Solutions PHYS1252 Exam #1, Spring 2016, V hbs. Problem I: Multiple Choice Questions, 20P total = 5P(Q.1) + 5P(Q.2) + 5P(Q.3) + 5P(Q.

Size: px
Start display at page:

Download "Solutions PHYS1252 Exam #1, Spring 2016, V hbs. Problem I: Multiple Choice Questions, 20P total = 5P(Q.1) + 5P(Q.2) + 5P(Q.3) + 5P(Q."

Transcription

1 Solutions PHYS1252 Exam #1, Spring 2016, V hbs Problem I: Multiple Choice Questions, 20P total = 5P(Q1) + 5P(Q2) + 5P(Q3) + 5P(Q4) Exam Version: 1A 1B 1C 1D 1E 1F Q1 [5P] C E A A C E Q2 [5P] B A D D B A Q3 [5P] E C C C E C Q4 [5P] D B C C D B Detailed solutions for very similar multiple choice questions are posted on the PHYS1212/PHYS1252 course website for: - - Conceptual Practice Problems for Exam#1 - - PHYS1112 Exam #1, Conceptual Problems, Spring 2009, 2010, 2011, PHYS1212 and PHYS1252 Exam#1, Problem I Questions, Spring 2015 Also see: - - LONCAPA Solutions for HW Sets #1 and #2

2 Solutions PHYS1252 Exam #1, Spring 2016, V hbs Problem II: Ray Diagram, 10P total Detailed Solution Steps for Exam Version #1A (see drawings below for all versions): 1P: Draw optical axis, lens principal plane, H, and correctly placed image as arrow to the left of the lens, with all 3 elements properly labeled Image arrow can be chosen to point either upward or downward 1P: Correctly identify and label outgoing side of lens, to the right of lens Reasoning: i) image is virtual by sign convention, image is located not on outgoing side ii) image is to the left of lens to the left of lens is not the outgoing side iii) outgoing side is to the right of the lens 1P: Correctly identify and label incoming side, to the left of the lens: Reasoning: i) The device is a lens with refracted rays passing through, ie, leaving opposite to side they entered ii) Incoming side is opposite to outgoing side: to the left of lens 1P: Correctly place focal points F and F : F to the left of the lens, and right of image on the optical axis; F at same distance to the right of lens Label F and F Reasoning: i) lens is divergent, ie, has negative focal length f<0 ii) by sign convention, F is not on in and F is not on out side, ie, F is to the left and F to the right of lens iii) F and F are at both at a distance f from lens F and F are at same distance from, and on opposite sides of the lens iv) absolute image distance from lens, d, is greater than absolute focal length, f v) F is located to the right of the image, ie, between image and lens 2P: Correctly draw one of the three principal ray pairs (see drawing Examples 1, 2): Either: F- F - ray Or: P- P - ray Or: C- C - ray 2P: Correctly draw a second principal ray pair (see drawing Examples 1, 2): Either: P- P - ray Or: C- C - ray Or: F- F - ray [Note: For a mirror (unlike a lens!) the C- ray and C - ray would be two distinct lines, each intersecting the optical axis at the same angle, but one from above, the other from below So, the C - ray for a mirror would have to be constructed from the C- ray, by reflecting the C- ray at the optical axis That s unlike a lens, where the C- ray is simply continued straight through the lens to get the C - ray] 1P: Correctly draw object at intersection of two incoming principal rays, as arrow, to the left of lens, arrow oriented opposite to image arrow, ie, inverted relative to image So, if image arrow was drawn upward, object arrow must point downward Else, if image arrow was drawn downward, object arrow must point upward Either choice of image arrow is acceptable 1P: State: object is virtual Reasoning: i) object is found to the right of the lens object is not on the incoming side ii) by sign convention: object is virtual and d<0

