CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1

Size: px
Start display at page:

Download "CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1"

Transcription

1 CS 428: Fall 21 Introduction to Comuter Grahics Geometric Transformations Andrew Nealen, Rutgers, 21 9/15/21 1

2 Toic overview Image formation and OenGL (last week) Modeling the image formation rocess OenGL rimitives, OenGL state machine Transformations and viewing Polygons and olygon meshes Programmable ielines Modeling and animation Rendering Andrew Nealen, Rutgers, 21 9/15/21 2

3 Toic overview Image formation and OenGL Transformations and viewing (next weeks) Linear algebra review, Homogeneous coordinates Geometric + rojective transformations Viewing, Vieworts, Cliing Polygons and olygon meshes Programmable ielines Modeling and animation Rendering Andrew Nealen, Rutgers, 21 9/15/21 3

4 Transformations in CG Secify lacement of objects in the world relative to the configuration in which they are defined Allow for reuse of objects in different laces, sizes Secify the camera osition Secify the camera model (rojection) Andrew Nealen, Rutgers, 21 9/15/21 4

5 Transformations in CG The where is secified by translations and rotations (= rigid body motions) Shae changes include For now we will only use linear deformations Linear algebra! Andrew Nealen, Rutgers, 21 9/15/21 5

6 Reresentations in CG Comutations should not deend on coordinate system (such as midoint/origin) Need careful accounting of oints and vectors 3 Both R (3 tules of floating oint values) Vectors Dislacements, velocities, directions, trajectories, surface normals, etc. Points Locations! Andrew Nealen, Rutgers, 21 9/15/21 6

7 Vector/oint oerations Vector + vector = vector Point + vector = oint Point + oint = invalid! Street address analogy Point oint = vector Works! Andrew Nealen, Rutgers, 21 9/15/21 7

8 Vector review [ + q] i = i + q i [s ] i = s i = sqrt[ ( i ) 2 ] addition scalar multilication length Andrew Nealen, Rutgers, 21 9/15/21 8

9 Vector review q = Σ i q i Normalization = ˆ dot roduct q cosθ θ q Andrew Nealen, Rutgers, 21 9/15/21 9

10 Perendicular vectors < vw, >= v = ( x, y ) v = ± ( y, x ) v v v v v In 2D only! v Andrew Nealen, Rutgers, 21 9/15/21 1

11 Linear combination + Basis Linear combination λ 1 v 1 + λ 2 v λ n v n with λ i R Linear indeendence of vectors v 1,, v n λ 1 v λ n v n = only when λ i = = λ n = Basisof n-dimensions is a set of n linearly indeendent vectors Every vector in R n has a unique set of λ s to reresent it Cartesian coordinates Andrew Nealen, Rutgers, 21 9/15/21 11

12 Inner (dot) roduct Defined for vectors: < v, w>= v w cos θ L θ w v L cosθ = w < v, w> L= v Projection of wonto v Andrew Nealen, Rutgers, 21 9/15/21 12

13 Distance between oint and line Pythagoras : q l (1) L + dist( q, q ) = q < q, v> (2) L= v dist( q, q ) = q L = < q, v> = v 2 2 q. 2 v q L 9/15/21 Andrew Nealen, Rutgers, 21 13

14 Reresentation of a lane in 3D sace A lane πis defined by a normal nand one oint in the lane. A oint q lane <q, n>= The normal nis erendicular to all vectors in the lane n q π Andrew Nealen, Rutgers, 21 9/15/21 14

15 Distance between oint and lane Geometric way: Project (q - )onto n! dist= = < q, n> n q n π Andrew Nealen, Rutgers, 21 9/15/21 15

16 Coordinates Connect drawing lane/sace with R 2 or R 3 Coordinate origin and axes are roblem secific Examle: orthogonal coordinates in the lower corner of this room Affine saces have No fixed origin No fixed axes (which is not the case in linear saces) Andrew Nealen, Rutgers, 21 9/15/21 16

17 Coordinates Affine sace An affine sace is a vector sace that's forgotten its origin John Baez In R 3, the origin, lines and lanes through the origin and the whole sace are linear oints, lines and lanes in general as well as the whole sace are the affine subsaces. Andrew Nealen, Rutgers, 21 Linear subsace Affine subsace 9/15/21 17

18 Primitives Points Andrew Nealen, Rutgers, 21 9/15/21 18

19 Primitives Lines Andrew Nealen, Rutgers, 21 9/15/21 19

20 Primitives Triangles Andrew Nealen, Rutgers, 21 9/15/21 2

21 Primitives Shaes Andrew Nealen, Rutgers, 21 9/15/21 21

22 Primitives Shaes are tessellated Andrew Nealen, Rutgers, 21 9/15/21 22

23 Primitives Positioning Absolute coordinates? Andrew Nealen, Rutgers, 21 9/15/21 23

24 Primitives Positioning Transformation + relative coordinates Translation Rotation Scaling Shearing Affine mas / Transformations! Andrew Nealen, Rutgers, 21 9/15/21 24

