# Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Save this PDF as:

Size: px
Start display at page:

Download "Models and Architectures. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico"

## Transcription

1 Models and Architectures Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1

2 Objectives Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for an interactive graphics system 2

3 Image Formation Revisited Can we mimic the synthetic camera model to design graphics hardware software? Application Programmer Interface (API) - Need only specify Objects Materials Viewer Lights But how is the API implemented? 3

4 Physical Approaches Ray tracing: follow rays of light from center of projection until they either are absorbed by objects or go off to infinity - Can handle global effects Multiple reflections Translucent objects - Slow - Must have whole data base available at all times Radiosity: Energy based approach - Very slow 4

5 Practical Approach Process objects one at a time in the order they are generated by the application - Can consider only local lighting Pipeline architecture application program All steps can be implemented in hardware on the graphics card display 5

6 Vertex Processing Much of the work in the pipeline is in converting object representations from one coordinate system to another - Object coordinates - Camera (eye) coordinates - Screen coordinates Every change of coordinates is equivalent to a matrix transformation Vertex processor also computes vertex colors 6

7 Projection Projection is the process that combines the 3D viewer with the 3D objects to produce the 2D image - Perspective projections: all projectors meet at the center of projection - Parallel projection: projectors are parallel, center of projection is replaced by a direction of projection 7

8 Primitive Assembly Vertices must be collected into geometric objects before clipping and rasterization can take place - Line segments - Polygons - Curves and surfaces 8

9 Clipping Just as a real camera cannot see the whole world, the virtual camera can only see part of the world or object space - Objects that are not within this volume are said to be clipped out of the scene 9

10 Rasterization If an object is not clipped out, the appropriate pixels in the frame buffer must be assigned colors Rasterizer produces a set of fragments for each object Fragments are potential pixels - Have a location in frame bufffer - Color and depth attributes Vertex attributes are interpolated over objects by the rasterizer 10

11 Fragment Processing Fragments are processed to determine the color of the corresponding pixel in the frame buffer Colors can be determined by texture mapping or interpolation of vertex colors Fragments may be blocked by other fragments closer to the camera - Hidden-surface removal 11

12 The Programmer s Interface Programmer sees the graphics system through a software interface: the Application Programmer Interface (API) 12

13 API Contents Functions that specify what we need to form an image - Objects - Viewer - Light Source(s) - Materials Other information - Input from devices such as mouse and keyboard - Capabilities of system 13

14 Object Specification Most APIs support a limited set of primitives including - Points (0D object) - Line segments (1D objects) - Polygons (2D objects) - Some curves and surfaces Quadrics Parametric polynomials All are defined through locations in space or vertices 14

15 Example type of object glbegin(gl_polygon) glvertex3f(0.0, 0.0, 0.0); glvertex3f(0.0, 1.0, 0.0); glvertex3f(0.0, 0.0, 1.0); glend( ); location of vertex end of object definition 15

16 Camera Specification Six degrees of freedom - Position of center of lens - Orientation Lens Film size Orientation of film plane 16

17 Lights and Materials Types of lights - Point sources vs distributed sources - Spot lights - Near and far sources - Color properties Material properties - Absorption: color properties - Scattering Diffuse Specular 17

### Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Models and Architectures

### Models and Architectures

Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

### OUTLINE. Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system

GRAPHICS PIPELINE 1 OUTLINE Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for a graphics system 2 IMAGE FORMATION REVISITED Can we mimic the synthetic

### CSE4030 Introduction to Computer Graphics

CSE4030 Introduction to Computer Graphics Dongguk University Jeong-Mo Hong Timetable 00:00~00:10 Introduction (English) 00:10~00:50 Topic 1 (English) 00:50~00:60 Q&A (English, Korean) 01:00~01:40 Topic

### CIS 441/541: Introduction to Computer Graphics Lecture 14: OpenGL Basics

CIS 441/541: Introduction to Computer Graphics Lecture 14: OpenGL Basics Oct. 26th, 2016 Hank Childs, University of Oregon Announcements OH Hank: Weds 1-2, Thursday 11-12 Dan: Weds 4-530, Thursday 930-11

### Computer Graphics and Visualization. Graphics Systems and Models

UNIT -1 Graphics Systems and Models 1.1 Applications of computer graphics: Display Of Information Design Simulation & Animation User Interfaces 1.2 Graphics systems A Graphics system has 5 main elements:

### INTRODUCTION. Slides modified from Angel book 6e

INTRODUCTION Slides modified from Angel book 6e Fall 2012 COSC4328/5327 Computer Graphics 2 Objectives Historical introduction to computer graphics Fundamental imaging notions Physical basis for image

### CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012

CS450/550 Pipeline Architecture Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 0 Objectives Learn the basic components of a graphics system Introduce the OpenGL pipeline

### Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Image Formation Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Fundamental imaging notions Physical basis for image formation

### Models and Architectures. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Models and Architectures 1 Objectives Learn the basic design of a graphics system Introduce pipeline architecture Examine software components for an interactive graphics system 2 Image Formation Revisited

### Introduction to OpenGL Week 1

CS 432/680 INTERACTIVE COMPUTER GRAPHICS Introduction to OpenGL Week 1 David Breen Department of Computer Science Drexel University Based on material from Ed Angel, University of New Mexico Objectives

### Objectives. Image Formation Revisited. Physical Approaches. The Programmer s Interface. Practical Approach. Introduction to OpenGL Week 1

CS 432/680 INTERACTIVE COMPUTER GRAPHICS Introduction to OpenGL Week 1 David Breen Department of Computer Science Drexel University Objectives Learn the basic design of a graphics system Introduce graphics

### Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Image Formation

### 3D graphics, raster and colors CS312 Fall 2010

Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

### VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION

VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION 1. Briefly explain any two applications of computer graphics. (June 2012) 4M Ans: Applications of computer graphics are: Display Of Information Design Simulation

### CHAPTER 1 Graphics Systems and Models 3

?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

### Graphics Systems and Models

Graphics Systems and Models 2 nd Week, 2007 Sun-Jeong Kim Five major elements Input device Processor Memory Frame buffer Output device Graphics System A Graphics System 2 Input Devices Most graphics systems

### Today s Agenda. Basic design of a graphics system. Introduction to OpenGL

Today s Agenda Basic design of a graphics system Introduction to OpenGL Image Compositing Compositing one image over another is most common choice can think of each image drawn on a transparent plastic

### Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

### Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

### Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

### Introduction to OpenGL

CS100433 Introduction to OpenGL Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Before OpenGL Let s think what is need

### Rasterization Overview

Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

### Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

### Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

### Advanced Computer Graphics (CS & SE )

Advanced Computer Graphics (CS & SE 233.420) Topics Covered Picking Pipeline Viewing and Transformations Rendering Modes OpenGL can render in one of three modes selected by glrendermode(mode) GL_RENDER

### Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology 1. I am located in room 4115 in EDIT-huset 2. Email: 3. Phone: 031-772 1775 (office) 4. Course assistant: Tomas Akenine-Mőller

### Computer Graphics - Chapter 1 Graphics Systems and Models

Computer Graphics - Chapter 1 Graphics Systems and Models Objectives are to learn about: Applications of Computer Graphics Graphics Systems Images: Physical and Synthetic The Human Visual System The Pinhole

### Survey in Computer Graphics Computer Graphics and Visualization

Example of a Marble Ball Where did this image come from? Fall 2010 What hardware/software/algorithms did we need to produce it? 2 A Basic Graphics System History of Computer Graphics 1200-2008 Input devices

### Module Contact: Dr Stephen Laycock, CMP Copyright of the University of East Anglia Version 1

UNIVERSITY OF EAST ANGLIA School of Computing Sciences Main Series PG Examination 2013-14 COMPUTER GAMES DEVELOPMENT CMPSME27 Time allowed: 2 hours Answer any THREE questions. (40 marks each) Notes are

### Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Tracing Photons One way to form an image is to follow rays of light from a point source finding which rays enter the lens

### 3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

### CS452/552; EE465/505. Image Formation

CS452/552; EE465/505 Image Formation 1-15-15 Outline! Image Formation! Introduction to WebGL, continued Draw a colored triangle using WebGL Read: Angel, Chapters 2 & 3 Homework #1 will be available on

### Computer Graphics: Programming, Problem Solving, and Visual Communication

Computer Graphics: Programming, Problem Solving, and Visual Communication Dr. Steve Cunningham Computer Science Department California State University Stanislaus Turlock, CA 95382 copyright 2002, Steve

### The Viewing Pipeline Coordinate Systems

Overview Interactive Graphics System Model Graphics Pipeline Coordinate Systems Modeling Transforms Cameras and Viewing Transform Lighting and Shading Color Rendering Visible Surface Algorithms Rasterization

### Orthogonal Projection Matrices. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Orthogonal Projection Matrices 1 Objectives Derive the projection matrices used for standard orthogonal projections Introduce oblique projections Introduce projection normalization 2 Normalization Rather

### CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

### GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionally left blank. Interactive Computer Graphics with WebGL, Global

### CS451Real-time Rendering Pipeline

1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

### Overview: Ray Tracing & The Perspective Projection Pipeline

Overview: Ray Tracing & The Perspective Projection Pipeline Lecture #2 Thursday, August 28 2014 About this Lecture! This is an overview.! Think of it as a quick tour moving fast.! Some parts, e.g. math,

### 03 RENDERING PART TWO

03 RENDERING PART TWO WHAT WE HAVE SO FAR: GEOMETRY AFTER TRANSFORMATION AND SOME BASIC CLIPPING / CULLING TEXTURES AND MAPPING MATERIAL VISUALLY DISTINGUISHES 2 OBJECTS WITH IDENTICAL GEOMETRY FOR NOW,

### CS 4620 Program 3: Pipeline

CS 4620 Program 3: Pipeline out: Saturday 18 October 2008 due: Tuesday 28 October 2008 1 Introduction In this assignment, you will implement several types of shading in a simple software graphics pipeline.