3 Solutions PHYS1252 Exam #1, Spring 2016, V hbs Ray diagrams for all exam versions, #1A, 1B, 1C, 1D, 1E, 1F, are shown below In all versions, the object is virtual PHYS1252,)Sp 2016,)Exam)#1,)Problem)II:)Ray)Diagram,)Version)#1A) )Divergent)Lens:)F)not)on)in,)F )not)on)out) ) Not)Out )Out) ))))))))))In )Not)In) FDray) Q ) F Dray) Image) P Dray) CD,)C Dray) F ) )F) OpMcal)Axis)A) PDray) Q) Object) H) P Dray) PHYS1252,)Sp 2016,)Exam)#1,)Problem)II:)Ray)Diagram,)Version)#1B) )Divergent)Lens:)F)not)on)in,)F )not)on)out) ) Not)Out )Out) ))))))))))In )Not)In) FDray) F Dray) Q ) PDray) P Dray) Q) Image) Object) F ) F) OpMcal)Axis)A) CD,)C Dray) H)

4 Solutions PHYS1252 Exam #1, Spring 2016, V hbs PHYS1252,)Sp 2016,)Exam)#1,)Problem)II:)Ray)Diagram,)Version)#1C) Convergent)Lens:)F)on)in,)F )on)out) ) Not)Out )Out) ))))))))))In )Not)In) PDray) Q) P Dray) Object) Q ) F Dray) FDray) Image) F) F ) CD,)C Dray) OpMcal)Axis)A) PHYS1252,+Sp 2016,+Exam+#1,+Problem+II:+Ray+Diagram,+Version+#1D+ Convergent)Lens:)F)on)in,)F )on)out) + Not+Out +Out In +Not+In+ P'ray+ Q+ P 'ray+ Object+ Q + F 'ray+ F'ray+ Image+ F+ F + C',+C 'ray+ Op9cal+Axis+A+

5 Solutions PHYS1252 Exam #1, Spring 2016, V hbs PHYS1252,+Sp 2016,+Exam+#1,+Problem+II:+Ray+Diagram,+Version+#1E+ +Divergent)Lens:)F)not)on)in,)F )not)on)out) + Not+Out +Out In +Not+In+ F'ray+ Q + F 'ray+ Image+ P 'ray+ C',+C 'ray+ F + +F+ Op9cal+Axis+A+ P'ray+ Q+ Object+ H+ P 'ray+ PHYS1252,+Sp 2016,+Exam+#1,+Problem+II:+Ray+Diagram,+Version+#1F+ +Divergent)Lens:)F)not)on)in,)F )not)on)out) + Not+Out +Out In +Not+In+ F'ray+ F 'ray+ Q + P'ray+ P 'ray+ Q+ Image+ Object+ F + F+ Op9cal+Axis+A+ C',+C 'ray+ H+

6 Solutions PHYS1252 Exam #1, Spring 2016, V hbs Problem III: Refraction at a Glass Wall, 35 P total = 15P(a) + 10P(b) + 10P(c) Detailed Solution for Exam Version #1A: Solu2on:" x" beam"2" beam"1" θ" α" φ" θ " beam"1" y" φ " beam"2" (a) [15P] α = 59 o [5P] Left wall, beam 2 angle of incidence = θ= 90 o - α = 90 o - 59 o = 31 o [5P] Left wall, beam 2 angle of refraction = θ, tan(θ ) = y/x θ = arctan(y/x) = arctan( (125cm)/(36cm) )= o nwater = 1333 Snell s Law for beam 2 at left wall: nwater sin(θ) = nglass sin(θ ) [5P] nglass = nwater sin(θ) / sin(θ ) = (1333) sin(31 o ) / sin(19148 o ) = 2093 (b) [10P] [3P] Right wall, beam 2 angle of incidence = ϕ = θ = o [3P] [4P] Right wall, critical angle of incidence = ϕcrit : sin(ϕcrit) = nair / nglass = 100 / 2093 = ϕcrit = 2854 o ϕ < ϕcrit No TIR of beam 2 at the right wall Alternative Route: show that sin(ϕ ) < 1 (see below) No TIR of beam 2 at the right wall Right wall, beam 2 angle of refraction = ϕ Snell s Law for beam 2 at left wall: nglass sin(ϕ) = nair sin(ϕ ) sin(ϕ ) = (nglass / nair ) sin(ϕ) = (2093 / 100) sin(19148 o ) = sin(ϕ ) < 1 angle of refraction, ϕ, does exist; ϕ = arcsin(06865) = 4334 o

