Learning to Generate Images

Size: px
Start display at page:

Download "Learning to Generate Images"

Transcription

1 Learning to Generate Images Jun-Yan Zhu Ph.D. at UC Berkeley Postdoc at MIT CSAIL

2 Computer Vision before 2012 Cat Features Clustering Pooling Classification

3 [LeCun et al, 1998], [Krizhevsky et al, 2012] Computer Vision Now Features Clustering Pooling Classification Cat Deep Net Cat

4 [Redmon et al., 2018] [Güler et al., 2018] [Zhao et al., 2017] Deep Learning for Computer Vision [Deng et al. 2009] 70 Deep Net Top 5 accuracy on ImageNet benchmark Object detection Human understanding Autonomous driving

5 Can Deep Learning Help Graphics? Cat Modeling Texturing Lighting Rendering

6 Can Deep Learning Help Graphics? Cat Modeling Texturing Lighting Rendering Deep Net Good/Bad

7 Selecting the most attractive expressions Photos 101 Photos [Zhu et al. SIGGRAPH Asia 2014]

8 Selecting the most realistic composites Most realistic composites Least realistic composites [Zhu et al. ICCV 2015]

9 Can Deep Learning Help Graphics? Cat Modeling Texturing Lighting Rendering Deep Net Cat

10 Generating images is hard! Cat Modeling Texturing Lighting Rendering 8 Deep Net 28x28 pixels

11 Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]

12 z G(z) Random code G Generator fake image aleju/cat-generator [Goodfellow et al. 2014]

13 z G(z) G D Real (1) or fake (0)? Random code Generator fake image Discriminator A two-player game: G tries to generate fake images that can fool D. D tries to detect fake images. [Goodfellow et al. 2014]

14 z G(z) G D fake (0.1) Random code Generator fake image Discriminator Learning objective (GANs) [Goodfellow et al. 2014]

15 z G(z) G D fake (0.1) Random code Generator fake image Discriminator x D real (0.9) Learning objective (GANs) real image [Goodfellow et al. 2014]

16 z G(z) G D fake (0.3) Random code Generator fake image Discriminator x D real (0.9) Learning objective (GANs) real image [Goodfellow et al. 2014]

17 Limitations of GANs No user control. vs Random code Output User input Output Low resolution and quality.

18 Contributions Co-authors: Phillip Isola, Taesung Park, Ting-Chun Wang Richard Zhang, Tinghui Zhou, Ming-Yu Liu, Andrew Tao Jan Kautz, Bryan Catanzaro, Alexei A. Efros

19 Goals: Improve Control, Quality, and Resolution pix2pix CycleGAN pix2pixhd GANs Conditional on user inputs. Learning without pairs. High quality and resolution.

20 Goals: Improve Control, Quality, and Resolution pix2pix CycleGAN pix2pixhd GANs Conditional on user inputs. Learning without pairs. High quality and resolution.

21 z G(z) G D Real or fake? Random code Generator Output image Discriminator Learning objective (GANs) [Goodfellow et al. 2014]

22 x G(x) G D Real or fake? Input image Generator Output image Discriminator Learning objective (pix2pix) [Isola, Zhu, Zhou, Efros, 2016]

23 x G(x) G D Real Input image Generator Output image Discriminator Learning objective (pix2pix) [Isola, Zhu, Zhou, Efros, 2016]

24 x G(x) G D Real too Input image Generator Output image Discriminator Learning objective (pix2pix) [Isola, Zhu, Zhou, Efros, 2016]

25 x G(x) G Generator D Real or fake pair? Discriminator Learning objective (pix2pix) [Isola, Zhu, Zhou, Efros, 2016]

26 #edges2cats Ivy Vitaly

27 x G(x) G Generator Real or fake pair? D Discriminator Input: Sketch Grayscale Output: Photo Color [Isola, Zhu, Zhou, Efros, 2016]

28 Automatic Colorization with pix2pix Input Output Input Output Input Output Data from [Russakovsky et al. 2015]

29 Interactive Colorization [Zhang*, Zhu*, Isola, Geng, Lin, Yu, Efros, 2017]

30 Edges Images Input Output Input Output Input Output Edges from [Xie & Tu, 2015]

31 Sketches Images Input Output Input Output Input Output Trained on Edges Images Data from [Eitz, Hays, Alexa, 2012]

32 Data from [maps.google.com] Input Output Groundtruth

33 Input Output Groundtruth Data from [maps.google.com]

34 Paired

35 Paired Unpaired

36 Goals: Improve Control, Quality, and Resolution pix2pix CycleGAN pix2pixhd GANs Conditional on user inputs. Learning without pairs. High quality and resolution.

