph, determine the domain and range of g. List the intervals over which g is increasing and the intervals over which g is decreasing. List the local maimums and local minimums, if an.. Let f() =. Find a formula for a function g whose graph is obtained from the graph of = f() after the following sequence of transformations: Shift left units. Reflection across the -ais. Shift down unit. Vertical scaling b a factor of. Reflection across the -ais. For worked out solutions to this quiz, click the links below: Quiz Solution Part Quiz Solution Part

6 0 Relations and Functions.7. Answers. (, 0). (, ). (, ). (, ). (, 9) 6. (, ) 7. (, ) 8. (, ) 9. (, ) 0. (, 6). (, ). = (, 0). (, ). (, ). (, 7) 6. (, ) 7. (, ) 8. (, ) 9. = f() + 0. = f() (, ) (, ) (0, ) (, ) (, ) (0, ). = f( + ). = f( ) (, ) (, ) (0, ) (, ) (, 0) (, 0) 6. = f(). = f() (, ) (, ) (, ) (, ) (0, 0) (0, 0)

7 .7 Transformations. = f() 6. = f( ) (0, ) (, 0) (, 0) (0, ) (, ) (, 0) 6 7. = f( ) 9. = f() (, ) (0, ) (0, 0) (, 0) 6 (, ) (, ) (, ) 0. = f( + ). = f() (, ) (0, ) (, 0) (, 0) (, ) (, 0) (, 0) (, )

8 Relations and Functions. = f(). = f() (0, ) (, 0) (, 0) (, ) (, ) (, 0) (, 0) (0, ). = f( ). = f( + ) (0, ) (, ) (, 0) (, 0) (, ) (, ) (, ) (, ) 6. = f() 7. = f( + ) (, ) (, ) (, ) (, ) (0, ) (, ) (, ) (, )

9 .7 Transformations 8. g() = f() + (0, 6) 6 9. h() = f() 0, (, ) (, ), (, ) 0. j() = f ( ) (, ). a() = f( + ) (, ) ) ( ( 7, 0, 0 ) 7 6 ( 7, 0) (, 0). b() = f( + ) (, ). c() = f() 0, 9 (, ) (, ) (, 0) (, 0). d() = f() (, 0) (, 0). k() = f ( ) (0, ) ) ( ( 9, 0 9, 0) 6 (0, 6)

10 Relations and Functions 6. m() = f() (, 0) (, 0) 0, 7. n() = f( ) 6 (, 6) (0, 6) (6, 6) 8. p() = + f( ) = f( + ) + (, 7) 7 6 (, ) (, ) 9. q() = f + = f ( + ) ( 0, ), 9 (, )

11 .7 Transformations 0. = S () = S( + ). = S () = S ( ) = S( + ) (0, ) (0, ) (, 0) (, 0) (, 0) (, 0) (, 0) (, 0) (, ) (, ). = S () = S () = S( + ). = S () = S () + = S( + ) + 0, (, 0), (, 0) (, 0) (, ) 0, (, ) (, ),. g() =. g() = 6. g() = + 7. g() = ( + ) = 8. g() = g() = ( + ) + = g() = + 6. g() = ( + ) = g() = + 6. g() = ( ) + = g() = + or g() =

10. f(x) = 3 2 x f(x) = 3 x 12. f(x) = 1 x 2 + 1

10. f(x) = 3 2 x f(x) = 3 x 12. f(x) = 1 x 2 + 1 Relations and Functions.6. Eercises To see all of the help resources associated with this section, click OSttS Chapter b. In Eercises -, sketch the graph of the given function. State the domain of the

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

p Graph square root functions. VOCABULARY Radical expression Radical function Square root function Parent square root function

p Graph square root functions. VOCABULARY Radical expression Radical function Square root function Parent square root function . Graph Square Root Functions Goal p Graph square root functions. Your Notes VOCABULARY Radical epression Radical function Square root function Parent square root function PARENT FUNCTION FOR SQUARE ROOT

More information

2. Graphical Transformations of Functions

2. Graphical Transformations of Functions 2. Graphical Transformations of Functions In this section we will discuss how the graph of a function may be transformed either by shifting, stretching or compressing, or reflection. In this section let