7 Solutions PHYS1252 Exam #1, Spring 2016, V hbs (c) [10P] nglass = 2093 c = m/s (vacuum speed of light) [4P] Speed of wave propagation inside the glass wall: vglass= c / nglass = ( m/s) / (2093) = m/s Beam 2 travel distance inside the glass wall (using Pythagoras, see drawing above): [4P] d= [ x 2 +y 2 ] 1/2 = [ (360) 2 +(125) 2 ] 1/2 cm = 3811cm = 03811m [2P] Travel time of beam 2 (crests or troughs) through the wall: t = d/ vglass = (03811 m) / ( m/s) = s = 266 ns

8 Solutions PHYS1252 Exam #1, Spring 2016, V hbs Problem IV: Microscope Image, 35 P total = 10P(a) + 15P(b) + 10P(c) Detailed Solution for Exam Version #1A: (a) [10P] Draw Obj1, Lens 1 and Lens 2 Find In, Out, Not In, Not Out Then draw F1, and d1: Compound$Microscope:$Step3$ Compound$Microscope:$Step5$ General$Direc>on$of$Light$Rays$ Passing$thru$Lenses$ d 1 $ F 1 $ [05P] d1 = +105cm and d1 > 0, since Obj1 (Neuron) is on In rel to Lens 1 (see drawing above) [05P] f1 = +100cm d1 = (1/ f1-1/ d1 ) - 1 = [ 1/(+100) - 1/(+105)] - 1 cm = +210cm [3P] Since d1 =210cm, the image by Lens 1, Img1, is 210cm from Lens 1 [3P] Since d1 >0, Img1, is on Out rel to Lens 1, ie, to the right of Lens 1 (see drawing above&below) [1P] Since d1 >0, the Img1 is real [2P] m1 = - (d1 / d1) = - [(+210cm)/(+105cm) = - 20 Since m1 < 0, Img1 is inverted rel to Obj1 Compound$Microscope:$Step6$ d 1 $ d 1 # F 1 $

9 Solutions PHYS1252 Exam #1, Spring 2016, V hbs (b) [15P] d2 =30cm [5P] d2 = - 30cm <0, since the image of Lens2, Img2, is to the left, ie, Not on Out of Lens2 (see left drawing below) [5P] [5P] d2 = (1/ f2-1/ d2 ) - 1 = [ 1/(+200) - 1/(- 300)] - 1 cm = +1875cm The object of Lens 2, Obj2, is 1875cm from Lens2 Note also: Since d2>0, Obj2, is on In rel to Lens 2, ie, to the left of Lens 1 (see right drawing below) L= d1 + d2 = (=210cm) + (+1875cm) =22875cm is the spacing between the two lenses (see right drawing below) Compound$Microscope:$Step7$ Compound$Microscope:$Step9$ L# d 1 $ d 1 # d 1 $ d 1 # F 1 $ F 1 $ F 2 $ d 2 $ d 2 $ d 2 $

10 Solutions PHYS1252 Exam #1, Spring 2016, V hbs (c) [10P] Route 1: h1 = 012mm = 0012cm m1 = - d1 / d1 = [see a), above] [3P] h1 = m1 h1 = (- 20) (0012 cm) = - 024cm < 0 [4P] [3P] h1 = h2 = - 024cm m2 = - d2 / d2 = - (- 30cm)/(+1875cm) = +160 > 0 h2 = m2 h2 = (+16) (- 024 cm) = - 384cm <0 As seen through Lens2, the absolute diameter of the neuron s final image, Img2, is 384cm Since h2 <0 and h1>0, final image, Img2, is inverted relative to Obj1 (=original object) Route 2: mtot = m1 m2 = (d1 / d1) (d2 / d2) = [(+210cm)/(+105cm)] [(- 300cm)/(+1875cm)] = h2 = mtot h1 = (- 320) (0012 cm) = - 384cm <0 [7P] As seen through Lens2, the absolute diameter of the neuron s final image, Img2, is 384cm [3P] Since mtot < 0, final image, Img2, is inverted relative to Obj1 (=original object) Compound$Microscope:$Step11$ L# d 1 $ d 1 # h 1 $ F 2 $ F 1 $ h 1 =h 2 $ d 2 $ h 2 $ d 2 $