37 Cycle-Consistent Adversarial Networks [Zhu*, Park*, Isola, and Efros, 2017]

38 Cycle-Consistent Adversarial Networks [Mark Twain, 1903] [Zhu*, Park*, Isola, and Efros, 2017]

39 Cycle Consistency Loss x G(x) F(G x ) D Y (G x ) Reconstruction error F G x x 1 See also [Yi et al., 2017], [Kim et al, 2017] [Zhu*, Park*, Isola, and Efros, 2017]

40 Cycle Consistency Loss x G(x) F(G x ) y F(y) G(F x ) D Y (G x ) D G (F x ) Reconstruction error Reconstruction error F G x x 1 G F y y 1 See also [Yi et al., 2017], [Kim et al, 2017] [Zhu*, Park*, Isola, and Efros, 2017]

41 Horse Zebra

42 Orange Apple

43 Cezanne Ukiyo-e Collection Style Transfer Photograph Alexei Efros Monet Van Gogh

44 Monet s paintings photographic style

45 Why CycleGAN works

46 Style and Content Separation Paired Separation Content Unpaired Separation Adversarial Loss: change the style Style Cycle Consistency Loss: preserve the content Separating Style and Content with Bilinear Models [Tenenbaum and Freeman 2000 ] Two empirical assumptions: - content is easy to keep. - style is easy to change.

47 Neural Style Transfer [Gatys et al. 2015] Style and Content: - Content: feature difference - Style: Gram Matrix difference - Both losses are hard-coded.

48 horse zebra Input Style Image I Style image II Entire collection CycleGAN Photo Van Gogh Input Style image I Style image II Entire collection CycleGAN

49 Cycle Loss upper bounds Conditional Entropy Conditional Entropy High Conditional Entropy Low Conditional Entropy ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching [Li et al. NIPS 2017]. Also see [Tiao et al. 2018] CycleGAN as Approximate Bayesian Inference

50 Cycle Loss upper bounds Conditional Entropy Conditional Entropy ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching [Li et al. NIPS 2017]. Also see [Tiao et al. 2018] CycleGAN as Approximate Bayesian Inference

51 Customizing Gaming Experience Grand Theft Auto v (GTA5) Street view images in German cities Data from [Richter et al., 2016], [Cordts et al, 2016]

52 Customizing Gaming Experience Output image with Input German GTA5 CG street view style

53 Domain Adaptation with CycleGAN Train on GTA5 data Test on real images meaniou Per-pixel accuracy Oracle (Train and test on Real) Train on CG, test on Real See Judy Hoffman s talk at 14:30 Adversarial Domain Adaptation

54 Domain Adaptation with CycleGAN GTA5 data + Domain adaptation Test on real images meaniou Per-pixel accuracy Oracle (Train and test on Real) Train on CG, test on Real FCN in the wild [Previous STOA] See Judy Hoffman s talk at 14:30 Adversarial Domain Adaptation

55 Domain Adaptation with CycleGAN Train on CycleGAN data Test on real images meaniou Per-pixel accuracy Oracle (Train and test on Real) Train on CG, test on Real FCN in the wild [Previous STOA] Train on CycleGAN, test on Real See Judy Hoffman s talk at 14:30 Adversarial Domain Adaptation

56 Failure case

57 Failure case

58 Open Source CycleGAN and pix2pix Among the most popular GitHub research projects since Among the most cited papers in Graphics/CV/ML since 2017.

59 CycleGAN in Classes CycleGAN results by students MS emoji Apple emoji MS emoji Input photo Stained glass art Roger Grosse, UoT Alena Harley, FastAI

60 Applications and Extentions Attribute Editing [Lu et al.] Object Editing [Liang et al.] Low-res Bald Bangs arxiv: Mask Input Output arxiv: Front/Character Transfer [Ignatov et al.] Data generation [Wang et al.] Input output arxiv: samples by CycleWGAN arxiv:

61 Photo Enhancement WESPE: Weakly Supervised Photo Enhancer for Digital Cameras. arxiv Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool

62 Image Dehazing Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing. CVPRW 2018 Deniz Engin Anıl Genc, Hazım Kemal Ekenel

63 Unsupervised Motion Retargeting Neural Kinematic Networks for Unsupervised Motion Retargetting. CVPR 2018 (oral) Ruben Villegas, Jimei Yang, Duygu Ceylan, Honglak Lee

64 Neural Kinematic Networks for Unsupervised Motion Retargetting. CVPR 2018 (oral) Ruben Villegas, Jimei Yang, Duygu Ceylan, Honglak Lee

65 Applications Beyond Computer Vision Medical Imaging and Biology [Wolterink et al., 2017] Voice conversion [Fang et al., 2018, Kaneko et al., 2017] Cryptography [CipherGAN: Gomez et al., ICLR 2018] Robotics NLP: Unsupervised machine translation. NLP: Text style transfer.

