Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)

Size: px
Start display at page:

Download "Lecture 3: Geometric Algorithms(Convex sets, Divide & Conquer Algo.)"

Transcription

1 Advanced Algorithms Fall 2015 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal ublications. They may be distributed outside this class only with the ermission of the faculty. 3.1 Comutational Geometry Comutational geometry has evolved from the classical disciline of the design and analysis of algorithms. It is concerned with comutational comlexity of geometric roblems that arise in discilines like, attern recognition, comuter grahics, comuter vision, robotics, and very-large scale integrated (VLSI) layout, oeration research, statistics, etc. In contrast to the classical aroach to roving mathematical theorems about geometry-related roblems, this disciline emhasizes the comutational asect of these roblem and attemts to exloit the underlying geometric roerties, e.g., the metric sace, to derive efficient algorithmic solutions. The classes of roblems that we address in this chater include roximity, intersection, searching, oint location, convex set, convex hull, Voronoi diagrams, CAD/CAM, etc. 3.2 Divide and Conuer This is a basic roblem solving techniue and has roven to be very useful for geometric roblems as well. This techniue mainly involves artitioning of the given roblem into several subroblems, recursively solving each subroblem, and then combining the solutions to each of the subroblems to obtain the final solution to the otimal roblem. We demonstrate its working by considering the roblem of comuting the common intersection of n half lanes in the lane. Given is the set S of n half-lanes, h i, reresented by, a i x+b i y c i,i = 1,2,...,n. (3.1) Examle 3.1 Let for i = 1, h 1 is: 5x+4y 20. This gives all oints in half lane as shown in figure 3.1. It is simle to understand that, common intersection of half-lanes, denoted by, C(S) = n h i (3.2) i=1 is a convex set, which may or may not be bounded. If it is bounded, it is convex olygon. In figure 3.2 the shaded area is common intersection Figure 3.1: Half lane 5x+4y 20.

2 3-2 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) The divide and conuer algorithm comutes the following stes: Algorithm 1 : Algorithm common-intersection-d&c(s); 1: if S 3 then 2: comute the intersection CI(S) exlicitly 3: Return (C(S)) 4: end if 5: Divide S into two arox. eual subsets S 1 and S 2 6: CI(S 1 ) = Common-Intersection-D&C(S 1 ) 7: CI(S 2 ) = Common-Intersection-D&C(S 2 ) 8: CI(S) = Merge (CI(S 1 ), CI(S 2 )) 9: Return (CI(S)) The key ste is the merge of two common intersections. Because CI(S 1 ) and CI(S 2 ) are convex, the merge ste basically calls for the comutation of the intersection of two convex olygons, which can be solved in time roortional to the size of the olygons. The running time of D&C algorithm is O(nlogn) due to following recurrence formula, where n = S. T(3) = O(1) T(n) = 2T ( n 2) +O(n)+M ( n 2, n 2), where,m ( n 2, n 2) = O(n)denotesthemergetime(ste 5). 3.3 Convex Set Figure 3.2: Divide-and-conuer scheme for common intersecting half-lanes(half lanes are on the side of arrows). Definition 3.2 Convex Set. In Euclidean sace, a convex set is the region such that, for every air of oints within the region, every oint on the straight line segment that joins the air of oints is also within the region. Let S be a vector sace over the real numbers R, or, more generally, some ordered field. This includes Euclidean saces. A set C in S is said to be convex if, for all and in C and all α in the interval [0,1], the oint (1 α)+α also belongs to C. In other words, every oint on the line segment connecting and is in C. This imlies that a convex set in a real or comlex toological vector sace is ath-connected, thus connected. Furthermore, C is strictly convex if every oint on the line segment connecting and other than the endoints is inside the interior of C. x y x Figure 3.3: Convex set, Non-convex set. y In geometric terms, a body C in the Euclidean sace is convex if and only if the line segment joining any two oints in C lies totally in C. But, this theorem is not suitable for comutational urose as there are