11 Solutions PHYS1252 Exam #1, Spring 2016, V hbs Problem V: Microscope Angular Magnification, 10 P total (Bonus) Detailed Solution for Exam Version #1A: Compound$Microscope:$Step14$ M Θ $=$θ e$ /$θ ref $ θ e $ h 2 =h e # h O =h 1 $ d near $ d 2 =d e $ θ ref $ he = h2 = 384cm de = d2 = 300 cm [4P] θe tan(θe ) = he / de = = (384) / (300) = 0128 radian href = h1 = 012 mm = 0012 cm dref = dnear = 200 cm [4P] θref tan(θref ) = href / dref = (0012) / (200) = radian [2P] Mθ = θe / θref = (0128) / ( ) = 213

Solutions PHYS1252 Exam #1, Spring 2017, V hbs. Problem I: Multiple Choice Questions, 20P total = 5P(Q.1) + 5P(Q.2) + 5P(Q.3) + 5P(Q.

Solutions PHYS1252 Exam #1, Spring 2017, V hbs. Problem I: Multiple Choice Questions, 20P total = 5P(Q.1) + 5P(Q.2) + 5P(Q.3) + 5P(Q. Problem I: Multiple Choice Questions, 20P total = 5P(Q1) + 5P(Q2) + 5P(Q3) + 5P(Q4) Exam Version: 1A 1B 1C 1D 1E 1F Q1 [5P] B B C D C B Q2 [5P] D D C E A B Q3 [5P] A C C B B D Q4 [5P] D D E E A E Detailed

More information

Ch. 26: Geometrical Optics

Ch. 26: Geometrical Optics Sec. 6-1: The Reflection of Light Wave Fronts and Rays Ch. 6: Geometrical Optics Wave front: a surface on which E is a maximum. Figure 5-3: Plane Wave *For this wave, the wave fronts are a series of planes.

More information

Solution to PHYS 1112 In-Class Exam #1B

Solution to PHYS 1112 In-Class Exam #1B n observer O, facing a mirror, observes a light urce S. Where does O perceive the mirror age of S to be located? Physics 1112. 1. 2. 3. 4 Solution to PHYS 1112 In-Class Exam #1B Thu. Feb. 5, 2009, 2:00pm-3:15pm

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Recall from last time. Today Last Time Reflection: θ i = θ r Flat Mirror: image equidistant behind Spherical

More information

Solution and Grading Key PHYS1212 / PHYS1252 Quiz #1.04 Ray Diagrams

Solution and Grading Key PHYS1212 / PHYS1252 Quiz #1.04 Ray Diagrams (A) Solution and Grading Key PHYS1212 / PHYS1252 Quiz #1.04 Ray Diagrams Only the object is shown here. The image is hidden and you have to infer its location and orientation from the rays as drawn. Red

More information

Figure 27a3See Answer T5. A convex lens used as a magnifying glass.

Figure 27a3See Answer T5. A convex lens used as a magnifying glass. F1 Figure 27a (in Answer T5) shows a diagram similar to that required, but with different dimensions. The object is between the first focus and the lens. The image is erect and virtual. The lateral magnification

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

Solution to PHYS 1112 In-Class Exam #1A

Solution to PHYS 1112 In-Class Exam #1A Solution to PHYS 1112 In-Class Exam #1A Tue. Feb. 8, 2011, 09:30am-10:45am Conceptual Problems Problem 1: A student runs northward at 5m/s, away from a vertical plane mirror, while the mirror, mounted

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Today Last Time Recall from last time. Reflection: q i = q r Flat Mirror: image equidistant behind Spherical

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3 PHY1160C Exam #3 July 8, 1997 Possibly useful information: For reflection, θinc = θref For refraction, image equation apparent depth Young s Double Slit: n1 sin θ1 = n2 sin θ2 n = c/v M = h i = d i h o

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced.

