Introduction to GANs

Size: px
Start display at page:

Download "Introduction to GANs"

Transcription

1 MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-gan LS-GAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN CatGAN AMGAN igan Introduction to GANs IAN SAGAN McGAN Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN MGAN CVPR Tutorial on GANs BS-GAN FF-GAN C-VAE-GAN C-RNN-GAN MAGAN 3D-GAN CCGAN Salt Lake City, GoGAN DR-GAN DCGAN AC-GAN BiGAN GAWWN DualGAN CycleGAN Bayesian GAN AnoGAN GP-GAN EBGAN Context-RNN-GAN ALI f-gan MARTA-GAN ArtGAN MAD-GAN DTN BEGAN AL-CGAN MalGAN

2 Generative Modeling: Density Estimation Training Data Density Function

3 Generative Modeling: Sample Generation Training Data Sample Generator (CelebA) (Karras et al, 2017)

4 Adversarial Nets Framework D(x) tries to be near 1 D tries to make D(G(z)) near 0, G tries to make D(G(z)) near 1 Differentiable function D D x sampled from data x sampled from model Differentiable function G (Goodfellow et al., 2014) Input noise z

5 Self-Play 1959: Arthur Samuel s checkers agent (OpenAI, 2017) (Silver et al, 2017) (Bansal et al, 2017)

6 3.5 Years of Progress on Faces (Brundage et al, 2018)

7 <2 Years of Progress on ImageNet Odena et al 2016 monarch butterfly Miyato et al 2017 monarch butterfly goldfin Zhang et al 2018 monarch butterfly goldfinch

8 Self-Attention GAN State of the art FID on ImageNet: 1000 categories, 128x128 pixels Goldfish Redshank Tiger Cat Geyser Broccoli Stone Wall Indigo Bunting (Zhang et al., 2018) Saint Bernard

9 From GAN to SAGAN Depth and Convolution Class-conditional generation Spectral Normalization Hinge loss Two-timescale update rule Self-attention

10 No Convolution Needed to Solve Simple Tasks Original GAN, 2014

11 Depth and Convolution for Harder Tasks Original GAN (CIFAR-10) DCGAN (ImageNet) No convolution One convolutional layer Many convolutional layers (Radford et al, 2015)

12 From GAN to SAGAN Depth and Convolution Class-conditional generation Spectral Normalization Hinge loss Two-timescale update rule Self-attention

13 Class-Conditional GANs (Mirza and Osindero, 2014)

14 AC-GAN: Specialist Generators (Odena et al, 2016)

15 SN-GAN: Shared Generator (Miyato et al, 2017)

16 From GAN to SAGAN Depth and Convolution Class-conditional generation Spectral Normalization Hinge loss Two-timescale update rule Self-attention

17 Spectral Normalization (Miyato et al, 2017)

18 From GAN to SAGAN Depth and Convolution Class-conditional generation Spectral Normalization Hinge loss Two-timescale update rule Self-attention

19 Hinge Loss (Miyato et al 2017, Lim and Ye 2017, Tran et al 2017)

20 From GAN to SAGAN Depth and Convolution Class-conditional generation Spectral Normalization Hinge loss Two-timescale update rule Self-attention

21 Two-Timescale Update Rule

22 From GAN to SAGAN Depth and Convolution Class-conditional generation Spectral Normalization Hinge loss Two-timescale update rule Self-attention

23 Self-Attention Use layers from Wang et al 2018

24 Applying GANs Semi-supervised Learning Model-based optimization Extreme personalization Program synthesis

25 Supervised Discriminator for Semi-Supervised Learning Real Fake Real cat Real dog Fake Hidden units Hidden units Learn to read with 100 labels rather Input Input than 60,000 (Odena 2016, Salimans et al 2016)

26 Semi-Supervised Classification MNIST: 100 training labels -> 80 test mistakes SVHN: 1,000 training labels -> 4.3% test error CIFAR-10: 4,000 labels -> 14.4% test error (Dai et al 2017)

27 Designing DNA to optimize protein binding (Killoran et al, 2017)

28 Personalized GANufacturing (Hwang et al 2018)

29 SPIRAL Synthesizing Programs for Images Using Reinforced Adversarial Learning (Ganin et al, 2018)

30 Other applications Planning World Models for RL agents Fairness and Privacy Missing data Topics covered at workshop: Training data for other agents (Philip Isola, Taesung Park, Jun-Yan Zhu) Inference in other probabilistic models (Mihaela Rosca) Domain adaptation (Judy Hoffman) Imitation Learning (Stefano Ermon)