66 Input MR Generated CT Ground truth CT

67 Latest from #CycleGAN Input dog Output cat Input cat Output dog itok_msi

68 CycleGAN for Customized Gaming Cahintan Trivedi Battle royale games Low-res 256p/512p Fortnite Input PUBG Style Final result

69 Goals: Improve Control, Quality, and Resolution pix2pix CycleGAN pix2pixhd GANs Conditional on user inputs. Learning without pairs. High quality and resolution.

70 The Curse of Dimensionality Tree Building Car Road Sidewalk Pix2pix output

71 pix2pixhd Low-res Discriminator D 1 Real/fake? G 1 Low-res Generator G 2 Coarse-to-fine High-res Generator Image Pyramid [Burt and Adelson, 1987] Also see [Zhang et al., 2017] [Karras et al., 2018] D 2 High-res Discriminator Real/fake? [Wang, Liu, Zhu, Tao, Kautz. Catanzaro, 2018]

72 pix2pixhd: Tree Building Car Road Sidewalk

73

74

75 pix2pixhd for sketch face

76 Improve Control, Still a long Quality, wayand to go Resolution pix2pix CycleGAN pix2pixhd GANs Learning to generate images from trillions of photos. Help more people tell their own visual stories.

77

78 Thank You! LynnHo

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18

Generative Models II. Phillip Isola, MIT, OpenAI DLSS 7/27/18 Generative Models II Phillip Isola, MIT, OpenAI DLSS 7/27/18 What s a generative model? For this talk: models that output high-dimensional data (Or, anything involving a GAN, VAE, PixelCNN, etc) Useful

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Generative Networks. James Hays Computer Vision

Generative Networks. James Hays Computer Vision Generative Networks James Hays Computer Vision Interesting Illusion: Ames Window https://www.youtube.com/watch?v=ahjqe8eukhc https://en.wikipedia.org/wiki/ames_trapezoid Recap Unsupervised Learning Style

More information

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks

CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Go to www.menti.com and use the code 91 41 37 CS230: Lecture 4 Attacking Networks with Adversarial Examples - Generative Adversarial Networks Kian Katanforoosh Today s outline I. Attacking NNs with Adversarial

More information

Unsupervised Cross-Domain Deep Image Generation

Unsupervised Cross-Domain Deep Image Generation Unsupervised Cross-Domain Deep Image Generation Yaniv Taigman, Adam Polyak, Lior Wolf Facebook AI Research (FAIR) Tel Aviv Supervised Learning; {Xi, yi} àf Face Recognition (DeepFace / FAIR) Kaiming et

More information

arxiv: v1 [cs.cv] 5 Jul 2017

arxiv: v1 [cs.cv] 5 Jul 2017 AlignGAN: Learning to Align Cross- Images with Conditional Generative Adversarial Networks Xudong Mao Department of Computer Science City University of Hong Kong xudonmao@gmail.com Qing Li Department of

More information

Deep Fakes using Generative Adversarial Networks (GAN)

Deep Fakes using Generative Adversarial Networks (GAN) Deep Fakes using Generative Adversarial Networks (GAN) Tianxiang Shen UCSD La Jolla, USA tis038@eng.ucsd.edu Ruixian Liu UCSD La Jolla, USA rul188@eng.ucsd.edu Ju Bai UCSD La Jolla, USA jub010@eng.ucsd.edu

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Two Routes for Image to Image Translation: Rule based vs. Learning based. Minglun Gong, Memorial Univ. Collaboration with Mr.

Two Routes for Image to Image Translation: Rule based vs. Learning based. Minglun Gong, Memorial Univ. Collaboration with Mr. Two Routes for Image to Image Translation: Rule based vs. Learning based Minglun Gong, Memorial Univ. Collaboration with Mr. Zili Yi Introduction A brief history of image processing Image to Image translation

More information

Progress on Generative Adversarial Networks

Progress on Generative Adversarial Networks Progress on Generative Adversarial Networks Wangmeng Zuo Vision Perception and Cognition Centre Harbin Institute of Technology Content Image generation: problem formulation Three issues about GAN Discriminate

More information

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang GAN Related Works CVPR 2018 & Selective Works in ICML and NIPS Zhifei Zhang Generative Adversarial Networks (GANs) 9/12/2018 2 Generative Adversarial Networks (GANs) Feedforward Backpropagation Real? z

