Hybrid OpenMP-MPI Turbulent boundary Layer code over 32k cores

Size: px
Start display at page:

Download "Hybrid OpenMP-MPI Turbulent boundary Layer code over 32k cores"

Transcription

1 Hybrid OpenMP-MPI Turbulent boundary Layer code over 32k cores T/NT INTERFACE y/ x/ z/ Juan A. Sillero, Guillem Borrell, Javier Jiménez (Universidad Politécnica de Madrid) and Robert D. Moser (U. Texas Austin) FUNDED BY: CICYT, ERC, INCITE, PRACE & UPM 99

2 Outline Motivations Numerical approach Computational setup & domain decomposition Node topology Code Scaling IO performance Conclusions

3 Motivations Differences between internal and external flows: Internal: Pipes and channels External: Boundary layers Effect of large-scale intermittency in the turbulent structures Energy consumption optimization: Skin friction is generated in the interface vehicleboundary layer Separation of scales: 3 Layers structure: inner, logarithmic and outer Achieved only with high Reynolds number Important advantages of simulations over experiments

4 Motivations: Some underlying physic INTERNAL FLOWS EXTERNAL FLOWS Non Turbulent Sections: Turbulent Duct Pipe! 0+

5 Motivations: Some underlying physic INTERNAL FLOWS EXTERNAL FLOWS Non Turbulent Sections: Turbulent Duct! 0+ Pipe Skin Friction (drag) (5% world energy consumption)

6 Numerical Approach Incompressible Navier-Stokes equations v p w u + Boundary Conditions Staggered grid

7 Numerical Approach Incompressible Navier-Stokes equations Semi-implicit RK-3 Linear pressure-gradient terms v p w u Non-Linear Terms Linear Viscous Terms Staggered grid

8 Numerical Approach Incompressible Navier-Stokes equations v p w u SPATIAL DISCRETIZATION: Compact Finite Diferences (X & Y) Pseudo-Spectral (fftw 3.1.2)

9 Numerical Approach Fractional Step Method Inlet conditions using [Lund et al.] recycling scheme approach Linear systems solved using LU decomposition Poisson equation for pressure solved using direct method 2nd order time accuracy and 4th order CFD * Jimenez Simens et al. JCP 228, 4218 (2009) et al. JFM 657, 335 (2010)

10 Computational setup & domain decomposition Tier-0 Blue Gene/P ZY XY XY 63 Mb ZY 11 Mb (16 R*8 buffers) Plane to Plane decomposition 4x450 PowerPC 2 Gb RAM (DDR2) INCITE project (ANL) PRACE project (Jugene)

11 Computational setup & domain decomposition New parallelization strategy + Hybrid OpenMP-MPI

12 Computational setup & domain decomposition Global transposes: Change the memory layout Collective communications: MPI_ALLTOALLV Messages are single precision (R*4) About 40% of the total time (when using Torus network)

13 Computational setup & domain decomposition 4 OpenMP threads Static Scheduling: Through private indexes Maximise data locality Good load balance Loop blocking in Y Tridiagonal LS LU solver Tuned for Blue Gene/P

14 Computational setup & domain decomposition Create 2 MPI groups (MPI_GROUP_INCL) Groups created based in 2 lists of ranks Split global communicator in 2 local ones Each group performs independently Some global operations: Time step: MPI_ALLREDUCE Inlet conditions: SEND/RECEIVE

15 Node topology How to map virtual processes onto physical processors? 8192 Nodes BL1=512 BL2=7680 Predefined Custom Twice Faster 3D Torus network is lost: Comm BL1 [ Comm BL2 = MPI COMM WORLD

16 Node topology COMM. BALANCE COMPUT.

17 CODE SCALING: Time [s] 40% Comm. 8% Transp. 52% Comp. Millions of points per node Across nodes (MPI) Time per message [s] Within node (OpenMP) Node occupation 2 kb 7 MB Linear weak scaling Size of message [Bytes]