31 Track updates at the GAN Zoo

32 Questions

Adversarial Machine Learning

Adversarial Machine Learning MedGAN Progressive GAN CoGAN LR-GAN CGAN IcGAN BIM LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN ATN FGSM igan IAN Adversarial Machine Learning McGAN Ian Goodfellow, Staff Research Scientist,

More information

Bridging Theory and Practice of GANs

Bridging Theory and Practice of GANs MedGAN ID-CGAN Progressive GAN LR-GAN CGAN IcGAN b-gan LS-GAN AffGAN LAPGAN LSGAN InfoGAN CatGAN SN-GAN DiscoGANMPM-GAN AdaGAN AMGAN igan IAN CoGAN Bridging Theory and Practice of GANs McGAN Ian Goodfellow,

More information

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain Institut des algorithmes d apprentissage de Montréal Modèles génératifs Mathieu Germain Qu est-ce qu un Modèle Génératif? Entrées Modèle Génératif Modèle Génératif Sorties Vraie distribution Distribution

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) Generative Adversarial Networks (GANs) Hossein Azizpour Most of the slides are courtesy of Dr. Ian Goodfellow (Research Scientist at OpenAI) and from his presentation at NIPS 2016 tutorial Note. I am generally

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona, 2016-12-4 Generative Modeling Density estimation Sample generation Training examples Model

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Inverting The Generator Of A Generative Adversarial Network arxiv:1611.05644v1 [cs.cv] 17 Nov 2016 Antonia Creswell BICV Group Bioengineering Imperial College London ac2211@ic.ac.uk Abstract Anil Anthony

More information

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain

Institut des algorithmes d apprentissage de Montréal. Modèles génératifs. Mathieu Germain Institut des algorithmes d apprentissage de Montréal Modèles génératifs Mathieu Germain Qu est-ce qu un Modèle Génératif? Entrées Modèle Génératif Modèle Génératif Sorties Vraie distribution Distribution

More information

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial

Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Adversarial Networks (GANs) Based on slides from Ian Goodfellow s NIPS 2016 tutorial Generative Modeling Density estimation Sample generation Training examples Model samples Next Video Frame

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Luke de Oliveira Vai Technologies Lawrence Berkeley National Laboratory @lukede0 @lukedeo lukedeo@vaitech.io https://ldo.io 1 Outline Why Generative Modeling?

More information

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Go to www.menti.com and use the code 91 41 37 CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Kian Katanforoosh Today s outline I. Attacking NNs with Adversarial

More information

Adversarially Learned Inference

Adversarially Learned Inference Institut des algorithmes d apprentissage de Montréal Adversarially Learned Inference Aaron Courville CIFAR Fellow Université de Montréal Joint work with: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro,

More information

(BigGAN) Large Scale GAN Training for High Fidelity Natural Image Synthesis

(BigGAN) Large Scale GAN Training for High Fidelity Natural Image Synthesis (BigGAN) Large Scale GAN Training for High Fidelity Natural Image Synthesis Andrew Brock, Jeff Donahue, Karen Simonyan DeepMind https://arxiv.org/abs/1809.11096 Presented at October 30th, 2018 Contents

More information

Unsupervised Cross-Domain Deep Image Generation

Unsupervised Cross-Domain Deep Image Generation Unsupervised Cross-Domain Deep Image Generation Yaniv Taigman, Adam Polyak, Lior Wolf Facebook AI Research (FAIR) Tel Aviv Supervised Learning; {Xi, yi} àf Face Recognition (DeepFace / FAIR) Kaiming et

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich GANs for Exploiting Unlabeled Data Improved Techniques for Training GANs Learning from Simulated and Unsupervised Images through Adversarial Training Presented by: Uriya Pesso Nimrod Gilboa Markevich [

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

Dist-GAN: An Improved GAN using Distance Constraints

Dist-GAN: An Improved GAN using Distance Constraints Dist-GAN: An Improved GAN using Distance Constraints Ngoc-Trung Tran [0000 0002 1308 9142], Tuan-Anh Bui [0000 0003 4123 262], and Ngai-Man Cheung [0000 0003 0135 3791] ST Electronics - SUTD Cyber Security