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

Lecture 3 GANs and Their Applications in Image Generation

Lecture 3 GANs and Their Applications in Image Generation Lecture 3 GANs and Their Applications in Image Generation Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2017 Outline Introduction Theoretical Part Application Part Existing Implementations

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

arxiv: v1 [cs.cv] 1 Nov 2018

arxiv: v1 [cs.cv] 1 Nov 2018 Examining Performance of Sketch-to-Image Translation Models with Multiclass Automatically Generated Paired Training Data Dichao Hu College of Computing, Georgia Institute of Technology, 801 Atlantic Dr

More information

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara COMPUTER VISION IN THE ARTISTIC DOMAIN The effectiveness of Computer Vision

More information

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang Unsupervised Deep Learning James Hays slides from Carl Doersch and Richard Zhang Recap from Previous Lecture We saw two strategies to get structured output while using deep learning With object detection,

More information

GENERATIVE ADVERSARIAL NETWORK-BASED VIR-

GENERATIVE ADVERSARIAL NETWORK-BASED VIR- GENERATIVE ADVERSARIAL NETWORK-BASED VIR- TUAL TRY-ON WITH CLOTHING REGION Shizuma Kubo, Yusuke Iwasawa, and Yutaka Matsuo The University of Tokyo Bunkyo-ku, Japan {kubo, iwasawa, matsuo}@weblab.t.u-tokyo.ac.jp

More information

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks

An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks An Empirical Study of Generative Adversarial Networks for Computer Vision Tasks Report for Undergraduate Project - CS396A Vinayak Tantia (Roll No: 14805) Guide: Prof Gaurav Sharma CSE, IIT Kanpur, India

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

arxiv: v3 [cs.cv] 24 Nov 2017

arxiv: v3 [cs.cv] 24 Nov 2017 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks Jun-Yan Zhu Taesung Park Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley arxiv:1703.10593v3

More information

arxiv: v1 [cs.cv] 6 Sep 2018

arxiv: v1 [cs.cv] 6 Sep 2018 arxiv:1809.01890v1 [cs.cv] 6 Sep 2018 Full-body High-resolution Anime Generation with Progressive Structure-conditional Generative Adversarial Networks Koichi Hamada, Kentaro Tachibana, Tianqi Li, Hiroto

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

arxiv: v1 [cs.cv] 7 Mar 2018

arxiv: v1 [cs.cv] 7 Mar 2018 Accepted as a conference paper at the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) 2018 Inferencing Based on Unsupervised Learning of Disentangled

More information

Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks

Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks Minjun Li 1,2, Haozhi Huang 2, Lin Ma 2, Wei Liu 2, Tong Zhang 2, Yu-Gang Jiang 1 1 Shanghai Key Lab of Intelligent

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet.

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet. Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet 7D Labs VINNOVA https://7dlabs.com Photo-realistic image synthesis

More information

Introduction to Generative Adversarial Networks

Introduction to Generative Adversarial Networks Introduction to Generative Adversarial Networks Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Adversarial Training Barcelona, 2016-12-9 Adversarial Training A phrase whose usage is in

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

Introduction to GANs

Introduction to GANs MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-gan LS-GAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN CatGAN AMGAN igan Introduction to GANs IAN SAGAN McGAN Ian Goodfellow, Staff Research Scientist, Google Brain

More information

GraphGAN: Graph Representation Learning with Generative Adversarial Nets

GraphGAN: Graph Representation Learning with Generative Adversarial Nets The 32 nd AAAI Conference on Artificial Intelligence (AAAI 2018) New Orleans, Louisiana, USA GraphGAN: Graph Representation Learning with Generative Adversarial Nets Hongwei Wang 1,2, Jia Wang 3, Jialin

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

arxiv: v1 [cs.cv] 8 May 2018

arxiv: v1 [cs.cv] 8 May 2018 arxiv:1805.03189v1 [cs.cv] 8 May 2018 Learning image-to-image translation using paired and unpaired training samples Soumya Tripathy 1, Juho Kannala 2, and Esa Rahtu 1 1 Tampere University of Technology

More information

arxiv: v1 [stat.ml] 14 Sep 2017

arxiv: v1 [stat.ml] 14 Sep 2017 The Conditional Analogy GAN: Swapping Fashion Articles on People Images Nikolay Jetchev Zalando Research nikolay.jetchev@zalando.de Urs Bergmann Zalando Research urs.bergmann@zalando.de arxiv:1709.04695v1

More information

arxiv: v2 [cs.cv] 13 Jun 2017

arxiv: v2 [cs.cv] 13 Jun 2017 Style Transfer for Anime Sketches with Enhanced Residual U-net and Auxiliary Classifier GAN arxiv:1706.03319v2 [cs.cv] 13 Jun 2017 Lvmin Zhang, Yi Ji and Xin Lin School of Computer Science and Technology,