18 IO Performances Checkpoint of the simulation: 0.5 TBytes (R*4) Every 3 hours (12 hours run) Velocity {u,v,w} and pressure {p} fields (4x84 GB+4x7.2 Gb) Correlation files {u} Different strategies for IO: Serial IO: Discarded Parallel Collective IO: Posix calls SIONLIB library (Juelich) HDF5 (GPFS & PVFS2) HDF5 Tuning for Blue Gene/P: GPFS & PVFS2 (cache OFF & ON respectively) Cache OFF, write: 2 Gb/sec (5-15 minutes) Cache ON, write: 16 Gb/sec (25-60 seconds) Forcing file system block size in GPFS: 16 Gb/sec

19 Conclusions Turbulent boundary layer code ported to hybrid OpenMP-MPI Memory optimized for Blue Gene/P: 0.5 GB/core Excellent weak linear scalability up to 8k nodes Big impact in performances using custom node topologies Parallel Collective IO (HDF5): Read 22 Gb/sec, Write 16 Gb/sec Low pressure isosurface at high Reynolds numbers

Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers.

Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers. Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers. G. Borrell, J.A. Sillero and J. Jiménez, Corresponding author: guillem@torroja.dmt.upm.es School of Aeronautics, Universidad

More information

A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers

A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in BG/P supercomputers Guillem Borrell *, Juan A. Sillero, Javier Jimenez School of Aeronautics, Universidad

More information

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA

3D ADI Method for Fluid Simulation on Multiple GPUs. Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA 3D ADI Method for Fluid Simulation on Multiple GPUs Nikolai Sakharnykh, NVIDIA Nikolay Markovskiy, NVIDIA Introduction Fluid simulation using direct numerical methods Gives the most accurate result Requires

More information

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation

Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Efficient Tridiagonal Solvers for ADI methods and Fluid Simulation Nikolai Sakharnykh - NVIDIA San Jose Convention Center, San Jose, CA September 21, 2010 Introduction Tridiagonal solvers very popular

More information

Petascale Adaptive Computational Fluid Dyanamics

Petascale Adaptive Computational Fluid Dyanamics Petascale Adaptive Computational Fluid Dyanamics K.E. Jansen, M. Rasquin Aerospace Engineering Sciences University of Colorado at Boulder O. Sahni, A. Ovcharenko, M.S. Shephard, M. Zhou, J. Fu, N. Liu,

More information

LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS

LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS ARCHER ECSE 05-14 LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS TECHNICAL REPORT Vladimír Fuka, Zheng-Tong Xie Abstract The atmospheric large eddy simulation code ELMM (Extended Large-eddy

More information

Parallel I/O on JUQUEEN

Parallel I/O on JUQUEEN Parallel I/O on JUQUEEN 4. Februar 2014, JUQUEEN Porting and Tuning Workshop Mitglied der Helmholtz-Gemeinschaft Wolfgang Frings w.frings@fz-juelich.de Jülich Supercomputing Centre Overview Parallel I/O

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

Two-Phase flows on massively parallel multi-gpu clusters

Two-Phase flows on massively parallel multi-gpu clusters Two-Phase flows on massively parallel multi-gpu clusters Peter Zaspel Michael Griebel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Workshop Programming of Heterogeneous

More information

cuibm A GPU Accelerated Immersed Boundary Method

cuibm A GPU Accelerated Immersed Boundary Method cuibm A GPU Accelerated Immersed Boundary Method S. K. Layton, A. Krishnan and L. A. Barba Corresponding author: labarba@bu.edu Department of Mechanical Engineering, Boston University, Boston, MA, 225,

More information

I/O at JSC. I/O Infrastructure Workloads, Use Case I/O System Usage and Performance SIONlib: Task-Local I/O. Wolfgang Frings

I/O at JSC. I/O Infrastructure Workloads, Use Case I/O System Usage and Performance SIONlib: Task-Local I/O. Wolfgang Frings Mitglied der Helmholtz-Gemeinschaft I/O at JSC I/O Infrastructure Workloads, Use Case I/O System Usage and Performance SIONlib: Task-Local I/O Wolfgang Frings W.Frings@fz-juelich.de Jülich Supercomputing