25 The set v n n v= λi vi, mit λi = 1 i= i= V Affine mas Affine combinations is an affine combination of vectors v i (or of oints i ). 1 v v 1 v Andrew Nealen, Rutgers, 21 9/15/21 25

26 Affine mas Barycentric coordinates Given and affine sace Awith coordinate system B={, n } For a oint i 1with = i= λ the λ i are known as barycentriccoordinates Physical interretation: n n i= λ = 1 Points i have mass λ i istthe centroid(= center of mass) Andrew Nealen, Rutgers, 21 1 λ +λ 1 1= λ = i 9/15/21 26 λ =

27 1 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,,,,,,,, A A A A = = λ λ Affine mas Barycentric coordinates ( ) ( ) ( ) ( ) ( ) ( ) ,,,,,, A A A = λ = λ λ λ ( ) ( ) ( ) ( ) ,, A = 9/15/21 27 Andrew Nealen, Rutgers, 21

28 The set co { } Affine mas Convex hull n n = =,..., n λi i, λi = 1, undλi, i=,..., n i= i= is the convex hull co{,..., n } of oints,..., n The convex hull contains all convex combinations of the oints Convex combinations = 5 affine combinations /w barycentric coordinates 2 greater/equal to zero Andrew Nealen, Rutgers, 21 9/15/21 28

29 A ma Φ: R n R m is affine Affine mas as linear mas when Φcan be reresented as Φ(v)=A(v)+b where Ais a linear ma and b R m Affine mas have a linear art (multilication) and a translation (additive) x' y' z' a = a a 1 2 a a a a a a Linear transformation x y + z x y z Translation Andrew Nealen, Rutgers, 21 9/15/21 29

30 Affine transformations Preserve arallel lines lines lines, lanes lanes Might not reserve length and angles But do reserve relative length along lines If they do reserve length and angles then the transformation is an isometry Affine = linear + translation Andrew Nealen, Rutgers, 21 9/15/21 3

31 Affine mas as linear mas Leads to the use of rojective geometry 2D oints andvectors reresented as (x, y, w) homogeneous coordinates w = 1 w = oint vector Point (,, ) not allowed, so domain R 3 {(,, )} If w (,1] then (x, y, w) (x/w, y/w, 1) A oint Andrew Nealen, Rutgers, 21 9/15/21 31

32 What is w? 2D case! A kind of a tye Points + oints at infinity Points at infinity are not affected by translation Infinite # of oints corresond to (x, y, 1) {(tx, ty, t) t } Line through origin {origin} Andrew Nealen, Rutgers, 21 9/15/21 32

33 Homogeneous coordinates Works nicely for oints and vectors Adding and scaling works too More in rojections, where w [,1] Andrew Nealen, Rutgers, 21 9/15/21 33

34 Linear transformation Purely linear transformation Origin does not move New coordinate axes are lin. comb. of old ones Andrew Nealen, Rutgers, 21 9/15/21 34

35 Linear transformation Purely linear transformation Andrew Nealen, Rutgers, 21 9/15/21 35

36 Affine transformation as a linear transformation + translation in n dimensions Origin moves translation Andrew Nealen, Rutgers, 21 9/15/21 36

37 Origin moves translation Affine transformation as a linear transformation in n+1 dimensions Andrew Nealen, Rutgers, 21 9/15/21 37

38 What is so great about this? Easy to imlement Checks for errors in the imlementation Can always check the w coordinate to make sure that oints and vectors remain unchanged Unified reresentationfor linear + translation Can comose many transformations into a single matrix through concatenation M = M rot M scale M translate Andrew Nealen, Rutgers, 21 9/15/21 38

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMUTER GRAHICS 2D TRANSFORMATIONS SRING 26 DR. MICHAEL J. REALE INTRODUCTION Now that we hae some linear algebra under our resectie belts, we can start ug it in grahics! So far, for each rimitie,

More information

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation Comuter Grahics (Fall 24) COMS 416, Lecture 3: ransformations 1 htt://www.cs.columbia.edu/~cs416 o Do Start (thinking about) assignment 1 Much of information ou need is in this lecture (slides) Ask A NOW

More information

CMSC 425: Lecture 16 Motion Planning: Basic Concepts

CMSC 425: Lecture 16 Motion Planning: Basic Concepts : Lecture 16 Motion lanning: Basic Concets eading: Today s material comes from various sources, including AI Game rogramming Wisdom 2 by S. abin and lanning Algorithms by S. M. LaValle (Chats. 4 and 5).