More information

Controllable Generative Adversarial Network

Controllable Generative Adversarial Network Controllable Generative Adversarial Network arxiv:1708.00598v2 [cs.lg] 12 Sep 2017 Minhyeok Lee 1 and Junhee Seok 1 1 School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul,

More information

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen

A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS. Kuan-Chuan Peng and Tsuhan Chen A FRAMEWORK OF EXTRACTING MULTI-SCALE FEATURES USING MULTIPLE CONVOLUTIONAL NEURAL NETWORKS Kuan-Chuan Peng and Tsuhan Chen School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

More information

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I IMECS 2018, March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong , March 14-16, 2018, Hong Kong TABLE I CLASSIFICATION ACCURACY OF DIFFERENT PRE-TRAINED MODELS ON THE TEST DATA

More information

Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models

Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models Mathieu Aubry (INRIA) Daniel Maturana (CMU) Alexei Efros (UC Berkeley) Bryan Russell (Intel) Josef Sivic (INRIA)

More information

arxiv: v2 [cs.cv] 23 Dec 2017

arxiv: v2 [cs.cv] 23 Dec 2017 TextureGAN: Controlling Deep Image Synthesis with Texture Patches Wenqi Xian 1 Patsorn Sangkloy 1 Varun Agrawal 1 Amit Raj 1 Jingwan Lu 2 Chen Fang 2 Fisher Yu 3 James Hays 1 1 Georgia Institute of Technology

More information

High-Resolution Image Dehazing with respect to Training Losses and Receptive Field Sizes

High-Resolution Image Dehazing with respect to Training Losses and Receptive Field Sizes High-Resolution Image Dehazing with respect to Training osses and Receptive Field Sizes Hyeonjun Sim, Sehwan Ki, Jae-Seok Choi, Soo Ye Kim, Soomin Seo, Saehun Kim, and Munchurl Kim School of EE, Korea

More information

arxiv: v1 [cs.cv] 19 Dec 2017

arxiv: v1 [cs.cv] 19 Dec 2017 ComboGA: Unrestrained Scalability for Image Domain Translation ariv:171.06909v1 [cs.cv] 19 Dec 017 Asha Anoosheh Computer Vision Lab ashaa@ethz.ch Abstract Eirikur Agustsson Computer Vision Lab aeirikur@ethz.ch

More information

Content-Based Image Recovery

Content-Based Image Recovery Content-Based Image Recovery Hong-Yu Zhou and Jianxin Wu National Key Laboratory for Novel Software Technology Nanjing University, China zhouhy@lamda.nju.edu.cn wujx2001@nju.edu.cn Abstract. We propose

More information

arxiv: v1 [cs.cv] 17 Nov 2016

arxiv: v1 [cs.cv] 17 Nov 2016 Inverting The Generator Of A Generative Adversarial Network arxiv:1611.05644v1 [cs.cv] 17 Nov 2016 Antonia Creswell BICV Group Bioengineering Imperial College London ac2211@ic.ac.uk Abstract Anil Anthony

More information

A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm

A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm A GAN framework for Instance Segmentation using the Mutex Watershed Algorithm Mandikal Vikram National Institute of Technology Karnataka, India 15it217.vikram@nitk.edu.in Steffen Wolf HCI/IWR, University

More information

Sky is Not the Limit: Semantic-Aware Sky Replacement

Sky is Not the Limit: Semantic-Aware Sky Replacement Sky is Not the Limit: Semantic-Aware Sky Replacement ACM Transactions on Graphics (SIGGRAPH), 2016 Yi-Hsuan Tsai UC Merced Xiaohui Shen Adobe Research Zhe Lin Adobe Research Kalyan Sunkavalli Adobe Research

More information

Generative Adversarial Network

Generative Adversarial Network Generative Adversarial Network Many slides from NIPS 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Generative adversarial

More information

Amodal and Panoptic Segmentation. Stephanie Liu, Andrew Zhou

Amodal and Panoptic Segmentation. Stephanie Liu, Andrew Zhou Amodal and Panoptic Segmentation Stephanie Liu, Andrew Zhou This lecture: 1. 2. 3. 4. Semantic Amodal Segmentation Cityscapes Dataset ADE20K Dataset Panoptic Segmentation Semantic Amodal Segmentation Yan

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference

Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference Information Engineering Express International Institute of Applied Informatics 2017, Vol.3, No.4, P.55-66 Deep Manga Colorization with Color Style Extraction by Conditional Adversarially Learned Inference