Chapter 34. Images. In this chapter we define and classify images, and then classify several basic ways in which they can be produced. Chapter 34 Images One of the most important uses of the basic laws governing light is the production of images. Images are critical to a variety of fields and industries ranging from entertainment, security,

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

1. What is the law of reflection?

1. What is the law of reflection? Name: Skill Sheet 7.A The Law of Reflection The law of reflection works perfectly with light and the smooth surface of a mirror. However, you can apply this law to other situations. For example, how would

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

M = h' h = #i. n = c v

M = h' h = #i. n = c v Name: Physics Chapter 14 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: c = 3 "10 8 m s 1 i + 1 o = 1 f M = h' h =

More information

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law

IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law IJSO Training: Light and Colour Mini-experiment Refractive Index and Snell s Law Objective In this experiment, you are required to determine the refractive index of an acrylic trapezoid (or any block with

More information

Physics 11 Chapter 18: Ray Optics

Physics 11 Chapter 18: Ray Optics Physics 11 Chapter 18: Ray Optics "... Everything can be taken from a man but one thing; the last of the human freedoms to choose one s attitude in any given set of circumstances, to choose one s own way.

More information

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle

Chapter 33 Continued Properties of Light. Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Chapter 33 Continued Properties of Light Law of Reflection Law of Refraction or Snell s Law Chromatic Dispersion Brewsters Angle Dispersion: Different wavelengths have different velocities and therefore

More information

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror

Optics INTRODUCTION DISCUSSION OF PRINCIPLES. Reflection by a Plane Mirror Optics INTRODUCTION Geometric optics is one of the oldest branches of physics, dealing with the laws of reflection and refraction. Reflection takes place on the surface of an object, and refraction occurs

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Chapter 18 Ray Optics

Chapter 18 Ray Optics Chapter 18 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 18-1 Chapter 18 Preview Looking Ahead Text p. 565 Slide 18-2 Wavefronts and Rays When visible light or other electromagnetic

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

Refraction and Lenses. Honors Physics

Refraction and Lenses. Honors Physics Refraction and Lenses Honors Physics Refraction Refraction is based on the idea that LIGHT is passing through one MEDIUM into another. The question is, WHAT HAPPENS? Suppose you are running on the beach

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

Light, Photons, and MRI

Light, Photons, and MRI Light, Photons, and MRI When light hits an object, some of it will be reflected. The reflected light can form an image. We usually want to be able to characterize the image given what we know about the

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

LECTURE 25 Spherical Refracting Surfaces. Geometric Optics

LECTURE 25 Spherical Refracting Surfaces. Geometric Optics LECTURE 25 Spherical Refracting Surfaces Geometric ptics When length scales are >> than the light s wavelength, light propagates as rays incident ray reflected ray θ θ r θ 2 refracted ray Reflection: Refraction:

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture XIII Refraction of light Snell s law Dispersion and rainbow Mirrors and lens Plane mirrors Concave and convex mirrors Thin lenses http://www.physics.wayne.edu/~apetrov/phy2130/

More information

normal angle of incidence increases special angle no light is reflected

normal angle of incidence increases special angle no light is reflected Reflection from transparent materials (Chapt. 33 last part) When unpolarized light strikes a transparent surface like glass there is both transmission and reflection, obeying Snell s law and the law of

More information

Homework Set 3 Due Thursday, 07/14

Homework Set 3 Due Thursday, 07/14 Homework Set 3 Due Thursday, 07/14 Problem 1 A room contains two parallel wall mirrors, on opposite walls 5 meters apart. The mirrors are 8 meters long. Suppose that one person stands in a doorway, in

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

PHYS 202 Notes, Week 9

PHYS 202 Notes, Week 9 PHYS 202 Notes, Week 9 Greg Christian March 22 & 24, 206 Last updated: 03/24/206 at 2:23:56 This week we learn about images by mirrors, refraction, and thin lenses. Images Spherical Mirrors First let s