More information

CSE4421/5324: Introduction to Robotics

CSE4421/5324: Introduction to Robotics CSE442/5324: Introduction to Robotics Contact Information Burton Ma Lassonde 246 burton@cse.yorku.ca EECS442/5324 lectures Monday, Wednesday, Friday :3-2:3PM (SLH C) Lab Thursday 2:3-2:3, Prism 4 Lab 2

More information

Illumination Model. The governing principles for computing the. Apply the lighting model at a set of points across the entire surface.

Illumination Model. The governing principles for computing the. Apply the lighting model at a set of points across the entire surface. Illumination and Shading Illumination (ighting) Model the interaction of light with surface oints to determine their final color and brightness OenG comutes illumination at vertices illumination Shading

More information

Last week. Machiraju/Zhang/Möller/Fuhrmann

Last week. Machiraju/Zhang/Möller/Fuhrmann Last week Machiraju/Zhang/Möller/Fuhrmann 1 Geometry basics Scalar, point, and vector Vector space and affine space Basic point and vector operations Sided-ness test Lines, planes, and triangles Linear

More information

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics structure arises in many alications of geometry. The dual structure, called a Delaunay triangulation also has many interesting roerties. Figure 3: Voronoi diagram and Delaunay triangulation. Search: Geometric

More information

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2 Cliing MIT EECS 6.837 Frédo Durand and Seth Teller Some slides and images courtesy of Leonard McMillan MIT EECS 6.837, Teller and Durand 1 MIT EECS 6.837, Teller and Durand 2 Administrative Assignment

More information

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry

Last time: Disparity. Lecture 11: Stereo II. Last time: Triangulation. Last time: Multi-view geometry. Last time: Epipolar geometry Last time: Disarity Lecture 11: Stereo II Thursday, Oct 4 CS 378/395T Prof. Kristen Grauman Disarity: difference in retinal osition of same item Case of stereo rig for arallel image lanes and calibrated

More information

Vectors and Transforms

Vectors and Transforms Skämtbild om matte å KTH-animationskurs Vectors and Transforms In 3D Grahics MAP Reetition of the Rendering Pieline Geometry - er vertex: Lighting (colors) Screen sace ositions light blue Geometry red

More information

521493S Computer Graphics Exercise 3 (Chapters 6-8)

521493S Computer Graphics Exercise 3 (Chapters 6-8) 521493S Comuter Grahics Exercise 3 (Chaters 6-8) 1 Most grahics systems and APIs use the simle lighting and reflection models that we introduced for olygon rendering Describe the ways in which each of

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Comuter Grahics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Comuter Grahics Grids and Interolation Next Tuesday No lecture next Tuesday!

More information

Camera Models. Acknowledgements Used slides/content with permission from

Camera Models. Acknowledgements Used slides/content with permission from Camera Models Acknowledgements Used slides/content with ermission rom Marc Polleeys or the slides Hartley and isserman: book igures rom the web Matthew Turk: or the slides Single view geometry Camera model

More information

CS452/552; EE465/505. Geometry Transformations

CS452/552; EE465/505. Geometry Transformations CS452/552; EE465/505 Geometry Transformations 1-26-15 Outline! Geometry: scalars, points & vectors! Transformations Read: Angel, Chapter 4 (study cube.html/cube.js example) Appendix B: Spaces (vector,

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

Last week. Machiraju/Zhang/Möller

Last week. Machiraju/Zhang/Möller Last week Machiraju/Zhang/Möller 1 Overview of a graphics system Output device Input devices Image formed and stored in frame buffer Machiraju/Zhang/Möller 2 Introduction to CG Torsten Möller 3 Ray tracing:

More information

Texture Mapping with Vector Graphics: A Nested Mipmapping Solution

Texture Mapping with Vector Graphics: A Nested Mipmapping Solution Texture Maing with Vector Grahics: A Nested Mimaing Solution Wei Zhang Yonggao Yang Song Xing Det. of Comuter Science Det. of Comuter Science Det. of Information Systems Prairie View A&M University Prairie

More information

Perception of Shape from Shading

Perception of Shape from Shading 1 Percetion of Shae from Shading Continuous image brightness variation due to shae variations is called shading Our ercetion of shae deends on shading Circular region on left is erceived as a flat disk

More information

2D transformations: An introduction to the maths behind computer graphics

2D transformations: An introduction to the maths behind computer graphics 2D transformations: An introduction to the maths behind computer graphics Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University,