3 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) 3-3 infinitely many ossible airs of oints to be considered. However, other roerties of convexity C be utilized to yield an algorithm. For examle, a cube in R 3 is a convex but its boundary is not, for the boundary does not contain segment, unless and lie in the same two-dimensional face of the cube. The imortance of convexity theory stems from the fact that convex sets freuently arise in many areas of mathematics, and are helful in elementary reasoning. Even infinite-dimensional theory is based on 2- and 3-dimensional reasoning. Any two distinct oints and of real vector sace R determine a uniue line. It consists of all oints of the form (1 α) +α, α ranging over all real numbers. Those oints for which α 0 and those for which 0 α 1 form resectively the ray from through and the segment. The convex subsets of R (the set of real numbers) are simly the intervals of R. Some examles of convex subsets of the Euclidean lane are solid regular olygons, solid triangles, and intersections of solid triangles. Some examles of convex subsets of a Euclidean 3-dimensional sace are the Archimedean solids and the Platonic solids. The Keler-Poinsot olyhedra are examles of non-convex sets. Examle 3.3 The figure 3.4 shows a line segment, while 3.4 shows a circle in 2-dimensional convex set. Solution. the case of line segment, let the oints marked on line are 2, 3, 4, 5. Let us call the oints on line as the set C. Hence, (1 α) +α C. Let α = 0.5, = 2, and = 5. We note that (1 0.5) = 3.5 C. Similarly, we can verify it for circle. Let the circle is x 2 + y 2 = 2, i.e., centered at (0, 0), with radius of 1. Let x = 0.5,y = 0.75 is and x = 0.4,y = 0.8 are the oints and. Let α = 0.6. Then first, (1 α) +α = (1 0.6)0.5+( 0.4) 0.6 = Similarly, for y, (1 α) +α = (1 0.6)0.75+( 0.8) 0.6 = Thus, we note that (1 α) +α Figure 3.4: Points ona line segment as a Convex set, Points in a circle as a convex set. = ( 0.04, 0.18) C, which satisfy the criteria of convexity. Like, this it should satisfy for all (x,y) in the set C. r = 1 Definition 3.4 A function is convex if and only if its eigrah, the region (in hashed) above its grah (see fig. 3.5), is a convex set. Proerties of Convex sets: If S is a convex set in n- dimensional sace, then for any collection of r, r > 1, n- dimensional vectors u 1,...,u r in S, and for any nonnegative numbers λ 1,...,λ r such that λ 1 + +λ r = 1, then we have: r λ k u k S. (3.3) k=1 Figure 3.5: Convex function.

4 3-4 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) A vector of this tye is known as a convex combination of u 1,...,u r Intersections and unions The collection of convex subsets of a vector sace has the following roerties: 1. The emty set and the whole vector-sace are convex. 2. The intersection of any collection of convex sets is convex(figure 3.6). 3. The union of a non-decreasing seuence of convex subsets is a convex set. For the receding roerty of unions of non-decreasing seuences of convex sets, the restriction to nested sets is imortant: The union of two convex sets need not be convex. For examle, the non-decreasing convex sets are C 1 = {a,b}, and C 2 = {a,b,c}. Then, their union, C 1 C 2 = {a,b,c}, is obviously, a convex set. Definition 3.5 Jordan curve theorem. In toology, a Jordan curve is a non-self-intersecting continuous loo in the lane. The Jordan curve theorem asserts that every Jordan curve divides the lane into an interior region bounded by the curve and an exterior region containing all of the nearby and far away exterior oints, so that any continuous ath connecting a oint of one region to a oint of the other region intersects with that loo somewhere. Hence, any two oints, outside a Jordan curve will intersect even number of times, and two ointer,r, one is outside and other inside will intersect the curve odd number of times (see figure 3.7, and 3.7). Consider the following roblem. Given a simle closed Jordan olygon curve, determine if the interior region enclosed by the curve is convex. This roblem can be readily solved solved by observing that if line segment defined by all airs of vertices of the olygon curve, v i,v j,i j,1 i,j n, where n denotes the total number of vertices, lie totally inside the region, then the region is convex. This would yield a straight algorithm with time comlexity O(n 3 ), as there are O(n 2 ) line segments, and to test if each line segment lies totally in the region takes O(n) time by comaring it against every olynomial segment. Outside Region r Inside region r A B A B Figure 3.6: Intersection of Convex sets A and B, 2-dimensional, 2-dimensional, (c) 3-dimensional, are all convex. It may be noted that the interior angle of each vertex must be strictly less than π, in order for the region to be convex. If it is more than π it is reflex. It may be noted that all the vertices must be convex, is the necessar condition for the region to be convex. A B Figure 3.7: Jordan Curve.

5 Lecture 3: Geometric Algorithms(Convex sets, Divide & Conuer Algo.) 3-5 in P, on the boundary, or outside? Is oint inside the olygon The general roblem we d like to solve is, given a oint (x,y) and a olygon P (reresented by its seuence of vertices), is (x,y) Fortunately the roblem has a simle and elegant answer. Just draw a ray (ortion of a line extending infinitely in one direction) down (or in any other direction) from (x, y), count crossings on ray. Every time the olygon crosses this ray, it searates a art of the ray that s inside the olygon from a art that s outside. For this, all we really need to know is whether there s an even or odd number of them. In even crossings, the oint is outside the olygon. Algorithm 2 : function is-oint-inside-olygon(olygon, oint) return inside/outside; 1: for each line segment of the olygon do 2: if ray down from (x,y) crosses segment then 3: crossings++; 4: end if 5: if crossings is odd then 6: return (inside); 7: else 8: return (outside); 9: end if 10: end for References [1] Mikhail J. Atallah & Marina Blanta, Algorithms and Theory of Comutation Handbook, Secial Toics and Techniues, II ed., CRC Press, [2] Allen B. Tucker, Jr., The comuter Science and Engineering Handbook, CRC Press, 1997.