### Lecture 1. Computer Graphics and Systems. Tuesday, January 15, 13

Lecture 1 Computer Graphics and Systems What is Computer Graphics? Image Formation Sun Object Figure from Ed Angel,D.Shreiner: Interactive Computer Graphics, 6 th Ed., 2012 Addison Wesley Computer Graphics

### Surface Graphics. 200 polys 1,000 polys 15,000 polys. an empty foot. - a mesh of spline patches:

Surface Graphics Objects are explicitely defined by a surface or boundary representation (explicit inside vs outside) This boundary representation can be given by: - a mesh of polygons: 200 polys 1,000

### Global Rendering. Ingela Nyström 1. Effects needed for realism. The Rendering Equation. Local vs global rendering. Light-material interaction

Effects needed for realism Global Rendering Computer Graphics 1, Fall 2005 Lecture 7 4th ed.: Ch 6.10, 12.1-12.5 Shadows Reflections (Mirrors) Transparency Interreflections Detail (Textures etc.) Complex

Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

### Visualisatie BMT. Rendering. Arjan Kok

Visualisatie BMT Rendering Arjan Kok a.j.f.kok@tue.nl 1 Lecture overview Color Rendering Illumination 2 Visualization pipeline Raw Data Data Enrichment/Enhancement Derived Data Visualization Mapping Abstract

### Computer Graphics. Lecture 9 Environment mapping, Mirroring

Computer Graphics Lecture 9 Environment mapping, Mirroring Today Environment Mapping Introduction Cubic mapping Sphere mapping refractive mapping Mirroring Introduction reflection first stencil buffer

### CS 4620 Program 3: Pipeline

CS 4620 Program 3: Pipeline out: Wednesday 14 October 2009 due: Friday 30 October 2009 1 Introduction In this assignment, you will implement several types of shading in a simple software graphics pipeline.

### CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

### Computer Graphics I Lecture 11

15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

### Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

### Graphics Hardware. Instructor Stephen J. Guy

Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

### Introduction to Computer Graphics 3. Shading

Introduction to Computer Graphics 3. Shading I-Chen Lin, Assistant Professor National Chiao Tung Univ, Taiwan Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn and Baker,

### Chapter 2 A top-down approach - How to make shaded images?

Chapter 2 A top-down approach - How to make shaded images? Comp. Graphics (U), Chap 2 Global View 1 CGGM Lab., CS Dept., NCTU Jung Hong Chuang Graphics API vs. application API Graphics API Support rendering

### Introduction to Computer Graphics 3. Shading

Introduction to Computer Graphics 3. Shading National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn and

### Principles of Computer Graphics. Lecture 3 1

Lecture 3 Principles of Computer Graphics Lecture 3 1 Why we learn computer graphics? Appreciate what we see The knowledge can applied when we want to develop specific engineering program that requires

### Introduction to Computer Graphics 7. Shading

Introduction to Computer Graphics 7. Shading National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: Hearn and Baker, Computer Graphics, 3rd Ed., Prentice Hall Ref: E.Angel, Interactive

### Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics Bing-Yu Chen National Taiwan University Introduction The Graphics Process Color Models Triangle Meshes The Rendering Pipeline 1 INPUT What is Computer Graphics? Definition the pictorial

### Three Main Themes of Computer Graphics

Three Main Themes of Computer Graphics Modeling How do we represent (or model) 3-D objects? How do we construct models for specific objects? Animation How do we represent the motion of objects? How do

### CS452/552; EE465/505. Intro to Lighting

CS452/552; EE465/505 Intro to Lighting 2-10 15 Outline! Projection Normalization! Introduction to Lighting (and Shading) Read: Angel Chapter 5., sections 5.4-5.7 Parallel Projections Chapter 6, sections

### CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

### Graphics Hardware and OpenGL

Graphics Hardware and OpenGL Ubi Soft, Prince of Persia: The Sands of Time What does graphics hardware have to do fast? Camera Views Different views of an object in the world 1 Camera Views Lines from

### CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

### One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface

Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical views are based

### Lecturer Athanasios Nikolaidis

Lecturer Athanasios Nikolaidis Computer Graphics: Graphics primitives 2D viewing and clipping 2D and 3D transformations Curves and surfaces Rendering and ray tracing Illumination models Shading models

### CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

### Real-Time Shadows. Last Time? Schedule. Questions? Today. Why are Shadows Important?

Last Time? Real-Time Shadows The graphics pipeline Clipping & rasterization of polygons Visibility the depth buffer (z-buffer) Schedule Questions? Quiz 2: Thursday November 2 th, in class (two weeks from

### Supplement to Lecture 16

Supplement to Lecture 16 Global Illumination: View Dependent CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Notes and figures from Ed Angel: Interactive Computer Graphics, 6 th Ed., 2012 Addison

### Projections and Hardware Rendering. Brian Curless CSE 557 Fall 2014

Projections and Hardware Rendering Brian Curless CSE 557 Fall 2014 1 Reading Required: Shirley, Ch. 7, Sec. 8.2, Ch. 18 Further reading: Foley, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan

### Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today!

Last Time? Real-Time Shadows Perspective-Correct Interpolation Texture Coordinates Procedural Solid Textures Other Mapping Bump Displacement Environment Lighting Textures can Alias Aliasing is the under-sampling

### RASTERISED RENDERING

DH2323 DGI16 INTRODUCTION TO COMPUTER GRAPHICS AND INTERACTION RASTERISED RENDERING Christopher Peters HPCViz, KTH Royal Institute of Technology, Sweden chpeters@kth.se http://kth.academia.edu/christopheredwardpeters

### Real-Time Shadows. MIT EECS 6.837, Durand and Cutler

Real-Time Shadows Last Time? The graphics pipeline Clipping & rasterization of polygons Visibility the depth buffer (z-buffer) Schedule Quiz 2: Thursday November 20 th, in class (two weeks from Thursday)

### CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

### Line Drawing. Foundations of Computer Graphics Torsten Möller

Line Drawing Foundations of Computer Graphics Torsten Möller Rendering Pipeline Hardware Modelling Transform Visibility Illumination + Shading Perception, Interaction Color Texture/ Realism Reading Angel

### CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming 2 Common Uses for Computer Graphics Applications for real-time 3D graphics range from interactive games

### Computer Graphics. Illumination and Shading

Rendering Pipeline modelling of geometry transformation into world coordinates placement of cameras and light sources transformation into camera coordinates backface culling projection clipping w.r.t.

### OpenGL: Open Graphics Library. Introduction to OpenGL Part II. How do I render a geometric primitive? What is OpenGL

OpenGL: Open Graphics Library Introduction to OpenGL Part II CS 351-50 Graphics API ( Application Programming Interface) Software library Layer between programmer and graphics hardware (and other software

### Viewing with Computers (OpenGL)

We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

### Graphics Pipeline & APIs

Graphics Pipeline & APIs CPU Vertex Processing Rasterization Fragment Processing glclear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT); glpushmatrix (); gltranslatef (-0.15, -0.15, solidz); glmaterialfv(gl_front,

### Programming with OpenGL Part 1: Background

Programming with OpenGL Part 1: Background Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Development of the OpenGL API

### CPSC / Illumination and Shading

CPSC 599.64 / 601.64 Rendering Pipeline usually in one step modelling of geometry transformation into world coordinate system placement of cameras and light sources transformation into camera coordinate

### Graphics Pipeline & APIs

3 2 4 Graphics Pipeline & APIs CPU Vertex Processing Rasterization Processing glclear (GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT); glpushmatrix (); gltranslatef (-0.15, -0.15, solidz); glmaterialfv(gl_front,

### CS Computer Graphics: Hidden Surface Removal

CS 543 - Computer Graphics: Hidden Surface Removal by Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Hidden Surface Removal Drawing polygonal faces on screen consumes CPU cycles We cannot

Illumination and Shading Illumination (Lighting)! Model the interaction of light with surface points to determine their final color and brightness! The illumination can be computed either at vertices or

### Graphics for VEs. Ruth Aylett

Graphics for VEs Ruth Aylett Overview VE Software Graphics for VEs The graphics pipeline Projections Lighting Shading VR software Two main types of software used: off-line authoring or modelling packages

### Computer Graphics and Visualization. What is computer graphics?

CSCI 120 Computer Graphics and Visualization Shiaofen Fang Department of Computer and Information Science Indiana University Purdue University Indianapolis What is computer graphics? Computer graphics

### CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

### QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear

### Virtual Reality for Human Computer Interaction

Virtual Reality for Human Computer Interaction Appearance: Lighting Representation of Light and Color Do we need to represent all I! to represent a color C(I)? No we can approximate using a three-color