More information

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Section.: Absolute Value Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Math 1050 Lab Activity: Graphing Transformations

Math 1050 Lab Activity: Graphing Transformations Math 00 Lab Activit: Graphing Transformations Name: We'll focus on quadratic functions to eplore graphing transformations. A quadratic function is a second degree polnomial function. There are two common

More information

Name Date. In Exercises 1 6, graph the function. Compare the graph to the graph of ( )

Name Date. In Exercises 1 6, graph the function. Compare the graph to the graph of ( ) Name Date 8. Practice A In Eercises 6, graph the function. Compare the graph to the graph of. g( ) =. h =.5 3. j = 3. g( ) = 3 5. k( ) = 6. n = 0.5 In Eercises 7 9, use a graphing calculator to graph the

More information

6B Quiz Review Learning Targets ,

6B Quiz Review Learning Targets , 6B Quiz Review Learning Targets 5.10 6.3, 6.5-6.6 Key Facts Double transformations when more than one transformation is applied to a graph o You can still use our transformation rules to identify which

More information

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16.

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16. Section 4.2 Absolute Value 367 4.2 Eercises For each of the functions in Eercises 1-8, as in Eamples 7 and 8 in the narrative, mark the critical value on a number line, then mark the sign of the epression

More information

Lesson #6: Basic Transformations with the Absolute Value Function

Lesson #6: Basic Transformations with the Absolute Value Function Lesson #6: Basic Transformations with the Absolute Value Function Recall: Piecewise Functions Graph:,, What parent function did this piecewise function create? The Absolute Value Function Algebra II with

More information

Checkpoint: Assess Your Understanding, pages

Checkpoint: Assess Your Understanding, pages Checkpoint: Assess Your Understanding, pages 13 1 3.1 1. Multiple Choice The graph of 3 3 is translated units right and 5 units down. What is an equation of the translation image? A. =-3( + ) 3 + 9 B.

More information

Section 4.2 Graphs of Exponential Functions

Section 4.2 Graphs of Exponential Functions 238 Chapter 4 Section 4.2 Graphs of Eponential Functions Like with linear functions, the graph of an eponential function is determined by the values for the parameters in the function s formula. To get

More information

a translation by c units a translation by c units

a translation by c units a translation by c units 1.6 Graphical Transformations Introducing... Translations 1.) Set your viewing window to [-5,5] by [-5,15]. 2.) Graph the following functions: y 1 = x 2 y 2 = x 2 + 3 y 3 = x 2 + 1 y 4 = x 2-2 y 5 = x

More information

Transformations. which the book introduces in this chapter. If you shift the graph of y 1 x to the left 2 units and up 3 units, the

Transformations. which the book introduces in this chapter. If you shift the graph of y 1 x to the left 2 units and up 3 units, the CHAPTER 8 Transformations Content Summar In Chapter 8, students continue their work with functions, especiall nonlinear functions, through further stud of function graphs. In particular, the consider three

More information

Graphing f ( x) = ax 2 + c

Graphing f ( x) = ax 2 + c . Graphing f ( ) = a + c Essential Question How does the value of c affect the graph of f () = a + c? Graphing = a + c Work with a partner. Sketch the graphs of the functions in the same coordinate plane.

More information

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k

Transformations of Absolute Value Functions. Compression A compression is a. function a function of the form f(x) = a 0 x - h 0 + k - Transformations of Absolute Value Functions TEKS FOCUS VOCABULARY Compression A compression is a TEKS (6)(C) Analze the effect on the graphs of f() = when f() is replaced b af(), f(b), f( - c), and f()

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

4.1 Graph Quadratic Functions in

4.1 Graph Quadratic Functions in 4. Graph Quadratic Functions in Standard Form Goal p Graph quadratic functions. Your Notes VOCABULARY Quadratic function Parabola Verte Ais of smmetr Minimum and maimum value PARENT FUNCTION FOR QUADRATIC

More information

8.5 Quadratic Functions and Their Graphs

8.5 Quadratic Functions and Their Graphs CHAPTER 8 Quadratic Equations and Functions 8. Quadratic Functions and Their Graphs S Graph Quadratic Functions of the Form f = + k. Graph Quadratic Functions of the Form f = - h. Graph Quadratic Functions