Cross products. p 2 p. p p1 p2. p 1. Line segments The convex combination of two distinct points p1 ( x1, such that for some real number with 0 1,

Cross products. p 2 p. p p1 p2. p 1. Line segments The convex combination of two distinct points p1 ( x1, such that for some real number with 0 1, CHAPTER 33 Comutational Geometry Is the branch of comuter science that studies algorithms for solving geometric roblems. Has alications in many fields, including comuter grahics robotics, VLSI design comuter

More information

We will then introduce the DT, discuss some of its fundamental properties and show how to compute a DT directly from a given set of points.

We will then introduce the DT, discuss some of its fundamental properties and show how to compute a DT directly from a given set of points. Voronoi Diagram and Delaunay Triangulation 1 Introduction The Voronoi Diagram (VD, for short) is a ubiquitious structure that aears in a variety of discilines - biology, geograhy, ecology, crystallograhy,

More information

CMSC 425: Lecture 16 Motion Planning: Basic Concepts

CMSC 425: Lecture 16 Motion Planning: Basic Concepts : Lecture 16 Motion lanning: Basic Concets eading: Today s material comes from various sources, including AI Game rogramming Wisdom 2 by S. abin and lanning Algorithms by S. M. LaValle (Chats. 4 and 5).

More information

COT5405: GEOMETRIC ALGORITHMS

COT5405: GEOMETRIC ALGORITHMS COT5405: GEOMETRIC ALGORITHMS Objects: Points in, Segments, Lines, Circles, Triangles Polygons, Polyhedra R n Alications Vision, Grahics, Visualizations, Databases, Data mining, Networks, GIS Scientific

More information

Cross products Line segments The convex combination of two distinct points p

Cross products Line segments The convex combination of two distinct points p CHAPTER Comutational Geometry Is the branch of comuter science that studies algorithms for solving geometric roblems. Has alications in many fields, including comuter grahics robotics, VLSI design comuter

More information

Curve Reconstruction taken from [1]

Curve Reconstruction taken from [1] Notes by Tamal K. Dey, OSU 47 Curve Reconstruction taken from [1] The simlest class of manifolds that ose nontrivial reconstruction roblems are curves in the lane. We will describe two algorithms for curve

More information

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101

Convex Hulls. Helen Cameron. Helen Cameron Convex Hulls 1/101 Convex Hulls Helen Cameron Helen Cameron Convex Hulls 1/101 What Is a Convex Hull? Starting Point: Points in 2D y x Helen Cameron Convex Hulls 3/101 Convex Hull: Informally Imagine that the x, y-lane is

More information

Fundamentals of Restricted-Orientation Convexity

Fundamentals of Restricted-Orientation Convexity Fundamentals of Restricted-Orientation Convexity Eugene Fink Derick Wood Abstract A restricted-orientation convex set, also called an O-convex set, is a set of oints whose intersection with lines from

More information

Lecture 18. Today, we will discuss developing algorithms for a basic model for parallel computing the Parallel Random Access Machine (PRAM) model.

Lecture 18. Today, we will discuss developing algorithms for a basic model for parallel computing the Parallel Random Access Machine (PRAM) model. U.C. Berkeley CS273: Parallel and Distributed Theory Lecture 18 Professor Satish Rao Lecturer: Satish Rao Last revised Scribe so far: Satish Rao (following revious lecture notes quite closely. Lecture

More information

The Edge-flipping Distance of Triangulations

The Edge-flipping Distance of Triangulations The Edge-fliing Distance of Triangulations Sabine Hanke (Institut für Informatik, Universität Freiburg, Germany hanke@informatik.uni-freiburg.de) Thomas Ottmann (Institut für Informatik, Universität Freiburg,

More information

Constrained Empty-Rectangle Delaunay Graphs

Constrained Empty-Rectangle Delaunay Graphs CCCG 2015, Kingston, Ontario, August 10 12, 2015 Constrained Emty-Rectangle Delaunay Grahs Prosenjit Bose Jean-Lou De Carufel André van Renssen Abstract Given an arbitrary convex shae C, a set P of oints

More information

Lecture 8: Orthogonal Range Searching

Lecture 8: Orthogonal Range Searching CPS234 Comutational Geometry Setember 22nd, 2005 Lecture 8: Orthogonal Range Searching Lecturer: Pankaj K. Agarwal Scribe: Mason F. Matthews 8.1 Range Searching The general roblem of range searching is

More information

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics

Lecture 2: Fixed-Radius Near Neighbors and Geometric Basics structure arises in many alications of geometry. The dual structure, called a Delaunay triangulation also has many interesting roerties. Figure 3: Voronoi diagram and Delaunay triangulation. Search: Geometric