More information

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures

Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures Rolf Rabenseifner rabenseifner@hlrs.de Gerhard Wellein gerhard.wellein@rrze.uni-erlangen.de University of Stuttgart

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

Direct numerical simulation. in an annular pipe. of turbulent flow. Paolo Luchini & Maurizio Quadrio

Direct numerical simulation. in an annular pipe. of turbulent flow. Paolo Luchini & Maurizio Quadrio P.Luchini & M.Quadrio SIMAI 2000 - Ischia - 9.6.2000 Direct numerical simulation of turbulent flow in an annular pipe Paolo Luchini & Maurizio Quadrio Dipartimento di Ingegneria Aerospaziale del Politecnico

More information

Large Scale Aerodynamic Calculation on Pleiades

Large Scale Aerodynamic Calculation on Pleiades Large Scale Aerodynamic Calculation on Pleiades Thomas H. Pulliam, Dennis C. Jespesen ABSTRACT A very large scale aerodynamic calculation on the NASA Pleiades supercomputer using the three-dimensional

More information

Simulation of Flow Development in a Pipe

Simulation of Flow Development in a Pipe Tutorial 4. Simulation of Flow Development in a Pipe Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D turbulent fluid flow in a pipe. The pipe networks are common

More information

Performance of the hybrid MPI/OpenMP version of the HERACLES code on the Curie «Fat nodes» system

Performance of the hybrid MPI/OpenMP version of the HERACLES code on the Curie «Fat nodes» system Performance of the hybrid MPI/OpenMP version of the HERACLES code on the Curie «Fat nodes» system Edouard Audit, Matthias Gonzalez, Pierre Kestener and Pierre-François Lavallé The HERACLES code Fixed grid

More information

Parallel Mesh Multiplication for Code_Saturne

Parallel Mesh Multiplication for Code_Saturne Parallel Mesh Multiplication for Code_Saturne Pavla Kabelikova, Ales Ronovsky, Vit Vondrak a Dept. of Applied Mathematics, VSB-Technical University of Ostrava, Tr. 17. listopadu 15, 708 00 Ostrava, Czech

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

High-Order Methods for Turbulent Transport in Engineering and Geosciences.

High-Order Methods for Turbulent Transport in Engineering and Geosciences. High-Order Methods for Turbulent Transport in Engineering and Geosciences. PI: Paul Fischer, University of Illinois, Urbana-Champaign, fischerp@illinois.edu Collaborators: Ananias Tomboulides, University

More information

An Embedded Boundary Method with Adaptive Mesh Refinements

An Embedded Boundary Method with Adaptive Mesh Refinements An Embedded Boundary Method with Adaptive Mesh Refinements Marcos Vanella and Elias Balaras 8 th World Congress on Computational Mechanics, WCCM8 5 th European Congress on Computational Methods in Applied

More information

Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster

Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster G. Jost*, H. Jin*, D. an Mey**,F. Hatay*** *NASA Ames Research Center **Center for Computing and Communication, University of

More information

I/O Monitoring at JSC, SIONlib & Resiliency

I/O Monitoring at JSC, SIONlib & Resiliency Mitglied der Helmholtz-Gemeinschaft I/O Monitoring at JSC, SIONlib & Resiliency Update: I/O Infrastructure @ JSC Update: Monitoring with LLview (I/O, Memory, Load) I/O Workloads on Jureca SIONlib: Task-Local

More information

Comparisons of Compressible and Incompressible Solvers: Flat Plate Boundary Layer and NACA airfoils

Comparisons of Compressible and Incompressible Solvers: Flat Plate Boundary Layer and NACA airfoils Comparisons of Compressible and Incompressible Solvers: Flat Plate Boundary Layer and NACA airfoils Moritz Kompenhans 1, Esteban Ferrer 2, Gonzalo Rubio, Eusebio Valero E.T.S.I.A. (School of Aeronautics)

More information

Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE Synthesis of the technical report -

Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE Synthesis of the technical report - Analysis, extensions and applications of the Finite-Volume Particle Method (FVPM) PN-II-RU-TE-2011-3-0256 - Synthesis of the technical report - Phase 1: Preparation phase Authors: Delia Teleaga, Eliza

More information

Parallel Fourier Transform A Practical Guide

Parallel Fourier Transform A Practical Guide Parallel Fourier Transform A Practical Guide Dhrubaditya Mitra Indian Institute of Science, Bangalore, 560012 Parallel Fourier Transform p.1/29 Outline Motivation Serial FFT Serial FFT : Basic Algorithm

More information

Pressure Correction Scheme for Incompressible Fluid Flow

Pressure Correction Scheme for Incompressible Fluid Flow AALTO UNIVERSITY School of Chemical Technology CHEM-E7160 Fluid Flow in Process Units Pressure Correction Scheme for Incompressible Fluid Flow Ong Chin Kai 620503 Lee De Ming Benedict 620448 Page 1 Abstract

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

The Fusion Distributed File System

The Fusion Distributed File System Slide 1 / 44 The Fusion Distributed File System Dongfang Zhao February 2015 Slide 2 / 44 Outline Introduction FusionFS System Architecture Metadata Management Data Movement Implementation Details Unique

More information

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK

Multigrid Solvers in CFD. David Emerson. Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK Multigrid Solvers in CFD David Emerson Scientific Computing Department STFC Daresbury Laboratory Daresbury, Warrington, WA4 4AD, UK david.emerson@stfc.ac.uk 1 Outline Multigrid: general comments Incompressible

More information

Parallel I/O and Portable Data Formats I/O strategies

Parallel I/O and Portable Data Formats I/O strategies Parallel I/O and Portable Data Formats I/O strategies Sebastian Lührs s.luehrs@fz-juelich.de Jülich Supercomputing Centre Forschungszentrum Jülich GmbH Jülich, March 13 th, 2017 Outline Common I/O strategies

More information

in:flux - Intelligent CFD Software

in:flux - Intelligent CFD Software in:flux - Intelligent CFD Software info@insightnumerics.com Fire and Gas Mapping. Optimized. Slide 1 Introduction to in:flux in:flux is a CFD software product to be used for dispersion and ventilation

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Shape optimisation using breakthrough technologies

Shape optimisation using breakthrough technologies Shape optimisation using breakthrough technologies Compiled by Mike Slack Ansys Technical Services 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction Shape optimisation technologies

More information

High Performance Computing

High Performance Computing High Performance Computing ADVANCED SCIENTIFIC COMPUTING Dr. Ing. Morris Riedel Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich

More information

Advanced Parallel Programming

Advanced Parallel Programming Sebastian von Alfthan Jussi Enkovaara Pekka Manninen Advanced Parallel Programming February 15-17, 2016 PRACE Advanced Training Center CSC IT Center for Science Ltd, Finland All material (C) 2011-2016

More information

Numerical Algorithms on Multi-GPU Architectures

Numerical Algorithms on Multi-GPU Architectures Numerical Algorithms on Multi-GPU Architectures Dr.-Ing. Harald Köstler 2 nd International Workshops on Advances in Computational Mechanics Yokohama, Japan 30.3.2010 2 3 Contents Motivation: Applications

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

Towards Large Scale Predictive Flow Simulations

Towards Large Scale Predictive Flow Simulations Towards Large Scale Predictive Flow Simulations using ITAPS Tools and Services Onkar Sahni a a Present address: Center for Predictive Engineering and Computational Sciences (PECOS), ICES, UT Austin ollaborators:

More information

Parallel Mesh Partitioning in Alya

Parallel Mesh Partitioning in Alya Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Parallel Mesh Partitioning in Alya A. Artigues a *** and G. Houzeaux a* a Barcelona Supercomputing Center ***antoni.artigues@bsc.es

More information

Numerical studies for Flow Around a Sphere regarding different flow regimes caused by various Reynolds numbers