More information

Shifting, Reflecting, and Stretching Graphs

Shifting, Reflecting, and Stretching Graphs Shifting, Reflecting, and Stretching s Shifting s 1 ( ) ( ) This is f ( ) This is f ( ) This is f ( ) What happens to the graph? f ( ) is f () shifted units to the right. f ( ) is f () shifted units to

More information

3.5 - Concavity. a concave up. a concave down

3.5 - Concavity. a concave up. a concave down . - Concavity 1. Concave up and concave down For a function f that is differentiable on an interval I, the graph of f is If f is concave up on a, b, then the secant line passing through points 1, f 1 and,

More information

End of Chapter Test. b. What are the roots of this equation? 8 1 x x 5 0

End of Chapter Test. b. What are the roots of this equation? 8 1 x x 5 0 End of Chapter Test Name Date 1. A woodworker makes different sizes of wooden blocks in the shapes of cones. The narrowest block the worker makes has a radius r 8 centimeters and a height h centimeters.

More information

Functions Review Packet from November Questions. 1. The diagrams below show the graphs of two functions, y = f(x), and y = g(x). y y

Functions Review Packet from November Questions. 1. The diagrams below show the graphs of two functions, y = f(x), and y = g(x). y y Functions Review Packet from November Questions. The diagrams below show the graphs of two functions, = f(), and = g()..5 = f( ) = g( ).5 6º 8º.5 8º 6º.5 State the domain and range of the function f; the

More information

Functions Project Core Precalculus Extra Credit Project

Functions Project Core Precalculus Extra Credit Project Name: Period: Date Due: 10/10/1 (for A das) and 10/11/1(for B das) Date Turned In: Functions Project Core Precalculus Etra Credit Project Instructions and Definitions: This project ma be used during the

More information

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards Contents 1.1 Functions.............................................. 2 1.2 Analzing Graphs of Functions.................................. 5 1.3 Shifting and Reflecting Graphs..................................

More information

Honors Algebra 2 Function Transformations Discovery

Honors Algebra 2 Function Transformations Discovery Honors Algebra Function Transformations Discovery Name: Date: Parent Polynomial Graphs Using an input-output table, make a rough sketch and compare the graphs of the following functions. f x x. f x x.

More information

TIPS4RM: MHF4U: Unit 1 Polynomial Functions

TIPS4RM: MHF4U: Unit 1 Polynomial Functions TIPSRM: MHFU: Unit Polnomial Functions 008 .5.: Polnomial Concept Attainment Activit Compare and contrast the eamples and non-eamples of polnomial functions below. Through reasoning, identif attributes

More information

Section Graphs of the Sine and Cosine Functions

Section Graphs of the Sine and Cosine Functions Section 5. - Graphs of the Sine and Cosine Functions In this section, we will graph the basic sine function and the basic cosine function and then graph other sine and cosine functions using transformations.

More information

CHAPTER 2: More on Functions

CHAPTER 2: More on Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 2: More on Functions 2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.2 The Algebra of Functions 2.3

More information

Concept: Slope of a Line

Concept: Slope of a Line Concept: Slope of a Line Warm Up Name: The following suggested activities would serve as a review to consolidate previous learning. While promoting rich mathematical dialog, the will also provide students

More information

3. parallel: (b) and (c); perpendicular (a) and (b), (a) and (c)

3. parallel: (b) and (c); perpendicular (a) and (b), (a) and (c) SECTION 1.1 1. Plot the points (0, 4), ( 2, 3), (1.5, 1), and ( 3, 0.5) in the Cartesian plane. 2. Simplify the expression 13 7 2. 3. Use the 3 lines whose equations are given. Which are parallel? Which

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section.5 Transformation of Functions 6 Section.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form

QUADRATIC FUNCTIONS Investigating Quadratic Functions in Vertex Form QUADRATIC FUNCTIONS Investigating Quadratic Functions in Verte Form The two forms of a quadratic function that have been eplored previousl are: Factored form: f ( ) a( r)( s) Standard form: f ( ) a b c

More information

Appendix C: Review of Graphs, Equations, and Inequalities

Appendix C: Review of Graphs, Equations, and Inequalities Appendi C: Review of Graphs, Equations, and Inequalities C. What ou should learn Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs of real numbers b points

More information

Essential Question What are the characteristics of the graph of the tangent function?