More information

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation Alexander H. Liu 1 Yen-Cheng Liu 2 Yu-Ying Yeh 3 Yu-Chiang Frank Wang 1,4 1 National Taiwan University, Taiwan 2 Georgia

More information

Visual Recommender System with Adversarial Generator-Encoder Networks

Visual Recommender System with Adversarial Generator-Encoder Networks Visual Recommender System with Adversarial Generator-Encoder Networks Bowen Yao Stanford University 450 Serra Mall, Stanford, CA 94305 boweny@stanford.edu Yilin Chen Stanford University 450 Serra Mall

More information

NAM: Non-Adversarial Unsupervised Domain Mapping

NAM: Non-Adversarial Unsupervised Domain Mapping NAM: Non-Adversarial Unsupervised Domain Mapping Yedid Hoshen 1 and Lior Wolf 1,2 1 Facebook AI Research 2 Tel Aviv University Abstract. Several methods were recently proposed for the task of translating

More information

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava

Generative Adversarial Nets. Priyanka Mehta Sudhanshu Srivastava Generative Adversarial Nets Priyanka Mehta Sudhanshu Srivastava Outline What is a GAN? How does GAN work? Newer Architectures Applications of GAN Future possible applications Generative Adversarial Networks

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition

Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition sensors Article Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition Fei Gao 1, *, Fei Ma 1 ID, Jun Wang 1, Jinping Sun 1 ID, Erfu Yang 2 and Huiyu Zhou 3 1 School

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Accepted as a conference paper at the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2018 Inferencing Based on Unsupervised Learning of Disentangled

More information

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17 Improving Generative Adversarial Networks with Denoising Feature Matching David Warde-Farley 1 Yoshua Bengio 1 1 University of Montreal, ICLR,2017 Presenter: Bargav Jayaraman Outline 1 Introduction 2 Background

More information

Inverting The Generator Of A Generative Adversarial Network

Inverting The Generator Of A Generative Adversarial Network 1 Inverting The Generator Of A Generative Adversarial Network Antonia Creswell and Anil A Bharath, Imperial College London arxiv:1802.05701v1 [cs.cv] 15 Feb 2018 Abstract Generative adversarial networks

More information

arxiv: v1 [cs.lg] 6 Nov 2018

arxiv: v1 [cs.lg] 6 Nov 2018 Student s t-generative Adversarial Networks arxiv:1811.013v1 [cs.lg] 6 Nov 018 Jinxuan Sun sunjinxuan1014@gmail.com Yongbin Liu liuyongbin@stu.ouc.edu.cn Guoqiang Zhong gqzhong@ouc.edu.cn Tao Li 140337104@qq.com

More information

Unsupervised Image-to-Image Translation Networks

Unsupervised Image-to-Image Translation Networks Unsupervised Image-to-Image Translation Networks Ming-Yu Liu, Thomas Breuel, Jan Kautz NVIDIA {mingyul,tbreuel,jkautz}@nvidia.com Abstract Unsupervised image-to-image translation aims at learning a joint

More information

Deep Fakes using Generative Adversarial Networks (GAN)

Deep Fakes using Generative Adversarial Networks (GAN) Deep Fakes using Generative Adversarial Networks (GAN) Tianxiang Shen UCSD La Jolla, USA tis038@eng.ucsd.edu Ruixian Liu UCSD La Jolla, USA rul188@eng.ucsd.edu Ju Bai UCSD La Jolla, USA jub010@eng.ucsd.edu

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

arxiv: v1 [eess.sp] 23 Oct 2018

arxiv: v1 [eess.sp] 23 Oct 2018 Reproducing AmbientGAN: Generative models from lossy measurements arxiv:1810.10108v1 [eess.sp] 23 Oct 2018 Mehdi Ahmadi Polytechnique Montreal mehdi.ahmadi@polymtl.ca Mostafa Abdelnaim University de Montreal

More information

SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro

SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro 1 SiftingGAN: Generating and Sifting Labeled Samples to Improve the Remote Sensing Image Scene Classification Baseline in vitro Dongao Ma, Ping Tang, and Lijun Zhao arxiv:1809.04985v4 [cs.cv] 30 Nov 2018

More information

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang Centre for Vision, Speech and Signal Processing University of Surrey, Guildford,