More information

Computing the Convex Hull of. W. Hochstattler, S. Kromberg, C. Moll

Computing the Convex Hull of. W. Hochstattler, S. Kromberg, C. Moll Reort No. 94.60 A new Linear Time Algorithm for Comuting the Convex Hull of a Simle Polygon in the Plane by W. Hochstattler, S. Kromberg, C. Moll 994 W. Hochstattler, S. Kromberg, C. Moll Universitat zu

More information

The Spatial Skyline Queries

The Spatial Skyline Queries Coffee sho The Satial Skyline Queries Mehdi Sharifzadeh and Cyrus Shahabi VLDB 006 Presented by Ali Khodaei Coffee sho Three friends Coffee sho Three friends Don t choose this lace is closer to each three

More information

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field

Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Learning Motion Patterns in Crowded Scenes Using Motion Flow Field Min Hu, Saad Ali and Mubarak Shah Comuter Vision Lab, University of Central Florida {mhu,sali,shah}@eecs.ucf.edu Abstract Learning tyical

More information

Randomized algorithms: Two examples and Yao s Minimax Principle

Randomized algorithms: Two examples and Yao s Minimax Principle Randomized algorithms: Two examles and Yao s Minimax Princile Maximum Satisfiability Consider the roblem Maximum Satisfiability (MAX-SAT). Bring your knowledge u-to-date on the Satisfiability roblem. Maximum

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Comutational Geometry 1 David M. Mount Deartment of Comuter Science University of Maryland Fall 2002 1 Coyright, David M. Mount, 2002, Det. of Comuter Science, University of Maryland, College

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

Deformable Free Space Tilings for Kinetic Collision Detection

Deformable Free Space Tilings for Kinetic Collision Detection Deformable Free Sace Tilings for Kinetic Collision Detection Pankaj K. Agarwal Julien Basch Leonidas J. Guibas John Hershberger Li Zhang Abstract We resent kinetic data structures for detecting collisions

More information

Image Segmentation Using Topological Persistence

Image Segmentation Using Topological Persistence Image Segmentation Using Toological Persistence David Letscher and Jason Fritts Saint Louis University Deartment of Mathematics and Comuter Science {letscher, jfritts}@slu.edu Abstract. This aer resents

More information

The Spatial Skyline Queries

The Spatial Skyline Queries The Satial Skyline Queries Mehdi Sharifzadeh Comuter Science Deartment University of Southern California Los Angeles, CA 90089-078 sharifza@usc.edu Cyrus Shahabi Comuter Science Deartment University of

More information

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Range Searching Data structure for a set of objects (oints, rectangles, olygons) for efficient range queries. Y Q Deends on tye of objects and queries. Consider basic data structures with broad alicability.

More information

Lecture 4: Geometric Algorithms (Convex Hull, Voronoi diagrams)

Lecture 4: Geometric Algorithms (Convex Hull, Voronoi diagrams) Advanced Algorithms Fall 2015 Lecture 4: Geometric Algorithms (Convex Hull, Voronoi diagrams) Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Computational Geometry

Computational Geometry Lecture 1: Introduction and convex hulls Geometry: points, lines,... Geometric objects Geometric relations Combinatorial complexity Computational geometry Plane (two-dimensional), R 2 Space (three-dimensional),

More information

Fundamentals of. Restricted-Orientation Convexity z. Eugene Fink and Derick Wood y. Carnegie{Mellon University

Fundamentals of. Restricted-Orientation Convexity z. Eugene Fink and Derick Wood y. Carnegie{Mellon University Fundamentals of Restricted-Orientation Convexity z Eugene Fink and Derick Wood y Technical Reort HKUST-CS95-46 Setember 1995 Deartment of Comuter Science Carnegie{Mellon University Pittsburgh, PA 15213

More information

Sensitivity Analysis for an Optimal Routing Policy in an Ad Hoc Wireless Network

Sensitivity Analysis for an Optimal Routing Policy in an Ad Hoc Wireless Network 1 Sensitivity Analysis for an Otimal Routing Policy in an Ad Hoc Wireless Network Tara Javidi and Demosthenis Teneketzis Deartment of Electrical Engineering and Comuter Science University of Michigan Ann

More information

Geometric Dilation. A polygonal chain C. detour of C on the pair (p, q): where C q p the path on C connecting p and q. detour of C

Geometric Dilation. A polygonal chain C. detour of C on the pair (p, q): where C q p the path on C connecting p and q. detour of C Geometric Dilation A olygonal chain C detour of C on the air (, ): δ(, ) = C, where C the ath on C connecting and. detour of C δ C = max, C δ(, ). More general: A connected lanar grah G(V, E) Gemetric

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks

Complexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks Journal of Comuting and Information Technology - CIT 8, 2000, 1, 1 12 1 Comlexity Issues on Designing Tridiagonal Solvers on 2-Dimensional Mesh Interconnection Networks Eunice E. Santos Deartment of Electrical

More information

Computational Geometry: Proximity and Location

Computational Geometry: Proximity and Location 63 Comutational Geometry: Proximity and Location 63.1 Introduction Proximity and location are fundamental concets in geometric comutation. The term roximity refers informally to the uality of being close

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Comuter Grahics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Comuter Grahics Grids and Interolation Next Tuesday No lecture next Tuesday!