More information

KAAP686 Mathematics and Signal Processing for Biomechanics. Rotation Matrices William C. Rose ,

KAAP686 Mathematics and Signal Processing for Biomechanics. Rotation Matrices William C. Rose , KAAP686 Mathematics and Signal Processing for Biomechanics Rotation Matrices William C. Rose 20150928, 20170423 Two-dimensional rotation matrices Consider the 2x2 matrices corresonding to rotations of

More information

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms Chater : Grahics Outut Primitives Primitives: functions in grahics acage that we use to describe icture element Points and straight lines are the simlest rimitives Some acages include circles, conic sections,

More information

Vectors and Transforms

Vectors and Transforms Skämtbild om matte å KTH-animationskurs Vectors and Transforms In 3D Grahics Change of Lecture Room Week 2: Wed 2/11: HC1 Fri 4/11: HA1 Thereafter HC1 all times excet: Week 5: Fri: HC3 Week 7: Fri: HC3

More information

Kinematics. Why inverse? The study of motion without regard to the forces that cause it. Forward kinematics. Inverse kinematics

Kinematics. Why inverse? The study of motion without regard to the forces that cause it. Forward kinematics. Inverse kinematics Kinematics Inverse kinematics The study of motion without regard to the forces that cause it Forward kinematics Given a joint configuration, what is the osition of an end oint on the structure? Inverse

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Comuter Grahics Virtual Realit Viewing an rojection Classical an General Viewing Transformation Pieline CPU CPU Pol. Pol. DL DL Piel Piel Per Per Verte Verte Teture Teture Raster Raster Frag

More information

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER GEOMETRIC CONSTRAINT SOLVING IN < AND < 3 CHRISTOPH M. HOFFMANN Deartment of Comuter Sciences, Purdue University West Lafayette, Indiana 47907-1398, USA and PAMELA J. VERMEER Deartment of Comuter Sciences,

More information

Shading Models. Simulate physical phenomena

Shading Models. Simulate physical phenomena Illumination Models & Shading Shading Models Simulate hysical henomena Real illumination simulation is comlicated & exensive Use aroximation and heuristics with little hysical basis that looks surrisingly

More information

Global Illumination with Photon Map Compensation

Global Illumination with Photon Map Compensation Institut für Comutergrahik und Algorithmen Technische Universität Wien Karlslatz 13/186/2 A-1040 Wien AUSTRIA Tel: +43 (1) 58801-18688 Fax: +43 (1) 58801-18698 Institute of Comuter Grahics and Algorithms

More information

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand

Remember: The equation of projection. Imaging Geometry 1. Basic Geometric Coordinate Transforms. C306 Martin Jagersand Imaging Geometr 1. Basic Geometric Coordinate Transorms emember: The equation o rojection Cartesian coordinates: (,, z) ( z, z ) C36 Martin Jagersand How do we develo a consistent mathematical ramework

More information

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)

Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.) Advanced Algorithms Fall 2015 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual

More information

UNIT 2 2D TRANSFORMATIONS

UNIT 2 2D TRANSFORMATIONS UNIT 2 2D TRANSFORMATIONS Introduction With the procedures for displaying output primitives and their attributes, we can create variety of pictures and graphs. In many applications, there is also a need

More information

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1 Foundations of Computer Graphics Homogeneous Coordinates Start doing HW 1 To Do Specifics of HW 1 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

MATHEMATICAL MODELING OF COMPLEX MULTI-COMPONENT MOVEMENTS AND OPTICAL METHOD OF MEASUREMENT

MATHEMATICAL MODELING OF COMPLEX MULTI-COMPONENT MOVEMENTS AND OPTICAL METHOD OF MEASUREMENT MATHEMATICAL MODELING OF COMPLE MULTI-COMPONENT MOVEMENTS AND OPTICAL METHOD OF MEASUREMENT V.N. Nesterov JSC Samara Electromechanical Plant, Samara, Russia Abstract. The rovisions of the concet of a multi-comonent

More information

Input Nodes. Surface Input. Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking

Input Nodes. Surface Input. Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking Input Nodes Surface Input Nodal Motion Nodal Displacement Instance Generator Light Flocking The different Input nodes, where they can be found, what their outputs are. Surface Input When editing a surface,

More information

Shadows in Computer Graphics

Shadows in Computer Graphics Shadows in Computer Graphics Steven Janke November 2014 Steven Janke (Seminar) Shadows in Computer Graphics November 2014 1 / 49 Shadows (from Doom) Steven Janke (Seminar) Shadows in Computer Graphics

More information

Matrix Transformations. Affine Transformations

Matrix Transformations. Affine Transformations Matri ransformations Basic Graphics ransforms ranslation Scaling Rotation Reflection Shear All Can be Epressed As Linear Functions of the Original Coordinates : A + B + C D + E + F ' A ' D 1 B E C F 1