More information

Learning to Generate Images

Learning to Generate Images Learning to Generate Images Jun-Yan Zhu Ph.D. at UC Berkeley Postdoc at MIT CSAIL Computer Vision before 2012 Cat Features Clustering Pooling Classification [LeCun et al, 1998], [Krizhevsky et al, 2012]

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

Image Restoration with Deep Generative Models

Image Restoration with Deep Generative Models Image Restoration with Deep Generative Models Raymond A. Yeh *, Teck-Yian Lim *, Chen Chen, Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do Department of Electrical and Computer Engineering, University

More information

GENERATIVE ADVERSARIAL NETWORK-BASED VIR-

GENERATIVE ADVERSARIAL NETWORK-BASED VIR- GENERATIVE ADVERSARIAL NETWORK-BASED VIR- TUAL TRY-ON WITH CLOTHING REGION Shizuma Kubo, Yusuke Iwasawa, and Yutaka Matsuo The University of Tokyo Bunkyo-ku, Japan {kubo, iwasawa, matsuo}@weblab.t.u-tokyo.ac.jp

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

Multi-Agent Diverse Generative Adversarial Networks

Multi-Agent Diverse Generative Adversarial Networks Multi-Agent Diverse Generative Adversarial Networks Arnab Ghosh University of Oxford, UK arnabg@robots.ox.ac.uk Philip H.S. Torr University of Oxford, UK philip.torr@eng.ox.ac.uk Viveka Kulharia University

More information

arxiv: v1 [cs.cv] 8 Jan 2019

arxiv: v1 [cs.cv] 8 Jan 2019 GILT: Generating Images from Long Text Ori Bar El, Ori Licht, Netanel Yosephian Tel-Aviv University {oribarel, oril, yosephian}@mail.tau.ac.il arxiv:1901.02404v1 [cs.cv] 8 Jan 2019 Abstract Creating an

More information

A New CGAN Technique for Constrained Topology Design Optimization. Abstract

A New CGAN Technique for Constrained Topology Design Optimization. Abstract A New CGAN Technique for Constrained Topology Design Optimization M.-H. Herman Shen 1 and Liang Chen Department of Mechanical and Aerospace Engineering The Ohio State University Abstract This paper presents

More information

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN.

Autoencoders. Stephen Scott. Introduction. Basic Idea. Stacked AE. Denoising AE. Sparse AE. Contractive AE. Variational AE GAN. Stacked Denoising Sparse Variational (Adapted from Paul Quint and Ian Goodfellow) Stacked Denoising Sparse Variational Autoencoding is training a network to replicate its input to its output Applications:

More information

Smooth Deep Image Generator from Noises

Smooth Deep Image Generator from Noises Smooth Deep Image Generator from Noises Tianyu Guo,2,3, Chang Xu 2, Boxin Shi 4, Chao Xu,3, Dacheng Tao 2 Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, China 2 UBTECH Sydney

More information

Controllable Generative Adversarial Network

Controllable Generative Adversarial Network Controllable Generative Adversarial Network arxiv:1708.00598v2 [cs.lg] 12 Sep 2017 Minhyeok Lee 1 and Junhee Seok 1 1 School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul,

More information

Deep Generative Models and a Probabilistic Programming Library

Deep Generative Models and a Probabilistic Programming Library Deep Generative Models and a Probabilistic Programming Library Discriminative (Deep) Learning Learn a (differentiable) function mapping from input to output x f(x; θ) y Gradient back-propagation Generative

More information

Sub-GAN: An Unsupervised Generative Model via Subspaces

Sub-GAN: An Unsupervised Generative Model via Subspaces Sub-GAN: An Unsupervised Generative Model via Subspaces Jie Liang 1, Jufeng Yang 1*, Hsin-Ying Lee 2, Kai Wang 1, Ming-Hsuan Yang 2,3 1 Nankai University 2 University of California, Merced 3 Google Cloud

More information

Generalized Loss-Sensitive Adversarial Learning with Manifold Margins

Generalized Loss-Sensitive Adversarial Learning with Manifold Margins Generalized Loss-Sensitive Adversarial Learning with Manifold Margins Marzieh Edraki and Guo-Jun Qi Laboratory for MAchine Perception and LEarning (MAPLE) http://maple.cs.ucf.edu/ University of Central

More information

From attribute-labels to faces: face generation using a conditional generative adversarial network

From attribute-labels to faces: face generation using a conditional generative adversarial network From attribute-labels to faces: face generation using a conditional generative adversarial network Yaohui Wang 1,2, Antitza Dantcheva 1,2, and Francois Bremond 1,2 1 Inria, Sophia Antipolis, France 2 Université