More information

CS2 Algorithms and Data Structures Note 8

CS2 Algorithms and Data Structures Note 8 CS2 Algorithms and Data Structures Note 8 Heasort and Quicksort We will see two more sorting algorithms in this lecture. The first, heasort, is very nice theoretically. It sorts an array with n items in

More information

split split (a) (b) split split (c) (d)

split split (a) (b) split split (c) (d) International Journal of Foundations of Comuter Science c World Scientic Publishing Comany ON COST-OPTIMAL MERGE OF TWO INTRANSITIVE SORTED SEQUENCES JIE WU Deartment of Comuter Science and Engineering

More information

Graduate Algorithms CS F-19 Computational Geometry

Graduate Algorithms CS F-19 Computational Geometry Graduate Algorithms CS673-016F-19 Comutational Geometry David Galles Deartment of Comuter Science University of San Francisco 19-0: Cross Products Given any two oints 1 = (x 1,y 1 ) and = (x,y ) Cross

More information

arxiv: v1 [math.gt] 1 May 2018

arxiv: v1 [math.gt] 1 May 2018 CIRCUIT PRESENTATION AND LATTICE STICK NUMBER WITH EXACTLY 4 z-sticks HYOUNGJUN KIM AND SUNGJONG NO arxiv:805.0023v [math.gt] May 208 Abstract. The lattice stick number s L(L) of a link L is defined to

More information

521493S Computer Graphics Exercise 3 (Chapters 6-8)

521493S Computer Graphics Exercise 3 (Chapters 6-8) 521493S Comuter Grahics Exercise 3 (Chaters 6-8) 1 Most grahics systems and APIs use the simle lighting and reflection models that we introduced for olygon rendering Describe the ways in which each of

More information

The concept of set is a very basic one. It is simple; yet, it suffices as the basis on which all abstract notions in mathematics can be built.

The concept of set is a very basic one. It is simple; yet, it suffices as the basis on which all abstract notions in mathematics can be built. Chater 1 Sets and functions Section 1.1 Sets The concet of set is a very basic one. It is simle; yet, it suffices as the basis on which all abstract notions in mathematics can be built. A set is determined

More information

arxiv: v5 [cs.cc] 6 Jun 2017

arxiv: v5 [cs.cc] 6 Jun 2017 On the Comlexity of Barrier Resilience for Fat Regions and Bounded Ply arxiv:1302.4707v5 [cs.cc] 6 Jun 2017 Matias Korman Maarten Löffler Rodrigo I. Silveira Darren Strash Abstract In the barrier resilience

More information

Directed File Transfer Scheduling

Directed File Transfer Scheduling Directed File Transfer Scheduling Weizhen Mao Deartment of Comuter Science The College of William and Mary Williamsburg, Virginia 387-8795 wm@cs.wm.edu Abstract The file transfer scheduling roblem was

More information

Extracting Optimal Paths from Roadmaps for Motion Planning

Extracting Optimal Paths from Roadmaps for Motion Planning Extracting Otimal Paths from Roadmas for Motion Planning Jinsuck Kim Roger A. Pearce Nancy M. Amato Deartment of Comuter Science Texas A&M University College Station, TX 843 jinsuckk,ra231,amato @cs.tamu.edu

More information

Grouping of Patches in Progressive Radiosity

Grouping of Patches in Progressive Radiosity Grouing of Patches in Progressive Radiosity Arjan J.F. Kok * Abstract The radiosity method can be imroved by (adatively) grouing small neighboring atches into grous. Comutations normally done for searate

More information

CS335 Fall 2007 Graphics and Multimedia. 2D Drawings: Lines

CS335 Fall 2007 Graphics and Multimedia. 2D Drawings: Lines CS335 Fall 007 Grahics and Multimedia D Drawings: Lines Primitive Drawing Oerations Digital Concets of Drawing in Raster Arras PIXEL is a single arra element at x, - No smaller drawing unit exists Px,

More information

An improved algorithm for Hausdorff Voronoi diagram for non-crossing sets

An improved algorithm for Hausdorff Voronoi diagram for non-crossing sets An imroved algorithm for Hausdorff Voronoi diagram for non-crossing sets Frank Dehne, Anil Maheshwari and Ryan Taylor May 26, 2006 Abstract We resent an imroved algorithm for building a Hausdorff Voronoi

More information

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2

Clipping. Administrative. Assignment 1 Gallery. Questions about previous lectures? Overview of graphics pipeline? Assignment 2 Cliing MIT EECS 6.837 Frédo Durand and Seth Teller Some slides and images courtesy of Leonard McMillan MIT EECS 6.837, Teller and Durand 1 MIT EECS 6.837, Teller and Durand 2 Administrative Assignment