More information

Computer Graphics. Viewing. Fundamental Types of Viewing. Perspective views. Parallel views. October 12, finite COP (center of projection)

Computer Graphics. Viewing. Fundamental Types of Viewing. Perspective views. Parallel views. October 12, finite COP (center of projection) Comuter Grahics Viewing October 2, 25 htt://www.hallm.ac.kr/~sunkim/teach/25/cga Funamental Tes of Viewing Persective views finite COP (center of rojection) Parallel views COP at infinit DOP (irection

More information

Homogeneous Coordinates and Transformations of the Plane

Homogeneous Coordinates and Transformations of the Plane 2 Homogeneous Coordinates and Transformations of the Plane 2. Introduction In Chapter planar objects were manipulated by applying one or more transformations. Section.7 identified the problem that the

More information

Folded Structures Satisfying Multiple Conditions

Folded Structures Satisfying Multiple Conditions Journal of Information Processing Vol.5 No.4 1 10 (Oct. 017) [DOI: 1197/isjji.5.1] Regular Paer Folded Structures Satisfying Multile Conditions Erik D. Demaine 1,a) Jason S. Ku 1,b) Received: November

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS560 Reminder - Pieline Polgon at [(,9), (5,7), (8,9)] Polgon at [ ] D Model Transformations Reminder - Pieline Object Camera Cli Normalied device Screen Inut: Polgons in normalied device Model-view Projection

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Comutational Geometry 1 David M. Mount Deartment of Comuter Science University of Maryland Fall 2002 1 Coyright, David M. Mount, 2002, Det. of Comuter Science, University of Maryland, College

More information

3D GRAPHICS. design. animate. render

3D GRAPHICS. design. animate. render 3D GRAPHICS design animate render 3D animation movies Computer Graphics Special effects Computer Graphics Advertising Computer Graphics Games Computer Graphics Simulations & serious games Computer Graphics

More information

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations

3D Mathematics. Co-ordinate systems, 3D primitives and affine transformations 3D Mathematics Co-ordinate systems, 3D primitives and affine transformations Coordinate Systems 2 3 Primitive Types and Topologies Primitives Primitive Types and Topologies 4 A primitive is the most basic

More information

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE Petra Surynková Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83,

More information

2D and 3D Coordinate Systems and Transformations

2D and 3D Coordinate Systems and Transformations Graphics & Visualization Chapter 3 2D and 3D Coordinate Systems and Transformations Graphics & Visualization: Principles & Algorithms Introduction In computer graphics is often necessary to change: the

More information

Lecture 4: Transforms. Computer Graphics CMU /15-662, Fall 2016

Lecture 4: Transforms. Computer Graphics CMU /15-662, Fall 2016 Lecture 4: Transforms Computer Graphics CMU 15-462/15-662, Fall 2016 Brief recap from last class How to draw a triangle - Why focus on triangles, and not quads, pentagons, etc? - What was specific to triangles

More information

Today s Agenda. Geometry

Today s Agenda. Geometry Today s Agenda Geometry Geometry Three basic elements Points Scalars Vectors Three type of spaces (Linear) vector space: scalars and vectors Affine space: vector space + points Euclidean space: vector

More information

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101 Convex Hulls Helen Cameron Helen Cameron Convex Hulls 1/101 What Is a Convex Hull? Starting Point: Points in 2D y x Helen Cameron Convex Hulls 3/101 Convex Hull: Informally Imagine that the x, y-lane is

More information

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices Computergrafik Matthias Zwicker Universität Bern Herbst 2008 Today Transformations & matrices Introduction Matrices Homogeneous Affine transformations Concatenating transformations Change of Common coordinate

More information

Matlab Virtual Reality Simulations for optimizations and rapid prototyping of flexible lines systems

Matlab Virtual Reality Simulations for optimizations and rapid prototyping of flexible lines systems Matlab Virtual Reality Simulations for otimizations and raid rototying of flexible lines systems VAMVU PETRE, BARBU CAMELIA, POP MARIA Deartment of Automation, Comuters, Electrical Engineering and Energetics

More information

Dr Pavan Chakraborty IIIT-Allahabad

Dr Pavan Chakraborty IIIT-Allahabad GVC-43 Lecture - 5 Ref: Donald Hearn & M. Pauline Baker, Comuter Grahics Foley, van Dam, Feiner & Hughes, Comuter Grahics Princiles & Practice Dr Pavan Chakraborty IIIT-Allahabad Summary of line drawing