Essential Question What are the characteristics of the graph of the tangent function? 8.5 Graphing Other Trigonometric Functions Essential Question What are the characteristics of the graph of the tangent function? Graphing the Tangent Function Work with a partner. a. Complete the table

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n =

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n = Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equalit properties of real numbers and inverse operations

More information

Section 2: Operations on Functions

Section 2: Operations on Functions Chapter Review Applied Calculus 9 Section : Operations on Functions Composition of Functions Suppose we wanted to calculate how much it costs to heat a house on a particular day of the year. The cost to

More information

Algebra 1B Assignments Chapter 6: Linear Equations (All graphs must be drawn on GRAPH PAPER!)

Algebra 1B Assignments Chapter 6: Linear Equations (All graphs must be drawn on GRAPH PAPER!) Name Score Algebra 1B Assignments Chapter 6: Linear Equations (All graphs must be drawn on GRAPH PAPER!) Review Review Worksheet: Rational Numbers and Distributive Propert Worksheet: Solving Equations

More information

Four Ways to Represent a Function: We can describe a specific function in the following four ways: * verbally (by a description in words);

Four Ways to Represent a Function: We can describe a specific function in the following four ways: * verbally (by a description in words); MA19, Activit 23: What is a Function? (Section 3.1, pp. 214-22) Date: Toda s Goal: Assignments: Perhaps the most useful mathematical idea for modeling the real world is the concept of a function. We eplore

More information

Graphing Quadratics: Vertex and Intercept Form

Graphing Quadratics: Vertex and Intercept Form Algebra : UNIT Graphing Quadratics: Verte and Intercept Form Date: Welcome to our second function famil...the QUADRATIC FUNCTION! f() = (the parent function) What is different between this function and

More information

Unit 4 Test REVIEW: Polynomial Functions

Unit 4 Test REVIEW: Polynomial Functions Name Algebra II Date Period Unit 4 Test REVIEW: Polnomial Functions 1. Given a polnomial of the form: = a n + b n 1 + c n 2 + + d 2 + e + f a. What are the maimum number of zeros for this polnomial? b.

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class Lesson - Read to Go n? Skills Intervention Eploring Transformations Find these vocabular words in the lesson and the Multilingual Glossar. Vocabular transformation translation reflection stretch Translating

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Obtaining Information from a Function s Graph.

Obtaining Information from a Function s Graph. Obtaining Information from a Function s Graph Summary about using closed dots, open dots, and arrows on the graphs 1 A closed dot indicate that the graph does not extend beyond this point and the point

More information

2/22/ Transformations but first 1.3 Recap. Section Objectives: Students will know how to analyze graphs of functions.

2/22/ Transformations but first 1.3 Recap. Section Objectives: Students will know how to analyze graphs of functions. 1 2 3 4 1.4 Transformations but first 1.3 Recap Section Objectives: Students will know how to analyze graphs of functions. 5 Recap of Important information 1.2 Functions and their Graphs Vertical line

More information

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis Given graph of y f = and sketch:. Linear Transformation cf ( b + a) + d a. translate a along the -ais. f b. scale b along the -ais c. scale c along the y-ais d. translate d along the y-ais Transformation

More information

4.1 The Coordinate Plane

4.1 The Coordinate Plane 4. The Coordinate Plane Goal Plot points in a coordinate plane. VOCABULARY Coordinate plane Origin -ais -ais Ordered pair -coordinate -coordinate Quadrant Scatter plot Copright McDougal Littell, Chapter

More information

Lesson 20: Four Interesting Transformations of Functions

Lesson 20: Four Interesting Transformations of Functions Student Outcomes Students apply their understanding of transformations of functions and their graphs to piecewise functions. Lesson Notes In Lessons 17 19 students study translations and scalings of functions