More information

Space-efficient Region Filling in Raster Graphics

Space-efficient Region Filling in Raster Graphics "The Visual Comuter: An International Journal of Comuter Grahics" (submitted July 13, 1992; revised December 7, 1992; acceted in Aril 16, 1993) Sace-efficient Region Filling in Raster Grahics Dominik Henrich

More information

Efficient Parallel Hierarchical Clustering

Efficient Parallel Hierarchical Clustering Efficient Parallel Hierarchical Clustering Manoranjan Dash 1,SimonaPetrutiu, and Peter Scheuermann 1 Deartment of Information Systems, School of Comuter Engineering, Nanyang Technological University, Singaore

More information

Chapter 7, Part B Sampling and Sampling Distributions

Chapter 7, Part B Sampling and Sampling Distributions Slides Preared by JOHN S. LOUCKS St. Edward s University Slide 1 Chater 7, Part B Samling and Samling Distributions Samling Distribution of Proerties of Point Estimators Other Samling Methods Slide 2 Samling

More information

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2 Lenses 2 L ENSES 2. Sherical reracting suraces In order to start discussing lenses uantitatively, it is useul to consider a simle sherical surace, as shown in Fig. 2.. Our lens is a semi-ininte rod with

More information

Taut ideal triangulations of 3-manifolds

Taut ideal triangulations of 3-manifolds Abstract Taut ideal triangulations of 3-manifolds Marc Lackenby Mathematical Institute, Oxford University, 24-29 St Giles, Oxford OX1 3LB, UK Email: lackenby@maths.ox.ac.uk A taut ideal triangulation of

More information

Parallel Lines: Two lines in the same plane are parallel if they do not intersect or are the same.

Parallel Lines: Two lines in the same plane are parallel if they do not intersect or are the same. Section 2.3: Lines and Angles Plane: infinitely large flat surface Line: extends infinitely in two directions Collinear Points: points that lie on the same line. Parallel Lines: Two lines in the same plane

More information

Empty Region Graphs. Computer Science Department, Université Libre de Bruxelles, CP212, Boulevard du Triomphe, 1050 Bruxelles, Belgium

Empty Region Graphs. Computer Science Department, Université Libre de Bruxelles, CP212, Boulevard du Triomphe, 1050 Bruxelles, Belgium Emty Region Grahs Jean Cardinal 1 Sébastien Collette 2 Stefan Langerman 3 Comuter Science Deartment, Université Libre de Bruxelles, CP212, Boulevard du Triomhe, 1050 Bruxelles, Belgium Abstract A family

More information

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points.

Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Math 3181 Dr. Franz Rothe Name: All3181\3181_spr13t1.tex 1 Solution of Test I Definition 1 (Hand-shake model). A hand shake model is an incidence geometry for which every line has exactly two points. Definition

More information

An Efficient Video Program Delivery algorithm in Tree Networks*

An Efficient Video Program Delivery algorithm in Tree Networks* 3rd International Symosium on Parallel Architectures, Algorithms and Programming An Efficient Video Program Delivery algorithm in Tree Networks* Fenghang Yin 1 Hong Shen 1,2,** 1 Deartment of Comuter Science,

More information

CS2 Algorithms and Data Structures Note 8

CS2 Algorithms and Data Structures Note 8 CS2 Algorithms and Data Structures Note 8 Heasort and Quicksort We will see two more sorting algorithms in this lecture. The first, heasort, is very nice theoretically. It sorts an array with n items in

More information

Theoretical Analysis of Graphcut Textures

Theoretical Analysis of Graphcut Textures Theoretical Analysis o Grahcut Textures Xuejie Qin Yee-Hong Yang {xu yang}@cs.ualberta.ca Deartment o omuting Science University o Alberta Abstract Since the aer was ublished in SIGGRAPH 2003 the grahcut

More information

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

EXTREME POINTS AND AFFINE EQUIVALENCE

EXTREME POINTS AND AFFINE EQUIVALENCE EXTREME POINTS AND AFFINE EQUIVALENCE The purpose of this note is to use the notions of extreme points and affine transformations which are studied in the file affine-convex.pdf to prove that certain standard

More information

New Results on Abstract Voronoi Diagrams

New Results on Abstract Voronoi Diagrams New Results on Abstract Voronoi Diagrams Dissertation Zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

More information

Restricted-Orientation Convexity in Higher-Dimensional Spaces

Restricted-Orientation Convexity in Higher-Dimensional Spaces Restricted-Orientation Convexity in Higher-Dimensional Spaces ABSTRACT Eugene Fink Derick Wood University of Waterloo, Waterloo, Ont, Canada N2L3G1 {efink, dwood}@violetwaterlooedu A restricted-oriented