Numerical studies for Flow Around a Sphere regarding different flow regimes caused by various Reynolds numbers Numerical studies for Flow Around a Sphere regarding different flow regimes caused by various Reynolds numbers R. Jendrny, H. Damanik, O. Mierka, S. Turek Institute of Applied Mathematics (LS III), TU

More information

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow Excerpt from the Proceedings of the COMSOL Conference 8 Boston Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow E. Kaufman

More information

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jiri Jaros*, Vojtech Nikl*, Bradley E. Treeby *Department of Compute Systems, Brno University of Technology Department of Medical

More information

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ by G. J. Grigoropoulos and I..S. Kefallinou 1. Introduction and setup 1. 1 Introduction The

More information

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata

CUDA. Fluid simulation Lattice Boltzmann Models Cellular Automata CUDA Fluid simulation Lattice Boltzmann Models Cellular Automata Please excuse my layout of slides for the remaining part of the talk! Fluid Simulation Navier Stokes equations for incompressible fluids

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

Massively Parallel Phase Field Simulations using HPC Framework walberla

Massively Parallel Phase Field Simulations using HPC Framework walberla Massively Parallel Phase Field Simulations using HPC Framework walberla SIAM CSE 2015, March 15 th 2015 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer, Harald Köstler and Ulrich

More information

JuanIYachtIDesign8ITestingILESIturbulenceImodelsIinIraceIboat sailsi

JuanIYachtIDesign8ITestingILESIturbulenceImodelsIinIraceIboat sailsi AvailableIonlineIatIwwwNpraceAriNeu Partnership foriadvancedicomputingiinieurope JuanIYachtIDesign8ITestingILESIturbulenceImodelsIinIraceIboat sailsi HerbertIOwen af RIPatriciaIIzaguirre b RIGonzaloIKouyoumdjian

More information

Introduction to High Performance Parallel I/O

Introduction to High Performance Parallel I/O Introduction to High Performance Parallel I/O Richard Gerber Deputy Group Lead NERSC User Services August 30, 2013-1- Some slides from Katie Antypas I/O Needs Getting Bigger All the Time I/O needs growing

More information

ENERGY-224 Reservoir Simulation Project Report. Ala Alzayer

ENERGY-224 Reservoir Simulation Project Report. Ala Alzayer ENERGY-224 Reservoir Simulation Project Report Ala Alzayer Autumn Quarter December 3, 2014 Contents 1 Objective 2 2 Governing Equations 2 3 Methodolgy 3 3.1 BlockMesh.........................................

More information

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions

Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Challenges in Boundary- Layer Stability Analysis Based On Unstructured Grid Solutions Wei Liao National Institute of Aerospace, Hampton, Virginia Collaborators: Mujeeb R. Malik, Elizabeth M. Lee- Rausch,

More information

NIA CFD Futures Conference Hampton, VA; August 2012

NIA CFD Futures Conference Hampton, VA; August 2012 Petascale Computing and Similarity Scaling in Turbulence P. K. Yeung Schools of AE, CSE, ME Georgia Tech pk.yeung@ae.gatech.edu NIA CFD Futures Conference Hampton, VA; August 2012 10 2 10 1 10 4 10 5 Supported

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

Module D: Laminar Flow over a Flat Plate

Module D: Laminar Flow over a Flat Plate Module D: Laminar Flow over a Flat Plate Summary... Problem Statement Geometry and Mesh Creation Problem Setup Solution. Results Validation......... Mesh Refinement.. Summary This ANSYS FLUENT tutorial

More information

EVALUATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE URBAN FLOW

EVALUATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE URBAN FLOW EVALATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE RBAN FLOW Jarkko Saloranta and Antti Hellsten Helsinki niversity of Technology, Laboratory of Aerodynamics, Finland INTRODCTION In this work we study

More information

Adaptive Refinement Tree (ART) code. N-Body: Parallelization using OpenMP and MPI

Adaptive Refinement Tree (ART) code. N-Body: Parallelization using OpenMP and MPI Adaptive Refinement Tree (ART) code N-Body: Parallelization using OpenMP and MPI 1 Family of codes N-body: OpenMp N-body: MPI+OpenMP N-body+hydro+cooling+SF: OpenMP N-body+hydro+cooling+SF: MPI 2 History:

More information

A brief description of the particle finite element method (PFEM2). Extensions to free surface

A brief description of the particle finite element method (PFEM2). Extensions to free surface A brief description of the particle finite element method (PFEM2). Extensions to free surface flows. Juan M. Gimenez, L.M. González, CIMEC Universidad Nacional del Litoral (UNL) Santa Fe, Argentina Universidad

More information

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail DLR.de Folie 1 HPCN-Workshop 14./15. Mai 2018 HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail Cornelia Grabe, Marco Burnazzi, Axel Probst, Silvia Probst DLR, Institute of Aerodynamics

More information

Direct Numerical Simulation and Turbulence Modeling for Fluid- Structure Interaction in Aerodynamics

Direct Numerical Simulation and Turbulence Modeling for Fluid- Structure Interaction in Aerodynamics Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Direct Numerical Simulation and Turbulence Modeling for Fluid- Structure Interaction in Aerodynamics Thibaut Deloze a, Yannick

More information

Optimisation of LESsCOAL for largescale high-fidelity simulation of coal pyrolysis and combustion

Optimisation of LESsCOAL for largescale high-fidelity simulation of coal pyrolysis and combustion Optimisation of LESsCOAL for largescale high-fidelity simulation of coal pyrolysis and combustion Kaidi Wan 1, Jun Xia 2, Neelofer Banglawala 3, Zhihua Wang 1, Kefa Cen 1 1. Zhejiang University, Hangzhou,

More information

3D Modeling of Urban Areas for Built Environment CFD Applications

3D Modeling of Urban Areas for Built Environment CFD Applications 3D Modeling of Urban Areas for Built Environment CFD Applications using C A.W.M. (Jos) van Schijndel Eindhoven University of Technology P.O. Box 513; 5600 MB Eindhoven; Netherlands, A.W.M.v.Schijndel@tue.nl

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

IMPLEMENTATION OF THE. Alexander J. Yee University of Illinois Urbana-Champaign

IMPLEMENTATION OF THE. Alexander J. Yee University of Illinois Urbana-Champaign SINGLE-TRANSPOSE IMPLEMENTATION OF THE OUT-OF-ORDER 3D-FFT Alexander J. Yee University of Illinois Urbana-Champaign The Problem FFTs are extremely memory-intensive. Completely bound by memory access. Memory

More information

Problem description. The FCBI-C element is used in the fluid part of the model.

Problem description. The FCBI-C element is used in the fluid part of the model. Problem description This tutorial illustrates the use of ADINA for analyzing the fluid-structure interaction (FSI) behavior of a flexible splitter behind a 2D cylinder and the surrounding fluid in a channel.

More information

Available online at ScienceDirect. Parallel Computational Fluid Dynamics Conference (ParCFD2013)

Available online at  ScienceDirect. Parallel Computational Fluid Dynamics Conference (ParCFD2013) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 61 ( 2013 ) 81 86 Parallel Computational Fluid Dynamics Conference (ParCFD2013) An OpenCL-based parallel CFD code for simulations

More information

Splotch: High Performance Visualization using MPI, OpenMP and CUDA

Splotch: High Performance Visualization using MPI, OpenMP and CUDA Splotch: High Performance Visualization using MPI, OpenMP and CUDA Klaus Dolag (Munich University Observatory) Martin Reinecke (MPA, Garching) Claudio Gheller (CSCS, Switzerland), Marzia Rivi (CINECA,

More information

Tera-scalable Fourier Spectral Element Code for DNS of Channel Turbulent Flow at High Reynolds Number

Tera-scalable Fourier Spectral Element Code for DNS of Channel Turbulent Flow at High Reynolds Number Tera-scalable Fourier Spectral Element Code for DNS of Channel Turbulent Flow at High Reynolds Number Jin Xu Physics Division Argonne National Laboratory Argonne, IL 60439 USA jin xu@anl.gov Abstract Due