More information

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials Alg Completing the Square A Perfect Square Trinomials (± ) ± (± ) ± 4 4 (± ) ± 6 9 (± 4) ± 8 6 (± 5) ± 5 What is the relationship between the red term and the blue term? B. Creating perfect squares.. 6

More information

Appendix A.6 Functions

Appendix A.6 Functions A. Functions 539 RELATIONS: DOMAIN AND RANGE Appendi A. Functions A relation is a set of ordered pairs. A relation can be a simple set of just a few ordered pairs, such as {(0, ), (1, 3), (, )}, or it

More information

3.5 Write and Graph Equations

3.5 Write and Graph Equations .5 Write and Graph Equations of Lines Goal p Find equations of lines. Your Notes VOCABULARY Slope-intercept form Standard form Eample Write an equation of a line from a graph Write an equation of the line

More information

Graph the equation. 8) y = 6x - 2

Graph the equation. 8) y = 6x - 2 Math 0 Chapter Practice set The actual test differs. Write the equation that results in the desired transformation. 1) The graph of =, verticall compressed b a factor of 0.7 Graph the equation. 8) = -

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

6. f(x) = x f(x) = x f(x) = x f(x) = 3 x. 10. f(x) = x + 3

6. f(x) = x f(x) = x f(x) = x f(x) = 3 x. 10. f(x) = x + 3 Section 9.1 The Square Root Function 879 9.1 Eercises In Eercises 1-, complete each of the following tasks. i. Set up a coordinate sstem on a sheet of graph paper. Label and scale each ais. ii. Complete

More information

Determine whether the relation represents a function. If it is a function, state the domain and range. 1) {(-3, 10), (-2, 5), (0, 1), (2, 5), (4, 17)}

Determine whether the relation represents a function. If it is a function, state the domain and range. 1) {(-3, 10), (-2, 5), (0, 1), (2, 5), (4, 17)} MAC 1 Review for Eam Name Determine whether the relation represents a function. If it is a function, state the domain and range. 1) {(-3, ), (-, ), (0, 1), (, ), (, 17)} ) {(19, -), (3, -3), (3, 0), (1,

More information

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Section.6: Graphs of Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS LEARNING OBJECTIVES In this section, you will: Graph functions using vertical and horizontal shifts. Graph functions using reflections about the x-axis and

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

2-3. Attributes of Absolute Value Functions. Key Concept Absolute Value Parent Function f (x)= x VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

2-3. Attributes of Absolute Value Functions. Key Concept Absolute Value Parent Function f (x)= x VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING - Attributes of Absolute Value Functions TEKS FOCUS TEKS ()(A) Graph the functions f() =, f() =, f() =, f() =,f() = b, f() =, and f() = log b () where b is,, and e, and, when applicable, analze the ke

More information

Unit 2: Function Transformation Chapter 1

Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Section 1.1: Horizontal and Vertical Transformations A of a function alters the and an combination of the of the graph.

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

A Catalog of Essential Functions

A Catalog of Essential Functions Section. A Catalog of Essential Functions Kiryl Tsishchanka A Catalog of Essential Functions In this course we consider 6 groups of important functions:. Linear Functions. Polynomials 3. Power functions.

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

Polynomial Functions I

Polynomial Functions I Name Student ID Number Group Name Group Members Polnomial Functions I 1. Sketch mm() =, nn() = 3, ss() =, and tt() = 5 on the set of aes below. Label each function on the graph. 15 5 3 1 1 3 5 15 Defn:

More information

SECONDARY MATH TRANSFORMATIONS

SECONDARY MATH TRANSFORMATIONS SECONDARY MATH 3 3-3 TRANSFORMATIONS WARM UP WHAT YOU WILL LEARN How to transform functions from the parent function How to describe a transformation How to write an equation of a transformed function

More information

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions Math 3200 Unit I Ch 3 - Polnomial Functions 1 Unit I - Chapter 3 Polnomial Functions 3.1 Characteristics of Polnomial Functions Goal: To Understand some Basic Features of Polnomial functions: Continuous

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

2.2. Changing One Dimension

2.2. Changing One Dimension 2.2 Changing One Dimension The epression (n - 2)(n + 2) is in factored form because it is written as a product of factors. The epression n 2-4 is in epanded form because it is written as the sum or difference