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

The Law of Reflection

The Law of Reflection If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

More information

9. RAY OPTICS AND OPTICAL INSTRUMENTS

9. RAY OPTICS AND OPTICAL INSTRUMENTS 9. RAY OPTICS AND OPTICAL INSTRUMENTS 1. Define the terms (a) ray of light & (b) beam of light A ray is defined as the straight line path joining the two points by which light is travelling. A beam is

More information

Optics Worksheet. Chapter 12: Optics Worksheet 1

Optics Worksheet. Chapter 12: Optics Worksheet 1 Optics Worksheet Triangle Diagram: This represents a triangular prism. We want to follow the path of a light ray striking one of the surfaces as it passes through the prism and exits one of the other surfaces.

More information

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image Ray Diagrams Reflection for concave mirror: Any incident ray traveling parallel to the principal axis on the way to the mirror will pass through the focal point upon reflection. Any incident ray passing

More information

Physics 1C. Lecture 23A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 1C. Lecture 23A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 1C Lecture 23A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright Mirror Equation You can mathematically relate the object distance,

More information

PH 222-2A Spring 2015

PH 222-2A Spring 2015 PH 222-2A Spring 2015 Images Lectures 24-25 Chapter 34 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 3 Chapter 34 Images One of the most important uses of the basic laws governing light

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

Chapter 34. Thin Lenses

Chapter 34. Thin Lenses Chapter 34 Thin Lenses Thin Lenses Mirrors Lenses Optical Instruments MFMcGraw-PHY 2426 Chap34a-Lenses-Revised: 7/13/2013 2 Inversion A right-handed coordinate system becomes a left-handed coordinate system

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants PHYS00 Spring 01 Practice Exam 3 (Chs. 5, 6, 7) Constants m m q q p e ε = 8.85 o o p e = 1.67 = 9.11 7 9 7 31 = + 1.60 = 1.60 μ = 4π k = 8.99 g = 9.8 m/s 1 kg 19 19 C kg T m/a N m C / N m C / C 1. A convex

More information

Physics 1C. Lecture 25B. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 25B. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 25B "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Refraction of Light When light passes from one medium to another, it is

More information

Phys102 Lecture 21/22 Light: Reflection and Refraction

Phys102 Lecture 21/22 Light: Reflection and Refraction Phys102 Lecture 21/22 Light: Reflection and Refraction Key Points The Ray Model of Light Reflection and Mirrors Refraction, Snell s Law Total internal Reflection References 23-1,2,3,4,5,6. The Ray Model

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

Figure 1 - Refraction

Figure 1 - Refraction Geometrical optics Introduction Refraction When light crosses the interface between two media having different refractive indices (e.g. between water and air) a light ray will appear to change its direction

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

About the Final Exam(1)

About the Final Exam(1) About the Final Exam(1) The exam will be on 2:45-4:45pm, Wednesday, Dec 19 th (See my earlier email for room allocation) It will be exactly 120 minutes. Four (3+1) 8½ x 11 formula sheets are allowed. Must

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

Willis High School Physics Workbook Unit 7 Waves and Optics

Willis High School Physics Workbook Unit 7 Waves and Optics Willis High School Physics Workbook Unit 7 Waves and Optics This workbook belongs to Period Waves and Optics Pacing Guide DAY DATE TEXTBOOK PREREADING CLASSWORK HOMEWORK ASSESSMENT M 2/25 T 2/26 W 2/27

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

Snell s Law n i sin! i = n r sin! r

Snell s Law n i sin! i = n r sin! r Mr. Rawson Physics Snell s Law n i sin! i = n r sin! r Angle o Reraction n glass = 1.5 Angle o Incidence n air = 1.00 32 o 32 o 1 Mr. Rawson Physics 4 Mr. Rawson Physics 2 Mr. Rawson Physics 3 !"#$%&&&&

More information

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses.

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses. 3/23/ LIGO mirror Announcements LIGO mirror Two exams down, one to go! No HW this week. Credit: LIGO Laboratory, Caltech Office hours: My office hours today from 2-3 pm (or make an appointment) Chapter

More information

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page)

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) . (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) a). An object (an arrow) is placed as shown in front of each of the following optical instruments.