More information

Learning to generate 3D shapes

Learning to generate 3D shapes Learning to generate 3D shapes Subhransu Maji College of Information and Computer Sciences University of Massachusetts, Amherst http://people.cs.umass.edu/smaji August 10, 2018 @ Caltech Creating 3D shapes

More information

Composable Unpaired Image to Image Translation

Composable Unpaired Image to Image Translation Composable Unpaired Image to Image Translation Laura Graesser New York University lhg256@nyu.edu Anant Gupta New York University ag4508@nyu.edu Abstract There has been remarkable recent work in unpaired

More information

Unified, real-time object detection

Unified, real-time object detection Unified, real-time object detection Final Project Report, Group 02, 8 Nov 2016 Akshat Agarwal (13068), Siddharth Tanwar (13699) CS698N: Recent Advances in Computer Vision, Jul Nov 2016 Instructor: Gaurav

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks Jun-Yan Zhu Taesung Park Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley Monet Photos Zebras

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

Regionlet Object Detector with Hand-crafted and CNN Feature

Regionlet Object Detector with Hand-crafted and CNN Feature Regionlet Object Detector with Hand-crafted and CNN Feature Xiaoyu Wang Research Xiaoyu Wang Research Ming Yang Horizon Robotics Shenghuo Zhu Alibaba Group Yuanqing Lin Baidu Overview of this section Regionlet

More information

arxiv: v1 [cs.cv] 3 Apr 2019

arxiv: v1 [cs.cv] 3 Apr 2019 Unpaired Thermal to Visible Spectrum Transfer using Adversarial Training Adam Nyberg 1[0000 0001 8764 8499], Abdelrahman Eldesokey 1[0000 0003 3292 7153], David Bergström 2[0000 0003 2414 4482], and David

More information

TextureGAN: Controlling Deep Image Synthesis with Texture Patches

TextureGAN: Controlling Deep Image Synthesis with Texture Patches TextureGAN: Controlling Deep Image Synthesis with Texture Patches Wenqi Xian 1 Patsorn Sangkloy 1 Varun Agrawal 1 Amit Raj 1 Jingwan Lu 2 Chen Fang 2 Fisher Yu 3 James Hays 1,4 1 Georgia Institute of Technology

More information

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin Learning Deep Structured Models for Semantic Segmentation Guosheng Lin Semantic Segmentation Outline Exploring Context with Deep Structured Models Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel;

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA)

Detecting and Parsing of Visual Objects: Humans and Animals. Alan Yuille (UCLA) Detecting and Parsing of Visual Objects: Humans and Animals Alan Yuille (UCLA) Summary This talk describes recent work on detection and parsing visual objects. The methods represent objects in terms of

More information

Human Pose Estimation with Deep Learning. Wei Yang

Human Pose Estimation with Deep Learning. Wei Yang Human Pose Estimation with Deep Learning Wei Yang Applications Understand Activities Family Robots American Heist (2014) - The Bank Robbery Scene 2 What do we need to know to recognize a crime scene? 3

More information

THERMAL TEXTURE GENERATION AND 3D MODEL RECONSTRUCTION USING SFM AND GAN

THERMAL TEXTURE GENERATION AND 3D MODEL RECONSTRUCTION USING SFM AND GAN THERMAL TEXTURE GENERATION AND 3D MODEL RECONSTRUCTION USING SFM AND GAN V. V. Kniaz a,b, V. A. Mizginov a a State Res. Institute of Aviation Systems (GosNIIAS), 125319, 7, Victorenko str., Moscow, Russia

More information

Adversarial Machine Learning

Adversarial Machine Learning MedGAN Progressive GAN CoGAN LR-GAN CGAN IcGAN BIM LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN ATN FGSM igan IAN Adversarial Machine Learning McGAN Ian Goodfellow, Staff Research Scientist,

More information

Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks

Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks Taeksoo Kim, Byoungjip Kim, Moonsu Cha, Jiwon Kim SK T-Brain {jazzsaxmafia,bjkim,ckanstnzja,jk}@sktbrain.com arxiv:1707.09798v1

More information

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation Alexander H. Liu 1 Yen-Cheng Liu 2 Yu-Ying Yeh 3 Yu-Chiang Frank Wang 1,4 1 National Taiwan University, Taiwan 2 Georgia

More information

arxiv: v1 [cs.cv] 11 Oct 2018

arxiv: v1 [cs.cv] 11 Oct 2018 SingleGAN: Image-to-Image Translation by a Single-Generator Network using Multiple Generative Adversarial Learning Xiaoming Yu, Xing Cai, Zhenqiang Ying, Thomas Li, and Ge Li arxiv:1810.04991v1 [cs.cv]

More information

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang

SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS. Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang SYNTHESIS OF IMAGES BY TWO-STAGE GENERATIVE ADVERSARIAL NETWORKS Qiang Huang, Philip J.B. Jackson, Mark D. Plumbley, Wenwu Wang Centre for Vision, Speech and Signal Processing University of Surrey, Guildford,

More information

Stanford University Packing and Padding, Coupled Multi-index for Accurate Image Retrieval.