More information

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University Query Processing Shuigeng Zhou May 18, 2016 School of Comuter Science Fudan University Overview Outline Measures of Query Cost Selection Oeration Sorting Join Oeration Other Oerations Evaluation of Exressions

More information

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm

Computational Geometry. Geometry Cross Product Convex Hull Problem Sweep Line Algorithm GEOMETRY COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Computational

More information

Source Coding and express these numbers in a binary system using M log

Source Coding and express these numbers in a binary system using M log Source Coding 30.1 Source Coding Introduction We have studied how to transmit digital bits over a radio channel. We also saw ways that we could code those bits to achieve error correction. Bandwidth is

More information

[Me] Meisters, G. H., Polygons have ears, American Mathematical Monthly, June/July 1975, pp

[Me] Meisters, G. H., Polygons have ears, American Mathematical Monthly, June/July 1975, pp 4. Applications Meisters [Me] Two-Ears Theorem was motivated by the problem of triangulating a simple polygon. In fact Meisters suggests a greedy, but concise algorithm to achieve this goal, i.e., find

More information

Constrained Path Optimisation for Underground Mine Layout

Constrained Path Optimisation for Underground Mine Layout Constrained Path Otimisation for Underground Mine Layout M. Brazil P.A. Grossman D.H. Lee J.H. Rubinstein D.A. Thomas N.C. Wormald Abstract The major infrastructure comonent reuired to develo an underground

More information

CS649 Sensor Networks IP Track Lecture 6: Graphical Models

CS649 Sensor Networks IP Track Lecture 6: Graphical Models CS649 Sensor Networks IP Track Lecture 6: Grahical Models I-Jeng Wang htt://hinrg.cs.jhu.edu/wsn06/ Sring 2006 CS 649 1 Sring 2006 CS 649 2 Grahical Models Grahical Model: grahical reresentation of joint

More information

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER

GEOMETRIC CONSTRAINT SOLVING IN < 2 AND < 3. Department of Computer Sciences, Purdue University. and PAMELA J. VERMEER GEOMETRIC CONSTRAINT SOLVING IN < AND < 3 CHRISTOPH M. HOFFMANN Deartment of Comuter Sciences, Purdue University West Lafayette, Indiana 47907-1398, USA and PAMELA J. VERMEER Deartment of Comuter Sciences,

More information

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.

In what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces. Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery

More information

Silvania Avelar, Matthias Muller. Swiss Federal Institute of Technology Zurich, Switzerland. Abstract

Silvania Avelar, Matthias Muller. Swiss Federal Institute of Technology Zurich, Switzerland. Abstract Generating Toologically Correct Schematic Mas Silvania Avelar, Matthias Muller Deartment of Comuter Science Swiss Federal Institute of Technology 8092 Zurich, Switzerland favelar,muellermg@inf.ethz.ch

More information

The equal tangents property

The equal tangents property The equal tangents property J. Jerónimo-Castro, G. Ruiz-Hernández and S. Tabachnikov April 29, 2012 Abstract Let M be a C 2 -smooth strictly convex closed surface in R 3 and denote by H the set of points

More information

GEOMETRY BASIC GEOMETRICAL IDEAS. 3) A point has no dimensions (length, breadth or thickness).

GEOMETRY BASIC GEOMETRICAL IDEAS. 3) A point has no dimensions (length, breadth or thickness). CLASS 6 - GEOMETRY BASIC GEOMETRICAL IDEAS Geo means Earth and metron means Measurement. POINT 1) The most basic shape in geometry is the Point. 2) A point determines a location. 3) A point has no dimensions

More information

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set γ 1 γ 3 γ γ 3 γ γ 1 R (a) an unbounded Yin set (b) a bounded Yin set Fig..1: Jordan curve representation of a connected Yin set M R. A shaded region represents M and the dashed curves its boundary M that

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Lecture 11 Combinatorial Planning: In the Plane

Lecture 11 Combinatorial Planning: In the Plane CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Lecture 11 Combinatorial Planning: In the Plane Instructor: Jingjin Yu Outline Convex shapes, revisited Combinatorial planning

More information

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1

CS 428: Fall Introduction to. Geometric Transformations. Andrew Nealen, Rutgers, /15/2010 1 CS 428: Fall 21 Introduction to Comuter Grahics Geometric Transformations Andrew Nealen, Rutgers, 21 9/15/21 1 Toic overview Image formation and OenGL (last week) Modeling the image formation rocess OenGL

More information

Computational Geometry

Computational Geometry Lecture 12: Lecture 12: Motivation: Terrains by interpolation To build a model of the terrain surface, we can start with a number of sample points where we know the height. Lecture 12: Motivation: Terrains