More information

Immersed Boundary Method and Chimera Method applied to Fluid-

Immersed Boundary Method and Chimera Method applied to Fluid- The numericsacademy Fixed Colloquium IBM on Moving Immersed IBM Boundary Applications Methods : Conclusion Current Status and Future Research Directions 15-17 June 2009, Academy Building, Amsterdam, the

More information

STCE. An (more) effective Discrete Adjoint Model for OpenFOAM

STCE. An (more) effective Discrete Adjoint Model for OpenFOAM An (more) effective Discrete Adjoint Model for OpenFOAM Markus Towara, Uwe Naumann Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2013, Oxford, 10. December 2013

More information

Implementation of an integrated efficient parallel multiblock Flow solver

Implementation of an integrated efficient parallel multiblock Flow solver Implementation of an integrated efficient parallel multiblock Flow solver Thomas Bönisch, Panagiotis Adamidis and Roland Rühle adamidis@hlrs.de Outline Introduction to URANUS Why using Multiblock meshes

More information

CFD WORKSHOP TOKYO 2005

CFD WORKSHOP TOKYO 2005 CFD WORKSHOP TOKYO 2005 Questionnaire Code identifier: (insert the same identifier as in the computed results) Except when stated otherwise, please reply to each question by filling the appropriate alternative(s)

More information

OpenFOAM on BG/Q porting and performance

OpenFOAM on BG/Q porting and performance OpenFOAM on BG/Q porting and performance Paride Dagna, SCAI Department, CINECA SYSTEM OVERVIEW OpenFOAM : selected application inside of PRACE project Fermi : PRACE Tier- System Model: IBM-BlueGene /Q

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Pre-Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew Opyd, Dong-Hwan

More information

AM119: Yet another OpenFoam tutorial

AM119: Yet another OpenFoam tutorial AM119: Yet another OpenFoam tutorial Prof. Trask April 11, 2016 1 Todays project Today we re going to implement a projection method for the Navier-Stokes, learn how to build a mesh, and explore the difference

More information

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla

Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla Performance Optimization of a Massively Parallel Phase-Field Method Using the HPC Framework walberla SIAM PP 2016, April 13 th 2016 Martin Bauer, Florian Schornbaum, Christian Godenschwager, Johannes Hötzer,

More information

Numerical Simulation of Coupled Fluid-Solid Systems by Fictitious Boundary and Grid Deformation Methods

Numerical Simulation of Coupled Fluid-Solid Systems by Fictitious Boundary and Grid Deformation Methods Numerical Simulation of Coupled Fluid-Solid Systems by Fictitious Boundary and Grid Deformation Methods Decheng Wan 1 and Stefan Turek 2 Institute of Applied Mathematics LS III, University of Dortmund,

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0) Contributing sites and the corresponding computer systems for this call are: GCS@Jülich, Germany IBM Blue Gene/Q GENCI@CEA, France Bull Bullx

More information

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 Axisymmetric Viscous Flow Modeling for Meridional Flow alculation in Aerodynamic Design of Half-Ducted Blade Rows by

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Parallel Uniform Mesh Subdivision in Alya

Parallel Uniform Mesh Subdivision in Alya Available on-line at www.prace-ri.eu Partnership for Advanced Computing in Europe Parallel Uniform Mesh Subdivision in Alya G. Houzeaux a,,r.delacruz a,m.vázquez a a Barcelona Supercomputing Center, Edificio

More information

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016 Analyzing the High Performance Parallel I/O on LRZ HPC systems Sandra Méndez. HPC Group, LRZ. June 23, 2016 Outline SuperMUC supercomputer User Projects Monitoring Tool I/O Software Stack I/O Analysis

More information

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1

Numerical Methods for PDEs. SSC Workgroup Meetings Juan J. Alonso October 8, SSC Working Group Meetings, JJA 1 Numerical Methods for PDEs SSC Workgroup Meetings Juan J. Alonso October 8, 2001 SSC Working Group Meetings, JJA 1 Overview These notes are meant to be an overview of the various memory access patterns

More information

Preliminary Experiences with the Uintah Framework on on Intel Xeon Phi and Stampede