Stanford University Packing and Padding, Coupled Multi-index for Accurate Image Retrieval. Liang Zheng Nationality: China Information Systems Technology and Design pillar Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Date of Birth: 11 Jun 1987 Phone: +65 84036274

More information

arxiv: v1 [cs.cv] 3 Dec 2018

arxiv: v1 [cs.cv] 3 Dec 2018 SPLAT: Semantic Pixel-Level Adaptation Transforms for Detection arxiv:1812.00929v1 [cs.cv] 3 Dec 2018 Eric Tzeng UC Berkeley etzeng@eecs.berkeley.edu Abstract Domain adaptation of visual detectors is a

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Generative Semantic Manipulation with Mask-Contrasting GAN

Generative Semantic Manipulation with Mask-Contrasting GAN Generative Semantic Manipulation with Mask-Contrasting GAN Xiaodan Liang 1, Hao Zhang 1, Liang Lin 2, and Eric Xing 1 1 Carnegie Mellon University, {xiaodan1, hao, epxing}@cs.cmu.edu 2 Sun Yat-sen University,

More information

XNet: GAN Latent Space Constraints

XNet: GAN Latent Space Constraints : GAN Latent Space Constraints Omry Sendik Tel Aviv University Tel Aviv, Israel omrysendik@gmail.com Dani Lischinski Hebrew University Jerusalem, Israel danix3d@gmail.com Danny CohenOr Tel Aviv University

More information

Paired 3D Model Generation with Conditional Generative Adversarial Networks

Paired 3D Model Generation with Conditional Generative Adversarial Networks Accepted to 3D Reconstruction in the Wild Workshop European Conference on Computer Vision (ECCV) 2018 Paired 3D Model Generation with Conditional Generative Adversarial Networks Cihan Öngün Alptekin Temizel

More information

Photo-realistic Renderings for Machines Seong-heum Kim

Photo-realistic Renderings for Machines Seong-heum Kim Photo-realistic Renderings for Machines 20105034 Seong-heum Kim CS580 Student Presentations 2016.04.28 Photo-realistic Renderings for Machines Scene radiances Model descriptions (Light, Shape, Material,

More information

arxiv: v3 [cs.cv] 30 Mar 2018

arxiv: v3 [cs.cv] 30 Mar 2018 Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks Wei Xiong Wenhan Luo Lin Ma Wei Liu Jiebo Luo Tencent AI Lab University of Rochester {wxiong5,jluo}@cs.rochester.edu

More information

arxiv: v2 [cs.cv] 2 Dec 2017

arxiv: v2 [cs.cv] 2 Dec 2017 Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo Department of Computer Science, University of Rochester,

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

GAN and Feature Representation. Hung-yi Lee

GAN and Feature Representation. Hung-yi Lee GAN and Feature Representation Hung-yi Lee Outline Generator (Decoder) Discrimi nator + Encoder GAN+Autoencoder x InfoGAN Encoder z Generator Discrimi (Decoder) x nator scalar Discrimi z Generator x scalar

More information

Geometry-aware Traffic Flow Analysis by Detection and Tracking

Geometry-aware Traffic Flow Analysis by Detection and Tracking Geometry-aware Traffic Flow Analysis by Detection and Tracking 1,2 Honghui Shi, 1 Zhonghao Wang, 1,2 Yang Zhang, 1,3 Xinchao Wang, 1 Thomas Huang 1 IFP Group, Beckman Institute at UIUC, 2 IBM Research,

More information

arxiv: v1 [cs.cv] 1 May 2018

arxiv: v1 [cs.cv] 1 May 2018 Conditional Image-to-Image Translation Jianxin Lin 1 Yingce Xia 1 Tao Qin 2 Zhibo Chen 1 Tie-Yan Liu 2 1 University of Science and Technology of China 2 Microsoft Research Asia linjx@mail.ustc.edu.cn {taoqin,

More information

arxiv: v3 [cs.cv] 22 Feb 2018

arxiv: v3 [cs.cv] 22 Feb 2018 A Closed-form Solution to Photorealistic Image Stylization Yijun Li 1, Ming-Yu Liu 2, Xueting Li 1, Ming-Hsuan Yang 1,2, and Jan Kautz 2 1 University of California, Merced 2 NVIDIA {yli62,xli75,mhyang}@ucmerced.edu