More information

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Min Hu, Saad Ali and Mubarak Shah Comuter Vision Lab, University of Central Florida {mhu,sali,shah}@eecs.ucf.edu Abstract Learning tyical

More information

Homogeneous coordinates, lines, screws and twists

Homogeneous coordinates, lines, screws and twists Homogeneous coordinates, lines, screws and twists In lecture 1 of module 2, a brief mention was made of homogeneous coordinates, lines in R 3, screws and twists to describe the general motion of a rigid

More information

3D Computer Vision Camera Models

3D Computer Vision Camera Models 3D Comuter Vision Camera Models Nassir Navab based on a course given at UNC by Marc Pollefeys & the book Multile View Geometry by Hartley & Zisserman July 2, 202 chair for comuter aided medical rocedures

More information

Geometry. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Geometry. CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science Geometry CS 537 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012. 1 Objectives Introduce

More information

Vector Algebra Transformations. Lecture 4

Vector Algebra Transformations. Lecture 4 Vector Algebra Transformations Lecture 4 Cornell CS4620 Fall 2008 Lecture 4 2008 Steve Marschner 1 Geometry A part of mathematics concerned with questions of size, shape, and relative positions of figures

More information

This is the peer reviewed version of the following article: Susín, A. and Ramírez, J.E. (2015). Segmentation-based skinning. Computer animation and

This is the peer reviewed version of the following article: Susín, A. and Ramírez, J.E. (2015). Segmentation-based skinning. Computer animation and This is the eer reviewed version of the following article: Susín, A. and Ramírez, J.E. (). Segmentation-based skinning. Comuter animation and virtual worlds, (), 1 which has been ublished in final form

More information

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems

EECE 478. Learning Objectives. Learning Objectives. Linear Algebra and 3D Geometry. Linear algebra in 3D. Coordinate systems EECE 478 Linear Algebra and 3D Geometry Learning Objectives Linear algebra in 3D Define scalars, points, vectors, lines, planes Manipulate to test geometric properties Coordinate systems Use homogeneous

More information

BASIC ELEMENTS. Geometry is the study of the relationships among objects in an n-dimensional space

BASIC ELEMENTS. Geometry is the study of the relationships among objects in an n-dimensional space GEOMETRY 1 OBJECTIVES Introduce the elements of geometry Scalars Vectors Points Look at the mathematical operations among them Define basic primitives Line segments Polygons Look at some uses for these

More information

Using Rational Numbers and Parallel Computing to Efficiently Avoid Round-off Errors on Map Simplification

Using Rational Numbers and Parallel Computing to Efficiently Avoid Round-off Errors on Map Simplification Using Rational Numbers and Parallel Comuting to Efficiently Avoid Round-off Errors on Ma Simlification Maurício G. Grui 1, Salles V. G. de Magalhães 1,2, Marcus V. A. Andrade 1, W. Randolh Franklin 2,

More information

Curve Modeling (Spline) Dr. S.M. Malaek. Assistant: M. Younesi

Curve Modeling (Spline) Dr. S.M. Malaek. Assistant: M. Younesi Crve Modeling Sline Dr. S.M. Malae Assistant: M. Yonesi Crve Modeling Sline Crve Control Points Convex Hll Shae of sline crve Interolation Slines Aroximation Slines Continity Conditions Parametric & Geometric

More information

Object and Native Code Thread Mobility Among Heterogeneous Computers

Object and Native Code Thread Mobility Among Heterogeneous Computers Object and Native Code Thread Mobility Among Heterogeneous Comuters Bjarne Steensgaard Eric Jul Microsoft Research DIKU (Det. of Comuter Science) One Microsoft Way University of Coenhagen Redmond, WA 98052

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 1: Affine Maps in 3D Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

10 File System Mass Storage Structure Mass Storage Systems Mass Storage Structure Mass Storage Structure FILE SYSTEM 1

10 File System Mass Storage Structure Mass Storage Systems Mass Storage Structure Mass Storage Structure FILE SYSTEM 1 10 File System 1 We will examine this chater in three subtitles: Mass Storage Systems OERATING SYSTEMS FILE SYSTEM 1 File System Interface File System Imlementation 10.1.1 Mass Storage Structure 3 2 10.1

More information

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University Query Processing Shuigeng Zhou May 18, 2016 School of Comuter Science Fudan University Overview Outline Measures of Query Cost Selection Oeration Sorting Join Oeration Other Oerations Evaluation of Exressions

More information

Constrained Empty-Rectangle Delaunay Graphs

Constrained Empty-Rectangle Delaunay Graphs CCCG 2015, Kingston, Ontario, August 10 12, 2015 Constrained Emty-Rectangle Delaunay Grahs Prosenjit Bose Jean-Lou De Carufel André van Renssen Abstract Given an arbitrary convex shae C, a set P of oints

More information

AUTOMATIC GENERATION OF HIGH THROUGHPUT ENERGY EFFICIENT STREAMING ARCHITECTURES FOR ARBITRARY FIXED PERMUTATIONS. Ren Chen and Viktor K.