More information

3.7 EXERCISES CONCEPTS SKILLS. x 2 2. SECTION 3.7 Rational Functions 289 TABLE 1 TABLE 2 TABLE 3 TABLE 4

3.7 EXERCISES CONCEPTS SKILLS. x 2 2. SECTION 3.7 Rational Functions 289 TABLE 1 TABLE 2 TABLE 3 TABLE 4 SECTION 3.7 Rational Functions 89 3.7 EXERCISES CONCEPTS 1. If the rational function y r1 has the vertical asymptote, then as, either y or y.. If the rational function y r1 has the horizontal asymptote

More information

College Algebra Final Exam Review. 5.) State the domain of the following functions. Then determine whether each function is a one-toone function.

College Algebra Final Exam Review. 5.) State the domain of the following functions. Then determine whether each function is a one-toone function. College Algebra Final Eam Review For # use the given graph f():.) Find f( )..) State the zeros, the domain, and the range. f().) State the local maimum and/or minimum..) State the intervals decreasing

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Lesson -5 Lesson -5 The Sine and Cosine Functions Vocabular BIG IDEA The values of cos and sin determine functions with equations = sin and = cos whose domain is the set of all real numbers. From the eact

More information

Objectives. Vocabulary. 1-1 Exploring Transformations

Objectives. Vocabulary. 1-1 Exploring Transformations Warm Up Plot each point. D Warm Up Lesson Presentation Lesson Quiz 1. A(0,0) 2. B(5,0) 3. C( 5,0) 4. D(0,5) C A B 5. E(0, 5) 6. F( 5, 5) F E Algebra 2 Objectives Apply transformations to points and sets

More information

Lesson 11-2 Shrinking, Stretching, and Reflecting Parabolas ACTIVITY 11

Lesson 11-2 Shrinking, Stretching, and Reflecting Parabolas ACTIVITY 11 ACTIVITY 11 Lesson 11- M Notes Unlike a rigid transformation, a vertical stretch or vertical shrink will change the shape of the graph. A vertical stretch stretches a graph awa from the -ais b a factor

More information

Exponential Functions

Exponential Functions 6. Eponential Functions Essential Question What are some of the characteristics of the graph of an eponential function? Eploring an Eponential Function Work with a partner. Cop and complete each table

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

Graphing Review. Math Tutorial Lab Special Topic

Graphing Review. Math Tutorial Lab Special Topic Graphing Review Math Tutorial Lab Special Topic Common Functions and Their Graphs Linear Functions A function f defined b a linear equation of the form = f() = m + b, where m and b are constants, is called

More information

3.5D Graphing Rational Functions

3.5D Graphing Rational Functions 3.5D Graphing Rational Functions A. Strategy 1. Find all asymptotes (vertical, horizontal, oblique, curvilinear) and holes for the function. 2. Find the and intercepts. 3. Plot the and intercepts, draw

More information

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions.

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions. 1-1 Functions What You ll Learn Scan Lesson 1- Write two things that ou alread know about functions. Lesson 1-1 Active Vocabular New Vocabular Write the definition net to each term. domain dependent variable

More information

Shape and Structure. Forms of Quadratic Functions. Lesson 4.1 Skills Practice. Vocabulary

Shape and Structure. Forms of Quadratic Functions. Lesson 4.1 Skills Practice. Vocabulary Lesson.1 Skills Practice Name Date Shape and Structure Forms of Quadratic Functions Vocabular Write an eample for each form of quadratic function and tell whether the form helps determine the -intercepts,

More information

Unit 4: Part 1 Graphing Quadratic Functions

Unit 4: Part 1 Graphing Quadratic Functions Name: Block: Unit : Part 1 Graphing Quadratic Functions Da 1 Graphing in Verte Form & Intro to Quadratic Regression Da Graphing in Intercept Form Da 3 Da Da 5 Da Graphing in Standard Form Review Graphing