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

Progressive Generative Hashing for Image Retrieval

Progressive Generative Hashing for Image Retrieval Progressive Generative Hashing for Image Retrieval Yuqing Ma, Yue He, Fan Ding, Sheng Hu, Jun Li, Xianglong Liu 2018.7.16 01 BACKGROUND the NNS problem in big data 02 RELATED WORK Generative adversarial

More information

arxiv: v1 [cs.ne] 11 Jun 2018

arxiv: v1 [cs.ne] 11 Jun 2018 Generative Adversarial Network Architectures For Image Synthesis Using Capsule Networks arxiv:1806.03796v1 [cs.ne] 11 Jun 2018 Yash Upadhyay University of Minnesota, Twin Cities Minneapolis, MN, 55414

More information

arxiv: v2 [cs.cv] 26 Mar 2017

arxiv: v2 [cs.cv] 26 Mar 2017 TAC-GAN Text Conditioned Auxiliary Classifier Generative Adversarial Network arxiv:1703.06412v2 [cs.cv] 26 ar 2017 Ayushman Dash 1 John Gamboa 1 Sheraz Ahmed 3 arcus Liwicki 14 uhammad Zeshan Afzal 12

More information

arxiv: v1 [cs.lg] 21 Dec 2018

arxiv: v1 [cs.lg] 21 Dec 2018 Non-Adversarial Image Synthesis with Generative Latent Nearest Neighbors Yedid Hoshen Facebook AI Research Jitendra Malik Facebook AI Research and UC Berkeley arxiv:1812.08985v1 [cs.lg] 21 Dec 2018 Abstract

More information

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Supplementary Material

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Supplementary Material Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Supplementary Material Emily Denton Dept. of Computer Science Courant Institute New York University Soumith Chintala Arthur

More information

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Xudong Mao and Qing Li Department of Computer Science, City University of Hong Kong xudong.xdmao@gmail.com, itqli@cityu.edu.hk information

More information

Resembled Generative Adversarial Networks: Two Domains with Similar Attributes

Resembled Generative Adversarial Networks: Two Domains with Similar Attributes DUHYEON BANG, HYUNJUNG SHIM: RESEMBLED GAN 1 Resembled Generative Adversarial Networks: Two Domains with Similar Attributes Duhyeon Bang duhyeonbang@yonsei.ac.kr Hyunjung Shim kateshim@yonsei.ac.kr School

More information

arxiv: v1 [stat.ml] 19 Aug 2017

arxiv: v1 [stat.ml] 19 Aug 2017 Semi-supervised Conditional GANs Kumar Sricharan 1, Raja Bala 1, Matthew Shreve 1, Hui Ding 1, Kumar Saketh 2, and Jin Sun 1 1 Interactive and Analytics Lab, Palo Alto Research Center, Palo Alto, CA 2

More information

Generative Semantic Manipulation with Contrasting GAN

Generative Semantic Manipulation with Contrasting GAN Generative Semantic Manipulation with Contrasting GAN Xiaodan Liang, Hao Zhang, Eric P. Xing Carnegie Mellon University and Petuum Inc. {xiaodan1, hao, epxing}@cs.cmu.edu arxiv:1708.00315v1 [cs.cv] 1 Aug

More information

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs

Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Unpaired Multi-Domain Image Generation via Regularized Conditional GANs Xudong Mao and Qing Li Department of Computer Science, City University of Hong Kong xudong.xdmao@gmail.com, itqli@cityu.edu.hk Abstract

More information

arxiv: v1 [cs.cv] 27 May 2018

arxiv: v1 [cs.cv] 27 May 2018 Generative Adversarial Image Synthesis with Decision Tree Latent Controller Takuhiro Kaneko Kaoru Hiramatsu Kunio Kashino NTT Communication Science Laboratories, NTT Corporation {kaneko.takuhiro, hiramatsu.kaoru,

More information

Tempered Adversarial Networks

Tempered Adversarial Networks Mehdi S. M. Sajjadi 1 2 Giambattista Parascandolo 1 2 Arash Mehrjou 1 Bernhard Schölkopf 1 Abstract Generative adversarial networks (GANs) have been shown to produce realistic samples from high-dimensional