More information

Brief Contributions. A Geometric Theorem for Network Design 1 INTRODUCTION

Brief Contributions. A Geometric Theorem for Network Design 1 INTRODUCTION IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO., APRIL 00 83 Brief Contributions A Geometric Theorem for Network Design Massimo Franceschetti, Member, IEEE, Matthew Cook, and Jehoshua Bruck, Fellow, IEEE

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms

Chapter 3: Graphics Output Primitives. OpenGL Line Functions. OpenGL Point Functions. Line Drawing Algorithms Chater : Grahics Outut Primitives Primitives: functions in grahics acage that we use to describe icture element Points and straight lines are the simlest rimitives Some acages include circles, conic sections,

More information

5. THE ISOPERIMETRIC PROBLEM

5. THE ISOPERIMETRIC PROBLEM Math 501 - Differential Geometry Herman Gluck March 1, 2012 5. THE ISOPERIMETRIC PROBLEM Theorem. Let C be a simple closed curve in the plane with length L and bounding a region of area A. Then L 2 4 A,

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.854J / 18.415J Advanced Algorithms Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advanced

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

CS 532: 3D Computer Vision 14 th Set of Notes

CS 532: 3D Computer Vision 14 th Set of Notes 1 CS 532: 3D Computer Vision 14 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Lecture Outline Triangulating

More information

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry

Computational Geometry. Algorithm Design (10) Computational Geometry. Convex Hull. Areas in Computational Geometry Computational Geometry Algorithm Design (10) Computational Geometry Graduate School of Engineering Takashi Chikayama Algorithms formulated as geometry problems Broad application areas Computer Graphics,

More information

Real Numbers and Algebraic Expressions

Real Numbers and Algebraic Expressions College Algebra - MAT 161 Page: 1 Coyright 2009 Killoran Real Numbers and Algebraic Exressions Idea #1 Infinity- a never ending rogression Is there an infinity of sand grains on the Outer Banks of North

More information

EXTERNAL VISIBILITY. 1. Definitions and notation. The boundary and interior of

EXTERNAL VISIBILITY. 1. Definitions and notation. The boundary and interior of PACIFIC JOURNAL OF MATHEMATICS Vol. 64, No. 2, 1976 EXTERNAL VISIBILITY EDWIN BUCHMAN AND F. A. VALENTINE It is possible to see any eleven vertices of an opaque solid regular icosahedron from some appropriate

More information

UPDATING ALGORITHMS FOR CONSTRAINT DELAUNAY TIN

UPDATING ALGORITHMS FOR CONSTRAINT DELAUNAY TIN UPDATING ALGORITMS FOR CONSTRAINT DELAUNAY TIN WU LiXin a,b WANG YanBing a, c a Institute for GIS/RS/GPS & Subsidence Engineering Research, China Uni Mining & Technology, Beijing, China, 100083 - awulixin@263.net,

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Computing the Visibility Graph of Points Within a Polygon

Computing the Visibility Graph of Points Within a Polygon Comuting the Visibility Grah of Points Within a Polygon Boaz Ben-Moshe Comuter Science Ben-Gurion University Beer-Sheva 84105, Israel benmoshe@cs.bgu.ac.il Olaf Hall-Holt Alied Math. & Statistics Stony

More information

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE

CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE CENTRAL AND PARALLEL PROJECTIONS OF REGULAR SURFACES: GEOMETRIC CONSTRUCTIONS USING 3D MODELING SOFTWARE Petra Surynková Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83,

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Other Voronoi/Delaunay Structures

Other Voronoi/Delaunay Structures Other Voronoi/Delaunay Structures Overview Alpha hulls (a subset of Delaunay graph) Extension of Voronoi Diagrams Convex Hull What is it good for? The bounding region of a point set Not so good for describing

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Face Recognition Using Legendre Moments

Face Recognition Using Legendre Moments Face Recognition Using Legendre Moments Dr.S.Annadurai 1 A.Saradha Professor & Head of CSE & IT Research scholar in CSE Government College of Technology, Government College of Technology, Coimbatore, Tamilnadu,

More information

pine cone Ratio = 13:8 or 8:5

pine cone Ratio = 13:8 or 8:5 Chapter 10: Introducing Geometry 10.1 Basic Ideas of Geometry Geometry is everywhere o Road signs o Carpentry o Architecture o Interior design o Advertising o Art o Science Understanding and appreciating

More information

BMO Round 1 Problem 6 Solutions

BMO Round 1 Problem 6 Solutions BMO 2005 2006 Round 1 Problem 6 Solutions Joseph Myers November 2005 Introduction Problem 6 is: 6. Let T be a set of 2005 coplanar points with no three collinear. Show that, for any of the 2005 points,

More information

An Indexing Framework for Structured P2P Systems

An Indexing Framework for Structured P2P Systems An Indexing Framework for Structured P2P Systems Adina Crainiceanu Prakash Linga Ashwin Machanavajjhala Johannes Gehrke Carl Lagoze Jayavel Shanmugasundaram Deartment of Comuter Science, Cornell University

More information