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

Unit 1: Sections Skill Set

Unit 1: Sections Skill Set MthSc 106 Fall 2011 Calculus of One Variable I : Calculus by Briggs and Cochran Section 1.1: Review of Functions Unit 1: Sections 1.1 3.3 Skill Set Find the domain and range of a function. 14, 17 13, 15,

More information

Transformations with Quadratic Functions KEY

Transformations with Quadratic Functions KEY Algebra Unit: 05 Lesson: 0 TRY THIS! Use a calculator to generate a table of values for the function y = ( x 3) + 4 y = ( x 3) x + y 4 Next, simplify the function by squaring, distributing, and collecting

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

3.6. Transformations of Graphs of Linear Functions

3.6. Transformations of Graphs of Linear Functions . Transformations of Graphs of Linear Functions Essential Question How does the graph of the linear function f() = compare to the graphs of g() = f() + c and h() = f(c)? Comparing Graphs of Functions USING

More information

Module 3 Graphing and Optimization

Module 3 Graphing and Optimization Module 3 Graphing and Optimization One of the most important applications of calculus to real-world problems is in the area of optimization. We will utilize the knowledge gained in the previous chapter,

More information

Study Skills Exercise. Review Exercises. Concept 1: Linear and Constant Functions

Study Skills Exercise. Review Exercises. Concept 1: Linear and Constant Functions Section. Graphs of Functions Section. Boost our GRADE at mathzone.com! Stud Skills Eercise Practice Eercises Practice Problems Self-Tests NetTutor e-professors Videos. Define the ke terms. a. Linear function

More information

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM

GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM FOM 11 T7 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM 1 1 GRAPHING QUADRATIC FUNCTIONS IN STANDARD FORM I) THE STANDARD FORM OF A QUADRATIC FUNCTION (PARABOLA) IS = a +b +c. To graph a quadratic function

More information

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals . A Rational Shift in Behavior LEARnIng goals In this lesson, ou will: Analze rational functions with a constant added to the denominator. Compare rational functions in different forms. Identif vertical

More information

Inclination of a Line

Inclination of a Line 0_00.qd 78 /8/05 Chapter 0 8:5 AM Page 78 Topics in Analtic Geometr 0. Lines What ou should learn Find the inclination of a line. Find the angle between two lines. Find the distance between a point and

More information

Algebra 2 Agenda. Week 1.2 Objective Summary Grade. Parent Functions Day 1. Practice. Parent Functions Day 2. Practice. Quiz. Relax!

Algebra 2 Agenda. Week 1.2 Objective Summary Grade. Parent Functions Day 1. Practice. Parent Functions Day 2. Practice. Quiz. Relax! Name Period Algebra Agenda Week. Objective Summar Grade Monda August, 0 Tuesda August 0, 0 Wednesda August, 0 Thursda September, 0 Frida September, 0 Parent Functions Da Practice Parent Functions Da Practice

More information

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0

REMARKS. 8.2 Graphs of Quadratic Functions. A Graph of y = ax 2 + bx + c, where a > 0 8. Graphs of Quadratic Functions In an earlier section, we have learned that the graph of the linear function = m + b, where the highest power of is 1, is a straight line. What would the shape of the graph

More information

REVIEW, pages

REVIEW, pages REVIEW, pages 69 697 8.. Sketch a graph of each absolute function. Identif the intercepts, domain, and range. a) = ƒ - + ƒ b) = ƒ ( + )( - ) ƒ 8 ( )( ) Draw the graph of. It has -intercept.. Reflect, in

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

Let us start with a quick revision of algebra and how to work with variables. Now let us look at the simpler topic, namely Substitution.

Let us start with a quick revision of algebra and how to work with variables. Now let us look at the simpler topic, namely Substitution. Section F Algebra & Equations Objective In this section, we will be dealing with solving equations for the variable involved, manipulating formulae to get one variable as the subject of the formula and

More information

Graph each pair of functions on the same coordinate plane See margin. Technology Activity: A Family of Functions

Graph each pair of functions on the same coordinate plane See margin. Technology Activity: A Family of Functions - What You ll Learn To analze translations To analze stretches, shrinks, and reflections...and Wh To analze a fabric design, as in Eample Families of Functions Check Skills You ll Need G for Help Lessons

More information