More information

arxiv: v4 [cs.lg] 1 May 2018

arxiv: v4 [cs.lg] 1 May 2018 Controllable Generative Adversarial Network arxiv:1708.00598v4 [cs.lg] 1 May 2018 Minhyeok Lee School of Electrical Engineering Korea University Seoul, Korea 02841 suam6409@korea.ac.kr Abstract Junhee

More information

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang GAN Related Works CVPR 2018 & Selective Works in ICML and NIPS Zhifei Zhang Generative Adversarial Networks (GANs) 9/12/2018 2 Generative Adversarial Networks (GANs) Feedforward Backpropagation Real? z

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Deep Hybrid Discriminative-Generative Models for Semi-Supervised Learning

Deep Hybrid Discriminative-Generative Models for Semi-Supervised Learning Volodymyr Kuleshov 1 Stefano Ermon 1 Abstract We propose a framework for training deep probabilistic models that interpolate between discriminative and generative approaches. Unlike previously proposed

More information

Data Set Extension with Generative Adversarial Nets

Data Set Extension with Generative Adversarial Nets Department of Artificial Intelligence University of Groningen, The Netherlands Data Set Extension with Generative Adversarial Nets Master s Thesis Luuk Boulogne S2366681 Primary supervisor: Secondary supervisor:

More information

A Survey of Image Synthesis and Editing with Generative Adversarial Networks

A Survey of Image Synthesis and Editing with Generative Adversarial Networks TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-0214ll0X/XXllppXXX-XXX Volume XX, Number 3, June 20XX A Survey of Image Synthesis and Editing with Generative Adversarial Networks Xian Wu, Kun Xu*, Peter Hall

More information

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation Yunjey Choi 1,2 Minje Choi 1,2 Munyoung Kim 2,3 Jung-Woo Ha 2 Sunghun Kim 2,4 Jaegul Choo 1,2 1 Korea University

More information

arxiv: v1 [cs.lg] 3 Jun 2018

arxiv: v1 [cs.lg] 3 Jun 2018 NAM: Non-Adversarial Unsupervised Domain Mapping Yedid Hoshen Facebook AI Research Lior Wolf Facebook AI Research, Tel Aviv University yedidh@fb.com wolf@fb.com arxiv:1806.00804v1 [cs.lg] 3 Jun 2018 Abstract

More information

Paired 3D Model Generation with Conditional Generative Adversarial Networks

Paired 3D Model Generation with Conditional Generative Adversarial Networks Accepted to 3D Reconstruction in the Wild Workshop European Conference on Computer Vision (ECCV) 2018 Paired 3D Model Generation with Conditional Generative Adversarial Networks Cihan Öngün Alptekin Temizel

More information

Improved Techniques for Training GANs

Improved Techniques for Training GANs Improved Techniques for Training GANs Tim Salimans tim@openai.com Ian Goodfellow ian@openai.com Wojciech Zaremba woj@openai.com Vicki Cheung vicki@openai.com Alec Radford alec@openai.com Xi Chen peter@openai.com

More information

Generative Networks. James Hays Computer Vision

Generative Networks. James Hays Computer Vision Generative Networks James Hays Computer Vision Interesting Illusion: Ames Window https://www.youtube.com/watch?v=ahjqe8eukhc https://en.wikipedia.org/wiki/ames_trapezoid Recap Unsupervised Learning Style

More information

Generative Semantic Manipulation with Mask-Contrasting GAN

Generative Semantic Manipulation with Mask-Contrasting GAN Generative Semantic Manipulation with Mask-Contrasting GAN Xiaodan Liang 1, Hao Zhang 1, Liang Lin 2, and Eric Xing 1 1 Carnegie Mellon University, {xiaodan1, hao, epxing}@cs.cmu.edu 2 Sun Yat-sen University,

More information

Stochastic Simulation with Generative Adversarial Networks

Stochastic Simulation with Generative Adversarial Networks Stochastic Simulation with Generative Adversarial Networks Lukas Mosser, Olivier Dubrule, Martin J. Blunt lukas.mosser15@imperial.ac.uk, o.dubrule@imperial.ac.uk, m.blunt@imperial.ac.uk (Deep) Generative

More information

19: Inference and learning in Deep Learning

19: Inference and learning in Deep Learning 10-708: Probabilistic Graphical Models 10-708, Spring 2017 19: Inference and learning in Deep Learning Lecturer: Zhiting Hu Scribes: Akash Umakantha, Ryan Williamson 1 Classes of Deep Generative Models