AUTOMATIC GENERATION OF HIGH THROUGHPUT ENERGY EFFICIENT STREAMING ARCHITECTURES FOR ARBITRARY FIXED PERMUTATIONS. Ren Chen and Viktor K. inuts er clock cycle Streaming ermutation oututs er clock cycle AUTOMATIC GENERATION OF HIGH THROUGHPUT ENERGY EFFICIENT STREAMING ARCHITECTURES FOR ARBITRARY FIXED PERMUTATIONS Ren Chen and Viktor K.

More information

Structure from Motion

Structure from Motion 04/4/ Structure from Motion Comuter Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adated from Lana Lazebnik, Silvio Saverese, Steve Seitz his class: structure from motion Reca

More information

Chapter 8: Adaptive Networks

Chapter 8: Adaptive Networks Chater : Adative Networks Introduction (.1) Architecture (.2) Backroagation for Feedforward Networks (.3) Jyh-Shing Roger Jang et al., Neuro-Fuzzy and Soft Comuting: A Comutational Aroach to Learning and

More information

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation

Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation Geometric transformations assign a point to a point, so it is a point valued function of points. Geometric transformation may destroy the equation and the type of an object. Even simple scaling turns a

More information

Coordinate Transformations & Homogeneous Coordinates

Coordinate Transformations & Homogeneous Coordinates CS-C31 (Introduction to) Computer Graphics Jaakko Lehtinen Coordinate Transformations & Homogeneous Coordinates Lots of slides from Frédo Durand CS-C31 Fall 216 Lehtinen Outline Intro to Transformations

More information

2D Object Definition (1/3)

2D Object Definition (1/3) 2D Object Definition (1/3) Lines and Polylines Lines drawn between ordered points to create more complex forms called polylines Same first and last point make closed polyline or polygon Can intersect itself

More information

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52 Computer Graphics Three-Dimensional Graphics I Guoying Zhao 1 / 52 Geometry Guoying Zhao 2 / 52 Objectives Introduce the elements of geometry Scalars Vectors Points Develop mathematical operations among

More information

COT5405: GEOMETRIC ALGORITHMS

COT5405: GEOMETRIC ALGORITHMS COT5405: GEOMETRIC ALGORITHMS Objects: Points in, Segments, Lines, Circles, Triangles Polygons, Polyhedra R n Alications Vision, Grahics, Visualizations, Databases, Data mining, Networks, GIS Scientific

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University 2D Image Transforms 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Extract features from an image what do we do next? Feature matching (object recognition, 3D reconstruction, augmented

More information

Object Representation Affine Transforms. Polygonal Representation. Polygonal Representation. Polygonal Representation of Objects

Object Representation Affine Transforms. Polygonal Representation. Polygonal Representation. Polygonal Representation of Objects Object Representation Affine Transforms Polygonal Representation of Objects Although perceivable the simplest form of representation they can also be the most problematic. To represent an object polygonally,

More information

A Simple and Robust Approach to Computation of Meshes Intersection

A Simple and Robust Approach to Computation of Meshes Intersection A Simle and Robust Aroach to Comutation of Meshes Intersection Věra Skorkovská 1, Ivana Kolingerová 1 and Bedrich Benes 2 1 Deartment of Comuter Science and Engineering, University of West Bohemia, Univerzitní

More information

Homographies and Mosaics

Homographies and Mosaics Tri reort Homograhies and Mosaics Jeffrey Martin (jeffrey-martin.com) CS94: Image Maniulation & Comutational Photograhy with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 06 Steve Seitz and

More information

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms

Computer Graphics with OpenGL ES (J. Han) Chapter IV Spaces and Transforms Chapter IV Spaces and Transforms Scaling 2D scaling with the scaling factors, s x and s y, which are independent. Examples When a polygon is scaled, all of its vertices are processed by the same scaling

More information

Application of 3D Human Motion in the Sports based on Computer Aided Analysis

Application of 3D Human Motion in the Sports based on Computer Aided Analysis Send Orders for Rerints to rerints@benthamscience.ae 1728 he Oen Cybernetics & Systemics Journal, 2015, 9, 1728-1732 Oen Access Alication of 3D Human Motion in the Sorts based on Comuter Aided Analysis