More information

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Supplementary Material: Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos Kihyuk Sohn 1 Sifei Liu 2 Guangyu Zhong 3 Xiang Yu 1 Ming-Hsuan Yang 2 Manmohan Chandraker 1,4 1 NEC Labs

More information

Generative Semantic Manipulation with Contrasting GAN

Generative Semantic Manipulation with Contrasting GAN Generative Semantic Manipulation with Contrasting GAN Xiaodan Liang, Hao Zhang, Eric P. Xing Carnegie Mellon University and Petuum Inc. {xiaodan1, hao, epxing}@cs.cmu.edu arxiv:1708.00315v1 [cs.cv] 1 Aug

More information

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017)

Bidirectional GAN. Adversarially Learned Inference (ICLR 2017) Adversarial Feature Learning (ICLR 2017) Bidirectional GAN Adversarially Learned Inference (ICLR 2017) V. Dumoulin 1, I. Belghazi 1, B. Poole 2, O. Mastropietro 1, A. Lamb 1, M. Arjovsky 3 and A. Courville 1 1 Universite de Montreal & 2 Stanford

More information

Web-Scale Image Search and Their Applications

Web-Scale Image Search and Their Applications Web-Scale Image Search and Their Applications Sung-Eui Yoon KAIST http://sglab.kaist.ac.kr Project Guidelines: Project Topics Any topics related to the course theme are okay You can find topics by browsing

More information

A Closed-form Solution to Photorealistic Image Stylization

A Closed-form Solution to Photorealistic Image Stylization A Closed-form Solution to Photorealistic Image Stylization Yijun Li 1, Ming-Yu Liu 2, Xueting Li 1, Ming-Hsuan Yang 1,2, Jan Kautz 2 1 University of California, Merced 2 NVIDIA {yli62,xli75,mhyang}@ucmerced.edu

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Towards Automatic Icon Design using Machine Learning

Towards Automatic Icon Design using Machine Learning Moses Soh (msoh) moses.soh@gmail.com Abstract We propose a deep learning approach for automatic colorization of icons. The system maps grayscale outlines to fully colored and stylized icons using a Convolutional

More information

arxiv: v1 [cs.cv] 9 Aug 2018

arxiv: v1 [cs.cv] 9 Aug 2018 Controllable Image-to-Video Translation: A Case Study on Facial Expression Generation Lijie Fan MIT CSAIL Wenbing Huang Tencent AI Lab Chuang Gan MIT-Waston Lab Junzhou Huang Tencent AI Lab Boqing Gong

More information

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu

Fast Guided Global Interpolation for Depth and. Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Fast Guided Global Interpolation for Depth and Yu Li, Dongbo Min, Minh N. Do, Jiangbo Lu Introduction Depth upsampling and motion interpolation are often required to generate a dense, high-quality, and

More information

345 Park Ave,, San Jose, CA Homepage:

345 Park Ave,, San Jose, CA Homepage: Jimei Yang Contact Information Research Interests Working Experience 345 Park Ave,, San Jose, CA 95110 E-mail: jimyang@adobe.com Homepage: https://eng.ucmerced.edu/people/jyang44 Deep Learning, Computer

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning for Object Categorization 14.01.2016 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period

More information

arxiv: v2 [cs.cv] 25 Jul 2018

arxiv: v2 [cs.cv] 25 Jul 2018 Unpaired Photo-to-Caricature Translation on Faces in the Wild Ziqiang Zheng a, Chao Wang a, Zhibin Yu a, Nan Wang a, Haiyong Zheng a,, Bing Zheng a arxiv:1711.10735v2 [cs.cv] 25 Jul 2018 a No. 238 Songling

More information

IDENTIFYING ANALOGIES ACROSS DOMAINS

IDENTIFYING ANALOGIES ACROSS DOMAINS IDENTIFYING ANALOGIES ACROSS DOMAINS Yedid Hoshen 1 and Lior Wolf 1,2 1 Facebook AI Research 2 Tel Aviv University ABSTRACT Identifying analogies across domains without supervision is an important task

More information

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Ting-Chun Wang1 Ming-Yu Liu1 Jun-Yan Zhu2 Andrew Tao1 Jan Kautz1 1 2 NVIDIA Corporation UC Berkeley Bryan Catanzaro1 Cascaded

More information

CyCADA: Cycle-Consistent Adversarial Domain Adaptation

CyCADA: Cycle-Consistent Adversarial Domain Adaptation Judy Hoffman 1 Eric Tzeng 1 Taesung Park 1 Jun-Yan Zhu 1 Phillip Isola 12 Kate Saenko 3 Alexei A. Efros 1 Trevor Darrell 1 Abstract Domain adaptation is critical for success in new, unseen environments.

More information