More information

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel UC Berkeley, Department

More information

GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY

GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE STEGANOGRAPHY Denis Volkhonskiy 2,3, Boris Borisenko 3 and Evgeny Burnaev 1,2,3 1 Skolkovo Institute of Science and Technology 2 The Institute for Information

More information

arxiv: v2 [cs.cv] 25 Jul 2018

arxiv: v2 [cs.cv] 25 Jul 2018 Unpaired Photo-to-Caricature Translation on Faces in the Wild Ziqiang Zheng a, Chao Wang a, Zhibin Yu a, Nan Wang a, Haiyong Zheng a,, Bing Zheng a arxiv:1711.10735v2 [cs.cv] 25 Jul 2018 a No. 238 Songling

More information

Triple Generative Adversarial Nets

Triple Generative Adversarial Nets Triple Generative Adversarial Nets Chongxuan Li, Kun Xu, Jun Zhu, Bo Zhang Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab of Intell. Tech. & Sys., Center for Bio-Inspired Computing Research, Tsinghua

More information

arxiv: v2 [cs.cv] 3 Apr 2019

arxiv: v2 [cs.cv] 3 Apr 2019 Towards Resisting Large Data Variations via Introspective Learning Yunhan Zhao Ye Tian Wei Shen Alan Yuille The Computational Cognition, Vision, and Learning Lab, Johns Hopkins University {yzhao83, ytian27,

More information

RenderBEGAN: Adversarial Generative Domain Adaptation

RenderBEGAN: Adversarial Generative Domain Adaptation RenderBEGAN: Adversarial Generative Domain Adaptation Fabian Reimeier f.reimeier@fu-berlin.de Institute of Computer Science Freie Universität Berlin A thesis submitted for the degree of Master of Science

More information

arxiv: v1 [cs.cv] 1 Nov 2018

arxiv: v1 [cs.cv] 1 Nov 2018 Examining Performance of Sketch-to-Image Translation Models with Multiclass Automatically Generated Paired Training Data Dichao Hu College of Computing, Georgia Institute of Technology, 801 Atlantic Dr

More information

arxiv: v1 [cs.cv] 16 Nov 2017

arxiv: v1 [cs.cv] 16 Nov 2017 Two Birds with One Stone: Iteratively Learn Facial Attributes with GANs arxiv:1711.06078v1 [cs.cv] 16 Nov 2017 Dan Ma, Bin Liu, Zhao Kang University of Electronic Science and Technology of China {madan@std,

More information

Deep generative models of natural images

Deep generative models of natural images Spring 2016 1 Motivation 2 3 Variational autoencoders Generative adversarial networks Generative moment matching networks Evaluating generative models 4 Outline 1 Motivation 2 3 Variational autoencoders

More information

arxiv: v1 [cs.cv] 20 Sep 2018

arxiv: v1 [cs.cv] 20 Sep 2018 C4Synth: Cross-Caption Cycle-Consistent Text-to-Image Synthesis K J Joseph Arghya Pal Sailaja Rajanala Vineeth N Balasubramanian IIT Hyderabad, India arxiv:1809.10238v1 [cs.cv] 20 Sep 2018 cs17m18p100001@iith.ac.in

More information

Improved Boundary Equilibrium Generative Adversarial Networks

Improved Boundary Equilibrium Generative Adversarial Networks Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Digital Object Identifier 10.1109/ACCESS.2017.DOI Improved Boundary Equilibrium Generative Adversarial Networks YANCHUN LI 1, NANFENG

More information

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation Introduction Supplementary material In the supplementary material, we present additional qualitative results of the proposed AdaDepth

More information

arxiv: v2 [cs.cv] 13 Jun 2017

arxiv: v2 [cs.cv] 13 Jun 2017 Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN arxiv:1706.03319v2 [cs.cv] 13 Jun 2017 Lvmin Zhang, Yi Ji and Xin Lin School of Computer Science and Technology,

More information

CyCADA: Cycle-Consistent Adversarial Domain Adaptation

CyCADA: Cycle-Consistent Adversarial Domain Adaptation Judy Hoffman 1 Eric Tzeng 1 Taesung Park 1 Jun-Yan Zhu 1 Phillip Isola 12 Kate Saenko 3 Alexei A. Efros 1 Trevor Darrell 1 Abstract Domain adaptation is critical for success in new, unseen environments.

More information