More information

CS335 Fall 2007 Graphics and Multimedia. 2D Drawings: Lines

CS335 Fall 2007 Graphics and Multimedia. 2D Drawings: Lines CS335 Fall 007 Grahics and Multimedia D Drawings: Lines Primitive Drawing Oerations Digital Concets of Drawing in Raster Arras PIXEL is a single arra element at x, - No smaller drawing unit exists Px,

More information

Robot Mapping. A Short Introduction to Homogeneous Coordinates. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to Homogeneous Coordinates. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to Homogeneous Coordinates Gian Diego Tipaldi, Wolfram Burgard 1 Motivation Cameras generate a projected image of the world Euclidian geometry is suboptimal to describe

More information

Temporal Resolution. Flicker fusion threshold The frequency at which an intermittent light stimulus appears to be completely steady to the observer

Temporal Resolution. Flicker fusion threshold The frequency at which an intermittent light stimulus appears to be completely steady to the observer Temporal Resolution Flicker fusion threshold The frequency at which an intermittent light stimulus appears to be completely steady to the observer For the purposes of presenting moving images (animations),

More information

Research on Inverse Dynamics and Trajectory Planning for the 3-PTT Parallel Machine Tool

Research on Inverse Dynamics and Trajectory Planning for the 3-PTT Parallel Machine Tool 06 International Conference on aterials, Information, echanical, Electronic and Comuter Engineering (IECE 06 ISBN: 978--60595-40- Research on Inverse Dynamics and rajectory Planning for the 3-P Parallel

More information

Lecture 4: Transformations and Matrices. CSE Computer Graphics (Fall 2010)

Lecture 4: Transformations and Matrices. CSE Computer Graphics (Fall 2010) Lecture 4: Transformations and Matrices CSE 40166 Computer Graphics (Fall 2010) Overall Objective Define object in object frame Move object to world/scene frame Bring object into camera/eye frame Instancing!

More information

Analyzing Borders Between Partially Contradicting Fuzzy Classification Rules

Analyzing Borders Between Partially Contradicting Fuzzy Classification Rules Analyzing Borders Between Partially Contradicting Fuzzy Classification Rules Andreas Nürnberger, Aljoscha Klose, Rudolf Kruse University of Magdeburg, Faculty of Comuter Science 39106 Magdeburg, Germany

More information

The Spatial Skyline Queries

The Spatial Skyline Queries Coffee sho The Satial Skyline Queries Mehdi Sharifzadeh and Cyrus Shahabi VLDB 006 Presented by Ali Khodaei Coffee sho Three friends Coffee sho Three friends Don t choose this lace is closer to each three

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato

Image Formation. 2. Camera Geometry. Focal Length, Field Of View. Pinhole Camera Model. Computer Vision. Zoltan Kato Image Formation 2. amera Geometr omuter Vision oltan Kato htt://www.in.u-seged.hu/~kato seged.hu/~kato/ 3D Scene Surace Light (Energ) Source inhole Lens Imaging lane World Otics Sensor Signal amera: Sec

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 32 Cornell CS4620 Fall 2015 1 What is animation? Modeling = specifying shape using all the tools we ve seen: hierarchies, meshes, curved surfaces Animation = specifying shape

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space Basic Elements Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions We want a minimum set

More information

P Z. parametric surface Q Z. 2nd Image T Z

P Z. parametric surface Q Z. 2nd Image T Z Direct recovery of shae from multile views: a arallax based aroach Rakesh Kumar. Anandan Keith Hanna Abstract Given two arbitrary views of a scene under central rojection, if the motion of oints on a arametric

More information

Objectives. Geometry. Basic Elements. Coordinate-Free Geometry. Transformations to Change Coordinate Systems. Scalars

Objectives. Geometry. Basic Elements. Coordinate-Free Geometry. Transformations to Change Coordinate Systems. Scalars Objecties Geometry CS 432 Interactie Computer Graphics Prof. Daid E. Breen Department of Computer Science Introduce the elements of geometry - Scalars - Vectors - Points Deelop mathematical operations

More information

1 Affine and Projective Coordinate Notation

1 Affine and Projective Coordinate Notation CS348a: Computer Graphics Handout #9 Geometric Modeling Original Handout #9 Stanford University Tuesday, 3 November 992 Original Lecture #2: 6 October 992 Topics: Coordinates and Transformations Scribe:

More information

Overview. Affine Transformations (2D and 3D) Coordinate System Transformations Vectors Rays and Intersections

Overview. Affine Transformations (2D and 3D) Coordinate System Transformations Vectors Rays and Intersections Overview Affine Transformations (2D and 3D) Coordinate System Transformations Vectors Rays and Intersections ITCS 4120/5120 1 Mathematical Fundamentals Geometric Transformations A set of tools that aid

More information