More information

What is light? This question sparked a huge debate in physics.

What is light? This question sparked a huge debate in physics. Optics Sol PH. 11 What is light? This question sparked a huge debate in physics. Light is a Stream of Particles. Newton called corpuscles Colors travel at different speeds. Einstein called quanti Light

More information

About the Final Exam(1)

About the Final Exam(1) About the Final Exam(1) The exam will be on 7:45-9:45am, Wednesday, Dec 22 in: 2103 Chamberlin, and 810 Ingraham (Allocation to be announced) It will be exactly 120 minutes. Distribution of tests starts

More information

LIGHT CLASS X STUDY MATERIAL & QUESTION BANK:

LIGHT CLASS X STUDY MATERIAL & QUESTION BANK: LIGHT CLASS X STUDY MATERIAL & QUESTION BANK: 1. REFLECTION OF LIGHT: The phenomenon of light coming back into the same medium after it strikes a smooth surface is called reflection. 2. LAWS OF REFLECTION:

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION

Chapter 5: Light and Vision CHAPTER 5: LIGHT AND VISION CHAPTER 5: LIGHT AND VISION These notes have been compiled in a way to make it easier or revision. The topics are not in order as per the syllabus. 5.1 Mirrors and Lenses 5.1.1 Image Characteristics Image

More information

PSC20 - Properties of Waves 3

PSC20 - Properties of Waves 3 PSC20 - Properties of Waves 3 The speed of light is in a vacuum. it travels 299 972 458 m/s. (rounded to m/s). Speed of light is given the symbol comes from the word meaning. How far do you think light

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions TEAMS National Competition High School Version Photometry Solution Manual 25 Questions Page 1 of 15 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Thin Lenses 4/16/2018 1

Thin Lenses 4/16/2018 1 Thin Lenses f 4/16/2018 1 Thin Lenses: Converging Lens C 2 F 1 F 2 C 1 r 2 f r 1 Parallel rays refract twice Converge at F 2 a distance f from center of lens F 2 is a real focal pt because rays pass through

More information

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1 F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

More information

Today s Topic: Ray Diagrams Intro to & Converging

Today s Topic: Ray Diagrams Intro to & Converging Today s Topic: Ray Diagrams Intro to & Converging Learning Goal: Students will be able to describe the resulting image of light once it passes through a converging lens. What is a focal point? What happens

More information

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions Page 1 of 14 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Reflection and Image Formation by Mirrors

Reflection and Image Formation by Mirrors Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

Lab 9 - Geometrical Optics

Lab 9 - Geometrical Optics Lab 9 Geometrical Optics L9-1 Name Date Partners Lab 9 - Geometrical Optics OBJECTIVES To examine Snell s Law To observe total internal reflection. To understand and use the lens equations. To find the

More information

On Fig. 7.1, draw a ray diagram to show the formation of this image.

On Fig. 7.1, draw a ray diagram to show the formation of this image. 1- A small object is placed 30 cm from the centre of a convex lens of focal length 60 cm An enlarged image is observed from the other side of the lens (a) On Fig 71, draw a ray diagram to show the formation

More information

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction.

Light Refraction. 7. For the three situations below, draw a normal line and measure and record the angles of incidence and the angles of refraction. Name: Light Refraction Read from Lesson 1 of the Refraction and Lenses chapter at The Physics Classroom: http://www.physicsclassroom.com/class/refrn/u14l1a.html http://www.physicsclassroom.com/class/refrn/u14l1b.html

More information

Lab 10 - GEOMETRICAL OPTICS

Lab 10 - GEOMETRICAL OPTICS L10-1 Name Date Partners OBJECTIVES OVERVIEW Lab 10 - GEOMETRICAL OPTICS To examine Snell s Law. To observe total internal reflection. To understand and use the lens equations. To find the focal length

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram.

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram. 1 (a) (i) A ray of light passes through a length of curved optical fibre. Draw a diagram showing the fibre and the path of the ray of light. [1] Describe one use of optical fibres in medicine. You may

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information