Preliminary Experiences with the Uintah Framework on on Intel Xeon Phi and Stampede Preliminary Experiences with the Uintah Framework on on Intel Xeon Phi and Stampede Qingyu Meng, Alan Humphrey, John Schmidt, Martin Berzins Thanks to: TACC Team for early access to Stampede J. Davison

More information

Simulation and Validation of Turbulent Pipe Flows

Simulation and Validation of Turbulent Pipe Flows Simulation and Validation of Turbulent Pipe Flows ENGR:2510 Mechanics of Fluids and Transport Processes CFD LAB 1 (ANSYS 17.1; Last Updated: Oct. 10, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim,

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

STAR-CCM+: Wind loading on buildings SPRING 2018

STAR-CCM+: Wind loading on buildings SPRING 2018 STAR-CCM+: Wind loading on buildings SPRING 2018 1. Notes on the software 2. Assigned exercise (submission via Blackboard; deadline: Thursday Week 3, 11 pm) 1. NOTES ON THE SOFTWARE STAR-CCM+ generates

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

Experiences with ENZO on the Intel Many Integrated Core Architecture

Experiences with ENZO on the Intel Many Integrated Core Architecture Experiences with ENZO on the Intel Many Integrated Core Architecture Dr. Robert Harkness National Institute for Computational Sciences April 10th, 2012 Overview ENZO applications at petascale ENZO and

More information

Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts

Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts Fabio Kasper Comparison Between Numerical & PIV Experimental Results for Gas-Solid Flow in Ducts Rodrigo Decker, Oscar Sgrott Jr., Henry F. Meier Waldir Martignoni Agenda Introduction The Test Bench Case

More information

Simulation of Laminar Pipe Flows

Simulation of Laminar Pipe Flows Simulation of Laminar Pipe Flows 57:020 Mechanics of Fluids and Transport Processes CFD PRELAB 1 By Timur Dogan, Michael Conger, Maysam Mousaviraad, Tao Xing and Fred Stern IIHR-Hydroscience & Engineering

More information

Development of immersed boundary methods for complex geometries

Development of immersed boundary methods for complex geometries Center for Turbulence Research Annual Research Briefs 1998 325 Development of immersed boundary methods for complex geometries By J. Mohd-Yusof 1. Motivation and objectives For fluid dynamics simulations,

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

2DECOMP&FFT The Library Behind Incompact3D

2DECOMP&FFT The Library Behind Incompact3D 2DECOMP&FFT The Library Behind Incompact3D Ning Li NAG Incompact3D User Group Meeting Imperial College London 24/04/2014 Experts in numerical algorithms and HPC services About the Speaker PhD in Mechanical

More information

Peta-Scale Simulations with the HPC Software Framework walberla:

Peta-Scale Simulations with the HPC Software Framework walberla: Peta-Scale Simulations with the HPC Software Framework walberla: Massively Parallel AMR for the Lattice Boltzmann Method SIAM PP 2016, Paris April 15, 2016 Florian Schornbaum, Christian Godenschwager,

More information

Direct Numerical Simulation of a Low Pressure Turbine Cascade. Christoph Müller

Direct Numerical Simulation of a Low Pressure Turbine Cascade. Christoph Müller Low Pressure NOFUN 2015, Braunschweig, Overview PostProcessing Experimental test facility Grid generation Inflow turbulence Conclusion and slide 2 / 16 Project Scale resolving Simulations give insight

More information

Steady Flow: Lid-Driven Cavity Flow

Steady Flow: Lid-Driven Cavity Flow STAR-CCM+ User Guide Steady Flow: Lid-Driven Cavity Flow 2 Steady Flow: Lid-Driven Cavity Flow This tutorial demonstrates the performance of STAR-CCM+ in solving a traditional square lid-driven cavity

More information

A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION

A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION N.K.-R. Kevlahan 1, O.V. Vasilyev 2, D. Goldstein 2, and A. Jay 1,3 kevlahan@mcmaster.ca 1 Department of Mathematics & Statistics,

More information